Good problems

[KT]

[KT]

Let's consider a long, quiet country road with houses scattered very
sparsely along it. (We can picture the road as a long line segment, with
an eastern endpoint and a western endpoint.) Further, let's suppose that
despite the bucolic setting, the residents of all these houses are avid cell
phone users. You want to place cell phone base stations at certain points
along the road, so that every house is within four miles of one of the base
stations. '

Give an efficient algorithm that achieves this goal, using as few base
stations as possible.

The wildly popular Spanish-language search engine El Goog needs to do
a serious amount of computation every time it recompiles its index. For-
tunately, the company has at its disposal a single large supercomputer,
together with an essentially unlimited supply of high-end PCs.

They've broken the overall computation into n distinct jobs, labeled
Ji,J3, ..., I, which can be performed completely independently of one
another. Each job consists of two stages: first it needs to be preprocessed
on the supercomputer, and then it needs to be finished on one of the
PCs. Let’s say that job J; needs p; seconds of time on, the supercomputer,
followed by f; seconds of time on a PC.

Since there are at least n PCs available on the premises, the finishing
of the jobs can be performed fully in parallel—all the jobs can be pro-
cessed at the same time. However, the supercomputer can only work on
a single job at a time, so the system managers need to work out an order
in which to feed the jobs to the supercomputer. As soon as the first job

in order is done on the supercomputer, it can be handed off to a PC for
finishing; at that point in time a second job can be fed to the supercom-
puter; when the second job is done on the supercomputer, it can proceed
to a PC regardless of whether or not the first job is done (since the PCs
work in parallel); and so on.

Let’s say that a schedule is an ordering of the jobs for the super-
computer, and the completion time of the schedule is the earliest time at
which all jobs will have finished processing on the PCs. This is an impor-
tant quantity to minimize, since it determines how rapidly El Goog can
generate a new index.

Give a polynomial-time algorithm that finds a schedule with as small
a completion time as possible.

exercises Page 1

[KT]

[KT]

The manager of a large student union on campus comes to you with the
following problem. She’s in charge of a group of n students, each of whom
is scheduled to work one shift during the week. There are different jobs
associated with these shifts (tending the main desk, helping with package
delivery, rebooting cranky information kiosks, etc.), but we can view each
shift as a single contiguous interval of time. There can be multiple shifts
going on at once.

She’s trying to choose a subset of these n students to form a super-
vising committee that she can meet with once a week. She considers such
a committee to be complete if, for every student not on the committee,
that student’s shift overlaps (at least partially) the shift of some student
who is on the committee. In this way, each student’s performance can be
observed by at least one person who's serving on the committee.

Give an efficient algorithm that takes the schedule of n shifts and
produces a complete supervising committee containing as few students
as possible.

Example. Suppose n =3, and the shifts are

Monday 4 pm—~Monday 8 pm,,
Monday 6 pm~Monday 10 pm,
Monday 9 rm~Monday 11 M.

Then the smallest complete supervising committee would consist of just
the second student, since the second shift overlaps both the first and the
third.

Consider the following variation on the Interval Scheduling Problem. You
have a processor that can operate 24 hours a day, every day. People
submit requests to run daily jobs on the processor. Each such job comes
with a start time and an end time; if the job is accepted to run on the
processor, it must run continuously, every day, for the period between
its start and end times. (Note that certain jobs can begin before midnight
and end after midnight; this makes for a type of situation different from
what we saw in the Interval Scheduling Problem.)

Given a list of n such jobhs, your goal is to accept as many jobs as
possible (regardless of their length), subject to the constraint that the
processor can run at most one job at any given point in time. Provide an
algorithm to do this with a running time that is polynomial in n. You may
assume for simplicity that no two jobs have the same start or end times.
Example. Consider the following four jobs, specified by (start-time, end-
tinie) pairs.

(6 pm, 6 AM), (9 Pm, 4 AM), (3 am, 2 em), (1 PM, 7 PM).

