
CS 341 – Algorithms

Lecture 15 – Bipartite Matching

14 July 2021

Today’s Plan

1. Problem

2. Augmenting Path Algorithm

3. Finding an Augmenting Path

Introduction
The bipartite matching problem is an important problem both in practice and in theory.

We will learn a new algorithmic technique called the “augmenting path method” to solve the problem.

This is an important technique that underlies many algorithms for combinatorial optimization problems,

including the network flow problem that you can learn in CO351.

This technique can be understood more broadly as a “local search method”,

in which we keep moving to a better solution using some simple operations.

All of these can be understood using the general framework of linear programming.

Bipartite Matching
Input: A bipartite graph 𝐺 = (𝑋, 𝑌; 𝐸).

Output: A maximum cardinality subset of edges that are vertex disjoint.

Terminology
A subset of edges 𝑀 ⊆ 𝐸 is called a matching if edges in 𝑀 are pairwise vertex disjoint.

Given a matching 𝑀, we say a vertex 𝑣 is matched if 𝑣 is the endpoint of some edge 𝑒 ∈ 𝑀;

otherwise we say 𝑣 is unmatched or free.

We say a matching 𝑀 is a perfect matching if every vertex is matched in 𝑀.

Clearly, a perfect matching is the best one can hope for in the bipartite matching problem.

In the next lecture, we will see a nice characterization of when a graph does not have a perfect matching.

Job Assignment
A standard application of bipartite matching is the job assignment problem.

Input: We are given 𝑛 jobs and 𝑚 people. Each person is only capable of doing a subset of jobs.

Output: Our task is to assign all the jobs to people, without assigning more than one job to a person.

Today’s Plan

1. Problem

2. Augmenting Path Algorithm

3. Finding an Augmenting Path

Greedy Algorithm
A first natural approach is to go greedy: Always add a “free” edge to the current partial solution.

Augmenting Path
A path 𝑣1, 𝑣2, … , 𝑣2𝑘 is an augmenting path with respect to a matching 𝑀 if

1) 𝑣1 and 𝑣2𝑘 are free vertices,

2) 𝑣2𝑖−1𝑣2𝑖 ∈ 𝑀 for 1 ≤ 𝑖 ≤ 𝑘,

3) 𝑣2𝑖𝑣2𝑖+1 ∉ 𝑀 for 1 ≤ 𝑖 ≤ 𝑘 − 1.

Main Observation
Proposition. 𝑀 is a maximum matching if and only if there is no augmenting path with respect to 𝑀.

Equivalently, 𝑀 is not a maximum matching if and only if there is an augmenting path with respect to 𝑀.

Main Observation
Proposition. 𝑀 is a maximum matching if and only if there is no augmenting path with respect to 𝑀.

Equivalently, 𝑀 is not a maximum matching if and only if there is an augmenting path with respect to 𝑀.

Algorithm
The proposition suggests a “local search” algorithm for finding a maximum matching.

Time Complexity
Let 𝑇(𝑚, 𝑛) be the time complexity to find an augmenting path of 𝑀 if it exists,

or report that no such paths exist, in a graph with 𝑛 vertices and 𝑚 edges.

Faster Algorithm: There is an algorithm by Edmonds and Karp which solves the problem in 𝑂 𝑚 𝑛 time.

Today’s Plan

1. Problem

2. Augmenting Path Algorithm

3. Finding an Augmenting Path

Idea
The bipartite graph structure allows us to design a simple algorithm to find an augmenting path.

Directed Graph
The idea is to encode the color information on the edges by directions.

Reachability
The claim allows us to reduce the problem of finding an augmenting path to a reachability problem.

Algorithm

Concluding Remarks
Time Complexity: 𝑂(𝑚 + 𝑛).

Challenge: Can you solve the maximum matching problem in general (non-bipartite) graphs?

Which step of the bipartite matching algorithm breaks?

History: Edmonds designed a famous “blossom” algorithm to solve the maximum matching problem.

Tutte also done important work in the maximum matching problem.

