Good problems

[DPV]

[DPV]

[DPV]

[DPV]

[DPV]

[DPV]

3.5. The reverse of a directed graph G = (V. E) is another directed graph G = (V. E®) on the same
vertex set, but with all edges reversed; that is, E® = {(v.u) : (u.v) € E}.

Give a linear-time algorithm for computing the reverse of a graph in adjacency list format.

3.9. For each node « in an undirected graph, let twodegree[u| be the sum of the degrees of «’s neigh-

bors. Show how to compute the entire array of twodegree/:| values in linear time, given a graph
in adjacency list format.

3.13. Undirected vs. directed connectivity.

(a) Prove that in any connected undirected graph G = (V. E) there is a vertex v € VV whose
removal leaves GG connected. (Hint: Consider the DFS search tree for G.)

(b) Give an example of a strongly connected directed graph G = (V. E) such that, for every
v €V, removing v from G leaves a directed graph that is not strongly connected.

(¢) In anundirected graph with 2 connected components it is always possible to make the graph
connected by adding only one edge. Give an example of a directed graph with two strongly

connected components such that no addition of one edge can make the graph strongly con-
nected.

3.16. Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph ¢
has a node for each course, and an edge from course v to course « if and only if v is a prerequisite
for w. Find an algorithm that works directly with this graph representation, and computes the
minimum number of semesters necessary to complete the curriculum (assume that a student

can take any number of courses in one semester). The running time of your algorithm should be
linear.

3.18. You are given a binary tree 7' = (V. E) (in adjacency list format), along with a designated root
node € V. Recall that « is said to be an ancestor of v in the rooted tree, if the path from r to
in 7' passes through u.

You wish to preprocess the tree so that queries of the form “is « an ancestor of ¢v?” can be

answered in constant time. The preprocessing itself should take linear time. How can this be
done?

3.24. Give a linear-time algorithm for the following task.

Input: A directed acyclic graph &

Question: Does G contain a directed path that touches every vertex exactly once?

Interesting problems

[DPV]

3.23. Give an efficient algorithm that takes as input a directed acyclic graph ¢ = (V. E), and two
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3.23. Give an efficient algorithm that takes as input a directed acyclic graph ¢ = (V. E), and two

3.27.

3.26.

vertices s.t € V, and outputs the number of different directed paths from s to # in G.

Two paths in a graph are called edge-disjoint if they have no edges in common. Show that in any
undirected graph, it is possible to pair up the vertices of odd degree and find paths between each
such pair so that all these paths are edge-disjoint.

An Eulerian tour in an undirected graph is a cycle that is allowed to pass through each vertex
multiple times, but must use each edge exactly once.

This simple concept was used by Euler in 1736 to solve the famous Konigsberg bridge problem,
which launched the field of graph theory. The city of Konigsberg (now called Kaliningrad, in
western Russia) is the meeting point of two rivers with a small island in the middle. There are
seven bridges across the rivers, and a popular recreational question of the time was to determine
whether it is possible to perform a tour in which each bridge is crossed exactly once.

Euler formulated the relevant information as a graph with four nodes (denoting land masses)
and seven edges (denoting bridges), as shown here.

Northern bank

Small Big
island island

Southern bank

Notice an unusual feature of this problem: multiple edges between certain pairs of nodes.

(a) Show that an undirected graph has an Eulerian tour if and only if all its vertices have even

degree. Conclude that there is no Eulerian tour of the Konigsberg bridges.

(b) An Eulerian path is a path which uses each edge exactly once. Can you give a similar

if-and-only-if characterization of which undirected graphs have Eulerian paths?
(¢c) Can you give an analog of part (a) for directed graphs?
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22-4  Reachability
Let G = (V. E) be a directed graph in which each vertex u € V is labeled with

a unique integer L(u) from the set {1.2..... |V'|}. For each vertex u € V, let
R(u) = {v € V : u ~» v} be the set of vertices that are reachable from u. Define
min(u) to be the vertex in R(u) whose label is minimum, i.e., min(u) is the vertex v

such that L(v) = min{L(w) : w € R(u)}. Give an O(V + E)-time algorithm that

computes min(u) for all vertices u € V.

Challenging problems (optional)
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22-3  Euler tour

An Euler tour of a strongly connected, directed graph G = (V. E)) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than
once.

a. Show that G has an Euler tour if and only if in-degree(v) = out-degree(v) for
each vertex v e V.

b. Describe an O(E)-time algorithm to find an Euler tour of G if one exists. (Hint:
Merge edge-disjoint cycles.)

[Remark:] There is a very simple program to find an Euler tour. Find it!

[DPV] 3.28. In the 2SAT problem, you are given a set of clauses, where each clause is the disjunction (OR) of

two literals (a literal is a Boolean variable or the negation of a Boolean variable). You are looking
for a way to assign a value true or false to each of the variables so that all clauses are satisfied
—that is, there is at least one true literal in each clause. For example, here’s an instance of 2SAT:

(wy V) A (T V TJJ A {.f'l Vg) A (T3 V J';:} A {Tl Voirg).

This instance has a satisfying assignment: set .-y, 1o, 23, and x4 to true, false, false, and
true, respectively.

(a) Are there other satisfying truth assignments of this 2SAT formula? If so, find them all.
(b) Give an instance of 2SAT with four variables, and with no satisfying assignment.
The purpose of this problem is to lead you to a way of solving 2SAT efficiently by reducing it to
the problem of finding the strongly connected components of a directed graph. Given an instance
I of 2SAT with » variables and  clauses, construct a directed graph G; = (V. E) as follows.
e ('; has 2n nodes, one for each variable and its negation.
e ('; has 2m edges: for each clause (a v 3) of I (where . 3 are literals), G; has an edge from
from the negation of o to 3, and one from the negation of 3 to «a.

Note that the clause (o \ 3) is equivalent to either of the implications @ = 3 or 7 = a. In this
sense, (G records all implications in I.

(¢) Carry out this construction for the instance of 2SAT given above, and for the instance you
constructed in (b).
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(d) Show that if ¢; has a strongly connected component containing both .- and 7 for some
variable .-, then I has no satisfying assignment.

(e) Now show the converse of (d): namely, that if none of Gi;’s strongly connected components
contain both a literal and its negation, then the instance I must be satisfiable. (Hint: As-
sign values to the variables as follows: repeatedly pick a sink strongly connected component
of (G;. Assign value true to all literals in the sink, assign false to their negations, and
delete all of these. Show that this ends up discovering a satisfying assignment.)

(f) Conclude that there is a linear-time algorithm for solving 2SAT.
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