
CS 341: Algorithms @ Waterloo Last Updated: May 19, 2021
Homework 1 Due Date: May 31, 2021, 11:00pm

You are allowed to discuss with others but are not allowed to use any references other than the course
notes and the three reference books. Please list your collaborators for each question. You must write your
own solutions. See the course outline for the homework policy.

There are totally 52 marks. The full mark is 50. This homework is counted 10% of the course grade.

1. Programming Problem: A + B = C Problem (20 marks)

This question has two parts. The instructions for submitting your programs will be posted on piazza.

(a) (10 marks) The first part is to write a program for fast polynomial multiplication, by extending
the Karatsuba’s O(n1.59) algorithm for integer multiplication.

Input: The first line has an integer n. The second line has n+1 integers a0, a1, . . . , an, represent-
ing a degree n polynomial f(x) = a0 + a1x+ a2x

2 + . . .+ anx
n. The third line has n+ 1 integers

b0, b1, . . . , bn, representing a degree n polynomial g(x) = b0 + b1x + b2x
2 + . . . + bnx

n. You can
assume that 0 ≤ n ≤ 100000 and |ai| ≤ 100000 for 0 ≤ i ≤ n and |bj | ≤ 100000 for 0 ≤ j ≤ n.

Output: One line with 2n + 1 numbers, the coefficients of the degree 2n polynomial f(x) · g(x).

Sample Input:
5

0 20 139 -78 137 -11

-7 88 923 -342 179 0

Sample Output:
0 -140 787 31238 113634 -103819 177040 -70969 28285 -1969 0

(b) (10 marks) The second part is to apply the first part to solve a counting problem.

Given n positive integers a1, . . . , an, sorted in ascending order for convenience. Our goal is to
count the number of ways to pick three of the numbers, so that the sum of two of them is equal
to the third one. Specifically, count the number of triples of indices (i, j, k), such that i < j < k
and ai + aj = ak.

Input: The first line has a positive integer n. The second line has n positive integers a1, . . . , an.
You can assume that 1 ≤ n ≤ 100000 and 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 100000.

Output: The number of triples of indices (i, j, k), such that i < j < k and ai + aj = ak.

Sample Input:
5

1 1 2 2 3

Sample Output:
6

Explanation: The triples of indices (1, 2, 3) and (1, 2, 4) correspond to the equation 1 + 1 = 2.
The triples of indices (1, 3, 5), (1, 4, 5), (2, 3, 5), and (2, 4, 5) correspond to the equation 1 + 2 = 3.
Note that we don’t count the equation 2 + 1 = 3 as the indices won’t satisfy i < j < k. So the
total number of triples is 6 (six).
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2. Written Problem: Solving Recurrences (10 marks)

Solve the following recurrence relations:

(a) T (n) = T (2n/3) + T (n/3) + n2.

(b) T (n) =
√
n · T (

√
n) + n.

The base case is that constant size problems can be solved in constant time. Prove the best possible
upper bound that you could for T (n).

You can either prove by induction or use the recursion tree method. Note that the master theorem as
stated in L02 does not apply to these two problems.

3. Written Problem: Visible Segments

(10 marks) In this problem, you are given as input a collection of horizontal line segments, and are
asked to determine which segments are visible from above, and where. In particular, each segment has
a height, hi, and first and last x-coordinate, fi and li. You may assume that all of the heights are
distinct.

For example, the following figure contains 5 segments, with data

name h f l

a 1 0 10
b 2 1 4
c 3 5 7
d 4 6 8
e 5 3 6

You are asked to divide the x-coordinate into intervals and report which segment is highest in each
interval. For example, the answer for this example is

(0, 1) : a (1, 3) : b (3, 6) : e (6, 8) : d (8, 10) : a

Present a divide-and-conquer based algorithm that solves this problem in time O(n log n). Prove that
your algorithm is correct and explain why it runs in the stated time. (There are other ways of solving
this problem, but you will only get full credit for a divide-and-conquer solution.)
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4. Written Problem: Intersecting Squares

(12 marks) You are given as input a collection of n unit squares in the plane. That is, each square has
side length 1. Each square is specified by its lower, left corner. So, a square specified by (x, y) also has
corners (x + 1, y), (x, y + 1), and (x + 1, y + 1). Note that (x, y) may have non-integral values.

Your problem is to determine if this collection contains two squares that overlap, where we say that two
squares overlap if there is some point that is strictly inside both of them. Touching at the boundaries
doesn’t count.

Design an algorithm that solves this problem in O(n log n) time. Prove that your algorithm is correct,
and that it runs within the stated amount of time. (Substantial credit will be given for an algorithm
that takes time O(n log2 n) with correct proof.)
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