
CS 341: Algorithms @ Waterloo Last Updated: Jan 27, 2023
Homework 2 Due Date: Feb 10, 2023, 11pm

You are allowed to discuss with others but are not allowed to use any references other than the course
notes and the three reference books. Please list your collaborators for each question. You must write your
own solutions. See the course outline for the homework policy.

There are totally 55 marks (including the bonus). The full mark is 50 (extra marks above 50 will not be
carried over). This homework is counted 8% of the course grade.

1. Programming Problem: Marble Game (16 marks)

The instructions for submitting your programs will be posted on piazza.

Consider the following game, which is played on a long board and with four marbles. The board
consists of n ≥ 4 marble slots arranged in a row, which we number from 1 to n, from left to right.
Each marble fits in one of the slots.

A game state X is represented using a four-tuple (X1, X2, X3, X4), where 1 ≤ X1 < X2 < X3 < X4 ≤ n
are the locations of the marbles. The marbles are identical, so swapping two marbles does not change
the state.

There are two types of moves that one can make. The first type is to move a marble to an adjacent,
unoccupied slot. The second type is to take a marble and “reflect” it along another marble. The
requirements are that the distance between them is maintained, and there is no third marble along the
way. Formally, if we take a marble at slot p, we can reflect it along a marble at slot q, bringing it to
slot 2q− p, as long as there are no other marbles between slots p and 2q− p (inclusive). The following
figure depicts situations where a move can and cannot be made.

Figure 1: On the top is the current state, encoded (2, 3, 5, 8). By moving the marble at position 2 to the
left, we can reach state (1, 3, 5, 8). By reflecting the marble at position 2 along the marble at position 3,
we can reach state (3, 4, 5, 8). By reflecting the marble at position 3 along the marble at position 5, we can
reach state (2, 5, 7, 8). We cannot reflect the marble at position 5 along the marble at position 3, because
the marble at position 2 gets in the way.

1



Your task is to find a shortest sequence of moves from a starting state S to a target state T .

Input: The first line has an integer n, representing the length of the board. The second line has four
integers S1, . . . , S4, representing the starting state S = (S1, S2, S3, S4). The third line has four integers
T1, . . . , T4, representing the target state T = (T1, T2, T3, T4).

It is guaranteed that 4 ≤ n ≤ 80, 1 ≤ S1 < S2 < S3 < S4 ≤ n and 1 ≤ T1 < T2 < T3 < T4 ≤ n.

Output: The first line should be the minimum number of moves M required to teach the target state

from the starting state. M+1 lines should follow. The i-th of these lines should be X
(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4 ,

representing the i-th state X(i) = (X
(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4 ) in the sequence of moves. The output should

be so that:

� X(1) = S and X(M+1) = T ;

� State X(i+1) is reachable from state X(i) in one move, for all 1 ≤ i ≤M ;

� X
(i)
1 < X

(i)
2 < X

(i)
3 < X

(i)
4 for all 1 ≤ i ≤M + 1.

If there are multiple shortest sequences of moves, any of them will be accepted.

Sample Input:
5

1 2 3 4

2 3 4 5

Sample Output:
2

1 2 3 4

1 2 4 5

2 3 4 5

2. Written Problem: Number of Shortest s-t Paths (12 marks)

Given an undirected graph G = (V,E) and two vertices s and t, design an algorithm to return the
number of different shortest s-t paths between s and t. Two paths are the same if they have exactly
the same sequence of vertices; otherwise they are different.

You will get full marks if the time complexity of the algorithm is O(|V | + |E|) word operations and
the proofs are correct. We assume that the answer fits in one word, so that adding two numbers with
the sum being at most the answer can be done in one word operation.

2



3. Written Problem: One-Way Streets (12 marks)

Imagine in a city where all the streets are two-way streets. Perhaps because the streets are too narrow,
the government would like to see if it is possible to make all streets one-way, so that there is still a way
to drive from any intersection to any other intersection in the city.

Show how to model this problem as a graph problem. Then design an algorithm to determine if it is
possible, and when it is possible to output one solution to assign the directions.

You will get full marks if the time complexity of the algorithm is O(n+m) and the proofs are correct,
where m is the number of streets in the city and n is the number of intersections in the city.

Figure 2: There is a solution in this example.

?

Figure 3: There is no solution in this example.

4. Written Problem: Directed Odd Cycle (12+3 marks)

Given a directed graph G = (V,E), design an algorithm to determine if there is a directed odd cycle
in G or not. You will get full marks if the time complexity is O(|V |+ |E|) and the proofs are correct.

(a) A graph with a directed odd cycle 1 → 3 → 2 → 1.

(b) A graph without directed odd cycles.

Bonus: (3 marks) You will get up to 3 bonus marks if your algorithm can print out a simple directed
odd cycle when it exists.

3