The optimal solution would be to pick the two jobs (9 P.M, 4 AM.) and (1
P.M., 7 PM), which can be scheduled without overlapping.

exercises Page 2

[DPV]

[DPV]

[DPV]

[DPV]

Here’s a problem that occurs in automatic program analysis. For a set of variables iy
you are given some equality constraints, of the form “r; = ;7 and some disequality constraints,
of the form “; # ;.7 Is it possible to satisfy all of them?

For instance, the constraints
I1 = T2, To = IT3,T3 = T4,T]1 7 T4

cannot be satisfied. Give an efficient algorithm that takes as input /n constraints over » variables
and decides whether the constraints can be satisfied.

Shortest paths are not always unique: sometimes there are two or more different paths with the
minimum possible length. Show how to solve the following problem in O((|V |+ |E|) log |V'|) time.

Input: An undirected graph GG = (V. E); edge lengths /. > 0; starting vertex s € V.
Output: A Boolean array usp|-]: for each node u, the entry usp[u| should be true if
and only if there is a unique shortest path from s to u. (Note: usp|s] = true.)

In cases where there are several different shortest paths between two nodes (and edges have
varying lengths), the most convenient of these paths is often the one with fewest edges. For
instance, if nodes represent cities and edge lengths represent costs of flying between cities, there
might be many ways to get from city s to city + which all have the same cost. The most convenient
of these alternatives is the one which involves the fewest stopovers. Accordingly, for a specific
starting node s, define

best[u] = minimum number of edges in a shortest path from s to u.

In the example below, the best values for nodes S, A, B.C, D, E. F are0,1,1,1,2,2, 3, respectively.

Give an efficient algorithm for the following problem.

Input: Graph G = (V. E); positive edge lengths /.; starting node s € V.
Output: The values of best[u] should be set for a/l nodes u € V.

Generalized shortest-paths problem. In Internet routing, there are delays on lines but also, more
significantly, delays at routers. This motivates a generalized shortest-paths problem.

Suppose that in addition to having edge lengths {/. : ¢ € E}, a graph also has vertex costs
{c, : v € V}. Now define the cost of a path to be the sum of its edge lengths, plus the costs of
all vertices on the path (including the endpoints). Give an efficient algorithm for the following
problem.

Input: A directed graph G = (V. E); positive edge lengths /. and positive vertex costs
¢y a starting vertex s € V.

Output: An array cost|-| such that for every vertex u, cost[u] is the least cost of any
path from s to u (i.e., the cost of the cheapest path), under the definition above.

Notice that cost[s] = ¢s.

exercises Page 3

[DPV] 5.5. Consider an undirected graph G = (V, E) with nonnegative edge weights w. > 0. Suppose that
you have computed a minimum spanning tree of G, and that you have also computed shortest
paths to all nodes from a particular node s € V.

Now suppose each edge weight is increased by 1: the new weights are w! = w, + 1.

(a) Does the minimum spanning tree change? Give an example where it changes or prove it
cannot change.

(b) Do the shortest paths change? Give an example where they change or prove they cannot
change.

[DPV] 5.6. Let G = (V, F') be an undirected graph. Prove that if all its edge weights are distinct, then it has
a unique minimum spanning tree.

[DPV] 5.7. Show how to find the maximum spanning tree of a graph, that is, the spanning tree of largest
total weight.

[KT] 10. LetG=(V,E) be an (undirected) graph with costs c, > 0 on the edges e € E.
Assume you are given a minimum-cost spanning tree T in G. Now assume
that a new edge is added to G, connecting two nodes v, w € V with cost c.

(a) Give an efficient algorithm to test if T remains the minimum-cost
spanning tree with the new edge added to G (but not to the tree T).
Make your algorithm run in time O(|E|). Can you do it in O(|V|) time?
Please note any assumptions you make about what data structure is
used to represent the tree T and the graph G.

