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Lecture 17 — Polynomial Time Reductions
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Today’s Plan

1. Polynomial Time Reductions
2. Simple Reductions
3. More Simple Reductions

4. A Non-Trivial Reduction



Polynomial Time Reductions

Once we have learned more and more algorithms, they become our building blocks and we may not

need to design algorithms for new problems from scratch.
So it becomes more and more important to be able to use existing algorithms to solve new problems.

We have already seen a few reductions.

For examples, we have reduced subset-sums to knapsack, longest increasing subsequence to longest

common subsequences, and basketball league winner to maximum bipartite matching, etc.

In general, if there is an efficient reduction from problem A to problem B and there is an efficient

algorithm to solve problem B, then we have an efficient algorithm to solve problem A.



Decision Problems

To formalize the notion of a reduction, it is more convenient to restrict our attention to decision problems,

for which the output is either YES or NO, so that every problem has the same output format.

For example, instead of finding a maximum matching, we consider the decision version of the problem

“Does the input graph G have a matching of size at least k?”.

As we will discuss later, for all the problems that we will consider, if we know how to solve the
decision version of our problem in polynomial time, then we can use the decision algorithm as a
blackbox/subroutine to solve the search version of our problem in polynomial time.
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Definition (Polynomial Time Reductions)

Definition. We say a decision problem A is polynomial time reducible to a decision problem B

if there is a polynomial time algorithm F that maps/transforms any instance I, of A

into an instance Iy of B (thatis, F(I,) = Ig) such that
r
1, is a YES-instance of problem A|if and only if [ is a YES-instance of problem B.
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We use the notation A <,, B to denote that such a polynomial time reduction exists, intuitively saying

that problem A is not more difficult than problem B in terms of polynomial time solvability.



Algorithm (Solving Problem A by Reduction)
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Proving Hardness Using Reductions

We showed A <, B and use an efficient algorithm for problem B to solve problem A.

This is the usual direction, but now we explore the other implication of the inequality 4 <,, B.
Suppose problem A is known to be impossible to be solved in polynomial time.

Then A <, B implies that problem B cannot be solved in polynomial time either.

Therefore, if A is computationally hard and A <, B, then B is also computationally hard.

By our current knowledge, however, we know almost nothing about proving a problem cannot be

solved in polynomial time, so we could not draw such a strong conclusion from A <, B.
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Cartoon (from book by Garey and Johnson)

Suppose our boss gives us a problem C, but we don’t know how to solve it in polynomial time.

%

*“1 can’t find an efficient algorithm, 1 guess I'm just 100 dumb.™

It would be much more convincing if you could prove e.g. TSP <,, C.
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**1 can't find an efficient algorithm, but neither can all these famous people.”



Today’s Plan

2. Simple Reductions



Three Problems

Maximum Cligue (Clique): A subset S € V isacliqueif uv € E forallu,v € S.

Input: A graph G = (V, E), an integer k.

Output: Is there a clique with at least k vertices?

Maximum Independent Set (IS): A subset S € V is an independent set if uv € E forall u,v € S.

Input: A graph G = (V, E), an integer k. <
Output: Is there an independent set with at least k vertices? @\

Minimum Vertex Cover (VC): A subset S € V is a vertex cover if {fu,v} NS # @ foralluv € E.

Input: A graph G = (V, E), an integer k.

Output: Is there a vertex cover with at most k vertices?



Cligues and Independent Sets

Proposition. Clique <, IS and IS <, Clique. < S
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Independent Sets and Vertex Cover

Observation. InG = (V,E), asubset S € V is a vertex cover if and only if V — S is an independent set.

Proposition. VC <, ISand IS <, VC.
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Polynomial Time Reductions are Transitive

Proposition. If A <, Band B <, C, then A <), C.
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Therefore, Clique, IS, and VC are all equivalent in terms of polynomial time solvability.



Today’s Plan

3. More Simple Reductions



Hamiltonian Problems

Hamiltonian Cycle (HC): A cycle is a Hamiltonian cycle if it touches every vertex exactly once.

Input: Agraph G = (V,E). @
Output: Does G have a Hamiltonian cycle?

Hamiltonian Path (HP): A path is a Hamiltonian path if it touches every vertex exactly once.

Input: A graph G = (V, E).
Output: Does G have a Hamiltonian path? Q

Traveling Salesman Problem (TSP):

Input: A graph G = (V, E), with an edge length [, for each edge e € E, and an integer L.

Output: Is there a Hamiltonian cycle with total length at most L?



HP <, HC

Proposition. HP Sp HC.
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HC <, HP

Proposition. HC Sp HP.
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Traveling Salesman Problem

A common technique in doing reduction is to show that one problem is a special case of another problem.

We call this technique specialization.

Proposition. HC Sp TSP.
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Today’s Plan

4. A Non-Trivial Reduction



3-Satisfiability (3SAT)

This is an important problem in the theory of NP-completeness.

We are given n Boolean variables x4, x,, ..., X,;, each can be set to be either True or False.

We are also given a formula in conjunctive normal form (CNF), where it is an AND of the clauses,

where each clause is an OR of the literals, where a literal is either x; or Xx;.
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Input: A CNF-formula in which each clause has at most three literals.

Output: Is there a truth assignment to the variables that satisfies all the clauses?



3SAT <, IS

Theorem. 3SAT <p |S.

Proof. Given a 3SAT formula, we’d like to construct a graph G so that the formula is satisfiable

if and only if the graph has an independent set of size m where m is the number of clauses.

Idea: We would like the independent set to tell us how to satisfy the formula.
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3SAT <, IS

Theorem. 3SAT <p |S.

Proof. Given a 3SAT formula, we’d like to construct a graph G so that the formula is satisfiable

if and only if the graph has an independent set of size m where m is the number of clauses.

Idea: We would like the independent set to tell us how to satisfy the formula.

Figure 8.8 The graph corresponding to (zVyVZz) (xVyVz) (xVyVz) (TVY).
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Figure 8.8 The graph corresponding to (7VyVZ) (xVyVz)(zVyVz) (TVTY).

Proof

Lemma. The formula is satisfiable iff

there is an independent set of size m.
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Figure 8.8 The graph corresponding to (7VyVZ) (xVyVz)(zVyVz) (TVTY).

Proof

Lemma. The formula is satisfiable iff

there is an independent set of size m.
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Concluding Remarks

We have introduced the notion of a polynomial time reduction, and use it to establish connections

between different problems, and so far we have
34T

HQ
& & B () ‘\

In principle, we can add new problems to relate to these problems, and slowly build up a big web

of all computational problems.

As <, is transitive, any strongly connected components of this big graph forms an equivalent class

of problems in terms of polynomial time solvability.

Is there a better way to do it than to consider the problems one by one?



