CS 341 — Algorithms

Lecture 20 — Hard Partitioning Problems

30 July 2021



Today’s Plan
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3-Dimensional Matching

3-Dimensional Matching (3DM)

Input: Disjoint sets X, Y, Z, each of sizen,asetT € X XY X Z of triples.

Output: Does there exist a subset of n disjoint triplesin T? (& Couvar Lvonsetemt gxactly one.

N = (x.,\‘h,z;w . (X ,Yy,2)
C¥ye 02y L (4, Y,,25)

A subset of n disjoint triples is called a perfect 3D-matching.



3DM is NP-complete

Theorem. 3DM is NP-complete.

Proof. It is easy to check that 3DM is in NP.
To prove that it is NP-complete, we will prove that 3SAT <,, 3DM.

Given a 3SAT instance with n variables x4, x5, ..., x,, and m clauses Cy, C5, ..., C;,;, we would like to

construct a 3DM instance so that the formula is satisfiable iff there is a perfect 3D-matching.



Variable Gadget

We create some variable gadgets to capture the binary decision of a Boolean variable.
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Clause Structure

Now we add some clause structure to the 3DM instance so that only satisfying assignments “survive”.
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The clause elements can only be
matched if some variable gadget
leaves the corresponding tip free.
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Reduction

We create n variable gadgets, each with 2m “tips”.

Each clause has 3 different triples. Note that different clauses use different “tips” of the variable gadgets.
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Proof

Claim. The formula is satisfiable if and only if there is a perfect 3D-matching.
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Proof

Claim. The formula is satisfiable if and only if there is a perfect 3D-matching.
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Today’s Plan

2. Subset-Sum



Subset-Sum

Input: n positive integers a4, a,, ..., a,, and an integer K.

Output: Does there exist a subset S € [n] with }};cca; = K?

Theorem. Subset-Sum is NP-complete.

Proof. It is easy to check that Subset-Sum is in NP.

To prove that it is NP-complete, we will prove that 3DM <,, Subset-Sum.
Given a 3DM instance, we would like to construct a Subset-Sum instance so that there is a perfect

3D-matching if and only if there is a subset of certain sum K (value to be determined later).

(It requires some new idea to solve a problem about numbers.)



Vector Representation of 3DM

To see the connection between 3DM and Subset-Sum, it is easier to use a different way to see 3DM.
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Reduction Idea

A very natural idea is to interpret the 0-1 vector as the binary representation of a number.
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Actual Reduction

There is a simple trick to get around this “carrying” problem, so that the above plan would work.
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Proof —

<

Claim. There is a perfect 3D-matching if and only if there is a subset with sum K = 2?21 bt.
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Corollary. Knapsack is NP-complete.




Today’s Plan

3. Concluding Remarks



Map

all problems 1n NP
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In NP-completeness, we showed you the difficult reductions and ask you to do the easier ones.

You can only use problems from this map to do homework and exam.



Techniques for Doing Reductions

It requires practices to search for the right problem Y to prove Y <, X for our problem X.

There are three common techniques in proving NP-completeness.
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Decision Problems vs Search Problems
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Final Exam

Good luck in your final exam.

1 ‘EOCMS en  Seumd hq(-f ( gtcﬂ-d..j . PP. bipastste matcl,;..\_s i MPCB
2. hardsc then widtedm ( topics | df{{tc,u,l't% )

s. Gnswer  Sho rtes (.

4 on(g ask clacification fuestions

g Piedya  post R oc La next wee k



Learning Outcome (from LO1)

o Know basic techniques and well-known algorithms well.
o Have the skills to design new algorithms for simple problems.
o Have the skills to prove correctness and analyze time complexity of an algorithm.

o Use reductions to solve problems and to prove hardness.
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What is Ahead

o Probability: Randomized Algorithms, Probabilistic Methods, Random Sampling
o Linear Algebra: Linear Equations, Matrix Algorithms, Spectral Methods
o Optimization (Calculus): Linear Programming, Approximation Algorithms, Convex Optimization

o Complexity: Hardness of Approximation, Fine-Grained Hardness