(b) Suppose T is no longer the minimum-cost spanning tree. Give a
linear-time algorithm (time O(|E|)) to update the tree T to the new
minimum-cost spanning tree.

[CLRS] 23.2-8
Professor Borden proposes a new divide-and-conquer algorithm for computing

minimum spanning trees, which goes as follows. Given a graph G = (V, E),
partition the set V' of vertices into two sets V; and V, such that |V;| and | V3| differ

by at most 1. Let £, be the set of edges that are incident only on vertices in V7, and
let £, be the set of edges that are incident only on vertices in V5. Recursively solve
a minimum-spanning-tree problem on each of the two subgraphs G, = (V, E;)
and G, = (V,, E,). Finally, select the minimum-weight edge in E that crosses the
cut (Vy, V), and use this edge to unite the resulting two minimum spanning trees
into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree
of G, or provide an example for which the algorithm fails.

Interesting problems

exercises Page 4

mnuerestlng proopiermns

[DPV]

[CLRS]

Graphs with prescribed degree sequences. Given a list of n positive integers d;.ds. d,, we want
to efficiently determine whether there exists an undirected graph G = (V. E') whose nodes have
degrees precisely dy.ds. dy. Thatis, £V = {vy,e0; vn }, then the degree of ©; should be exactly
di. We call (dy, ..., d,) the degree sequence of ;. This graph G should not contain self-loops (edges
with both endpoints equal to the same node) or multiple edges between the same pair of nodes.

(a) Give an example of d;.ds.d3.dy where all the d; < 3 and d; + ds + d3 + d4 is even, but for
which no graph with degree sequence (d;. ds. d3.d,) exists.

(b) Suppose that d; > dy > --- > d, and that there exists a graph G = (V. E) with degree
sequence (d;. d,). We want to show that there must exist a graph that has this degree
sequence and where in addition the neighbors of v, are vy, v3..... vd;+1- The idea is to
gradually transform ¢ into a graph with the desired additional property.

i. Suppose the neighbors of v; in GG are not v, v3.....v4,+1. Show that there exists i <
Jj <nandu eV suchthat {vy,v;}. {u,v;} ¢ Eand {v1,v5}, {u,v;} € E.

ii. Specify the changes you would make to G to obtain a new graph G’ = (V. E’) with the

same degree sequence as ¢ and where (vy.v;) € E'.
iii. Now show that there must be a graph with the given degree sequence but in which v,
has neighbors 5. v3. ..., Vdy +1-
(c) Using the result from part (b), describe an algorithm that on input d;.. ... d, (not necessar-

ily sorted) decides whether there exists a graph with this degree sequence. Your algorithm
should run in time polynomial in » and in m = " d;.

16-1 Coin changing
Consider the problem of making change for n cents using the fewest number of
coins. Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes,
nickels, and pennies. Prove that your algorithm yields an optimal solution.

b. Suppose that the available coins are in the denominations that are powers of ¢,
i.c., the denominations are ¢’.c'..... ck for some integers ¢ > 1 and k > 1.
Show that the greedy algorithm always yields an optimal solution.

¢. Give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution. Your set should include a penny so that there is a solution
for every value of n.

d. Give an O(nk)-time algorithm that makes change for any set of k different coin
denominations, assuming that one of the coins is a penny.

exercises Page 5

[CLRS] 23-1 Second-best minimum spanning tree

[CLRS]

Let G = (V,E) be an undirected, connected graph whose weight function is
w : E — R, and suppose that |E| > |V| and all edge weights are distinct.

