CS 341 — Algorithms

Lecture 18 — NP-completeness

23 July 2021



Today’s Plan

1. The Class NP
2. NP-completeness

3. Cook-Levin Theorem



The Class NP

As we discussed last time, we could do reductions between different problems and slowly build up

a huge map showing the relations of all known problems.
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Short Proofs

A general feature of the problems is that there is a short “proof/solution” of a YES-instance.
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Formal Definition of NP

A problem X is in the class NP if there is a polynomial time verification algorithm By such that

the input s is a YES-instance if and only if there is a proof ¢ which is a binary string of length poly(|s])

so that By (s, t) returns YES. Shet  proof
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The key points are By is a polynomial time algorithm and t is a short proof of length poly(|s|).

In most problems, t is simply a solution and By is an efficient algorithm to check if t is indeed a solution.



Example

Definition (NP): For a problem X, each instance of X is represented by a binary string s.
A problem X is in the class NP if there is a polynomial time verification algorithm By such that

the input s is a YES-instance if and only if there is a proof t which is a binary string of length poly(|s|)

so that By (s, t) returns YES.
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More Examples

Claim. 3SAT is in NP.
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Exercises: Clique, IS, HC, HP, Subset-Sum are all in NP.
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Remark 1: Non-Examples
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Remark 2: co-NP
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Remark 3: P € NP
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Remark 4: Non-Deterministic Polynomial Time
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Remark 5: P=NP?
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Today’s Plan

2. NP-completeness



NP-completeness

Informally, we say a problem is NP-complete if it is a hardest problem in NP.
NP

Definition. A problem X € NP is NP-complete if Y <, X forall Y € NP. SN\
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Proposition. P=NP if and only if an NP-complete problem can be solved in polynomial time.
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Theorem. (Cook-Levin) 3-SAT is NP-complete.

3SAT < p IS



Proving NP-completeness

To prove that a problem X is NP-complete, we first prove that X is in NP,
and then we find an NP-complete problem Y and prove that ¥V <, X.

Y =3s&tT | =S

Prove he v dness by vy On algosi tha

E ¢ Q‘fw‘;tk\
problem X,  wsuolly Selve F X €p ¥

1o prove hacdness _ Qs fuwe w2 ¥Khdw how b sole X
fmd Y € p X suty Mk mnwl
7\
X S X

NPy NP



Today’s Plan

3. Cook-Levin Theorem



Cook-Levin Theorem

We introduce an intermediate problem in order to prove that 3SAT is NP-complete.

Circuit-SAT
Input: A circuit with AND/OR/NOT gates, some known input gates, and some unknown input gates.

Output: Is there a truth assignment on the unknown input gates so that the output is True?

output

We can assume that the input circuit is a directed acyclic graph,

and each AND/OR gate has only two incoming edges. @ @

Theorem. Circuit-SAT is NP-complete. / \(




Proof Sketch

Theorem. Circuit-SAT is NP-complete.

Proof sketch. We start from the abstract definition of NP to prove that X <, Circuit-SAT for any X € NP.
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The main conceptual idea is that a circuit is as general as an algorithm.

The original proofs of Cook and Levin directly transforms a non-deterministic Turing machine into a formula.



Proof Sketch Continued
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Claim. Input s is a YES-instance if and only if there is a satisfying assignment for Circuit-SAT.



From Circuit to Formula

Now we show that a Boolean formula has the same expressive power as a Boolean circuit.

Theorem. Circuit-SAT <p 3-SAT.

Proof. Given a circuit of n gates, we will construct a formula with O(n) variables so that

the circuit is satisfiable if and only if the formula is satisfiable.
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From Circuit to Formula

Now we show that a Boolean formula has the same expressive power as a Boolean circuit.

Theorem. Circuit-SAT <p 3-SAT.

Proof. Given a circuit of n gates, we will construct a formula with O(n) variables so that

the circuit is satisfiable if and only if the formula is satisfiable.
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Example

Claim. The circuit is satisfiable if and only if the formula is satisfiable.
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Concluding Remarks

With the Cook-Levin theorem, we have a firm foundation to prove that a problem is NP-complete.

We will grow our list of NP-complete problems in the next two lectures.



