
CS 341: Algorithms @ Waterloo Last Updated: Jan 16, 2023
Homework 1 Due Date: Jan 27, 2022, 11pm

You are allowed to discuss with others but are not allowed to use any references other than the course
notes and the three reference books. Please list your collaborators for each question. You must write your
own solutions. See the course outline for the homework policy.

There are totally 57 marks (including the bonus). The full mark is 50 (extra marks above 50 will not be
carried over). This homework is counted 8% of the course grade.

1. Programming Problem: Polynomial Multiplication (15 marks)

The instructions for submitting your programs will be posted on piazza.

You are asked to write a program for fast polynomial multiplication, by extending the Karatsuba’s
O(n1.59) algorithm for integer multiplication.

Input: The first line has an integer n. The second line has n + 1 integers a0, a1, . . . , an, representing
a degree n polynomial f(x) = a0 + a1x + a2x

2 + . . . + anx
n. The third line has n + 1 integers

b0, b1, . . . , bn, representing a degree n polynomial g(x) = b0 + b1x+ b2x
2 + . . .+ bnx

n. You can assume
that 0 ≤ n ≤ 100000 and |ai| ≤ 100000 for 0 ≤ i ≤ n and |bj | ≤ 100000 for 0 ≤ j ≤ n.

Output: One line with 2n + 1 numbers, the coefficients of the degree 2n polynomial f(x) · g(x).

Sample Input:
5

0 20 139 -78 137 -11

-7 88 923 -342 179 0

Sample Output:
0 -140 787 31238 113634 -103819 177040 -70969 28285 -1969 0

2. Written Problem: Solving Recurrences (10 marks)

Solve the following recurrence relations:

(a) T (n) = T (2n/3) + T (n/3) + n2.

(b) T (n) =
√
n · T (

√
n) + n.

1

3. Written Problem: Merging Sorted Lists (12 marks)

We start with a definition. We consider a full binary tree T with k leaves, where the ith leaf has weight
ni for all i. The weight of each internal node is defined as the sum of the weights of its two children
nodes, and the weight W (T) of the whole tree is the sum of the weights of its internal nodes.

(a) (2 marks) We use this to analyse a divide-and-conquer algorithm to merge k sorted lists. Here,
we will do the simplifying assumption that merging two lists of lengths n and n′ takes n + n′

operations. We consider the following algorithm to merge lists L1, . . . , Lk:

� if k = 1, return L1

� else,

– choose k′ ∈ {1, . . . , k − 1}
– call the algorithm recursively to merge L1, . . . , Lk′ into a list L and Lk′+1, . . . , Lk into a

list L′

– return the list obtained by merging L and L′

Give the cost of this algorithm in terms of weight of the recursion tree.

(b) (5 marks) Prove that given integers `1, . . . , `k with
∑k

i=1 1/2`i ≤ 1, you can build a full binary
tree with leaves labelled by 1, . . . , k and with the ith leaf of depth at most `i for all i.

(c) (3 marks) Use part (b) or otherwise, prove that given positive n1, . . . , nk, you can build a
full binary tree T with k leaves, with leaves having weights n1, . . . , nk, and with W (T) ≤
N(H(n1, . . . , nk) + 1), where N = n1 + · · ·+ nk and H(n1, . . . , nk) is the entropy defined as

H(n1, . . . , nk) = −
∑

1≤i≤k

ni

N
log2

(ni

N

)
=
∑

1≤i≤k

ni

N
log2

(
N

ni

)
.

You can start by rewriting the weight W (T) of a full binary tree in terms of the weights of the
leaves and their respective depths.

(d) (2 marks) Apply part (c) to the case where you merge lists of same lengths n1 = · · · = nk: what
cost do you get? Same question with n1 = n2 = 1, n3 = 2, n4 = 4, . . . , nk = 2k−2.

2

4. Written Problem: Finding Maximum Space (15+5 marks)

This question has two parts.

(a) (10+5 marks) Imagine an advertising company would like to post a huge poster in Toronto harbour
front. There are n consecutive buildings there, with positive height h1, . . . , hn and unit width as
shown in the figure. Design a divide and conquer algorithm to find the maximum rectangular
space to post their poster. Stated mathematically, find 1 ≤ i ≤ j ≤ n to maximize (j − i + 1) ·
mini≤k≤j{hk}.

4 6 5 4 3 1 5 4 3 7

Figure 1: These are three possible solutions. The largest one has area 4× 4 = 16.

You will get full marks if the time complexity is O(n log n) and the proofs are correct.

Bonus (5 marks): Provide an algorithm with time complexity O(n) with correct proofs.

(b) (5 marks) Imagine the government would like to build a huge park in the city. The city is an n×n
grid, with some units occupied. Use (a) or otherwise, design an algorithm to find the maximum
(axis-aligned) rectangular unoccupied space to build the park.

Figure 2: These are three possible solutions. The largest one has area 7× 3 = 21.

You will get full marks if the time complexity is O(n2) and the proofs are correct. You can assume
that there is an O(n) time algorithm for part (a).

3