We define a second-best minimum spanning tree as follows. Let 7 be the set
of all spanning trees of G, and let 7”7 be a minimum spanning tree of G. Then
a second-best minimum spanning tree is a spanning tree 7 such that w(7) =

miﬂr"e:r—{r’} {w(T")}.

a. Show that the minimum spanning tree is unique, but that the second-best mini-
mum spanning tree need not be unique.

b. Let T be the minimum spanning tree of G. Prove that G contains edges
(u,v) € T and (x,y) & T such that T — {(u,v)} U {(x, y)} is a second-best
minimum spanning tree of G.

c. Let T be a spanning tree of G and, for any two vertices u, v € V, let max{u, v]
denote an edge of maximum weight on the unique simple path between u and v
in 7. Describe an O(V?)-time algorithm that, given 7', computes max|u, v] for
allu,veV.

d. Give an efficient algorithm to compute the second-best minimum spanning tree
of G.

23-3 Bottleneck spanning tree

A bottleneck spanning tree T of an undirected graph G is a spanning tree of G
whose largest edge weight is minimum over all spanning trees of G. We say that
the value of the bottleneck spanning tree is the weight of the maximum-weight
edge in 7.

a. Argue that a minimum spanning tree is a bottleneck spanning tree.

Part (a) shows that finding a bottleneck spanning tree is no harder than finding
a minimum spanning tree. In the remaining parts, we will show how to find a
bottleneck spanning tree in linear time.

b. Give a linear-time algorithm that given a graph G and an integer b, determines
whether the value of the bottleneck spanning tree is at most b.

¢. Use your algorithm for part (b) as a subroutine in a linear-time algorithm for
the bottleneck-spanning-tree problem. (Hint: You may want to use a subroutine
that contracts sets of edges, as in the MST-REDUCE procedure described in
Problem 23-2.)

Challenging problems (optional)

[CLRS]

16-5 Off-line caching

Modern computers use a cache to store a small amount of data in a fast memory.
Even though a program may access large amounts of data, by storing a small subset
of the main memory in the cache—a small but faster memory —overall access time
can greatly decrease. When a computer program executes, it makes a sequence
(rior..... r.) of n memorv reauests. where each reauest is for a particular data

exercises Page 6

[CLRS]

16-5 Off-line caching

Modern computers use a cache to store a small amount of data in a fast memory.
Even though a program may access large amounts of data, by storing a small subset
of the main memory in the cache—a small but faster memory —overall access time
can greatly decrease. When a computer program executes, it makes a sequence
(ri.r..... r,) of n memory requests, where each request is for a particular data
element. For example, a program that accesses 4 distinct elements {a.b.c.d}
might make the sequence of requests (d.b.d.b.d.a.c.d.b.a.c.b). Let k be the
size of the cache. When the cache contains k elements and the program requests the
(k + 1)st element, the system must decide, for this and each subsequent request,
which k elements to keep in the cache. More precisely, for each request r;, the
cache-management algorithm checks whether element r; is already in the cache. If
it is, then we have a cache hit; otherwise, we have a cache miss. Upon a cache
miss, the system retrieves r; from the main memory, and the cache-management
algorithm must decide whether to keep r; in the cache. If it decides to keep r; and
the cache already holds k elements, then it must evict one element to make room
for r;. The cache-management algorithm evicts data with the goal of minimizing
the number of cache misses over the entire sequence of requests.

Typically, caching is an on-line problem. That is, we have to make decisions
about which data to keep in the cache without knowing the future requests. Here,
however, we consider the off-line version of this problem, in which we are given
in advance the entire sequence of n requests and the cache size k., and we wish to
minimize the total number of cache misses.

We can solve this off-line problem by a greedy strategy called furthest-in-future,
which chooses to evict the item in the cache whose next access in the request
sequence comes furthest in the future.

a. Write pseudocode for a cache manager that uses the furthest-in-future strategy.
The input should be a sequence (ry.r..... r») of requests and a cache size k,

and the output should be a sequence of decisions about which data element (if
any) to evict upon each request. What is the running time of your algorithm?

b. Show that the off-line caching problem exhibits optimal substructure.

¢. Prove that furthest-in-future produces the minimum possible number of cache
misses.

exercises Page 7

