CS 341 - Algorithms

Lecture 14 - Dynamic Programming on Graphs

7,9 July 2021

Today's Plan

1. Shortest Paths with Negative Edges
2. Dynamic Programming and Bellman-Ford Algorithm
3. Negative Cycles
4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm
5. Traveling Salesman Problem

Shortest Paths with Negative Edges

Input: A directed graph $G=(V, E)$, a (possibly negative) length l_{e} on each edge $e \in E$, a vertex $s \in V$.

Output: The shortest path distance from s to every vertex $v \in V$.

What's wrong with Dijkstra's algorithm in this more general setting?

Negative Cycles

There could be negative cycles so that the shortest path distance is not well-defined.

We will study algorithms to solve the following two problems:

1. If G has no negative cycles, solve the single-source shortest paths problem.
2. Given a directed graph G, check if there is a negative cycle C, i.e. $\sum_{e \in C} l_{e}$.

Today's Plan

1. Shortest Paths with Negative Edges
2. Dynamic Programming and Bellman-Ford Algorithm
3. Negative Cycles
4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm
5. Traveling Salesman Problem

Intuition

Although Dijkstra's algorithm may not compute all distances in one pass,
it will compute the distance to some vertices correctly, e.g. first vertex on a shortest path.

Dynamic Programming
Subproblems: Let $D(v, i)$ be the shortest path distance from s to v using at most i edges.
answer, $D(u, n-1) \forall v$, because shortest paths are shoppe base cases : $D(s, 0)=0, D(v, 0)=\infty \quad \forall v \in U_{-}$.
recurrence: $D(u, i+1)$

$$
\begin{aligned}
D(v, i+1)= & s \\
& \min _{u=u v \in E}\left\{D(v, i)_{-}\right.
\end{aligned}
$$

Analysis
time complexity: Computed $D(v, i)$ correctly $\forall v$
compute $D(\omega, i+1)$, time $O(i n-d \rho f(\omega))$
compute $D(w, i+1) \forall w$, time $O\left(\sum_{w} i n-\operatorname{deg}(w)\right)=O(m)$
Compute up to $D(w, n-1)$
$\Rightarrow n$ iterations \Rightarrow total time complexity $O(m n)$.
space complexity : $O\left(n^{2}\right)$
just compute distances $O(n)$
to compute $D(w, i+l)$, just need $D(v, i)$

Bellman-Ford Algorithm

The algorithm can made simpler, by using just one array instead of two.

```
dist[s]=0, dist[v]=\infty}\quad\forallV\inV-
for i from 1 to n-1 do
    for each edge uv\inE do
        if dist[u] + luv < dist[v] & relaxation step
        dist[v]=\operatorname{dist}[u]+\operatorname{luv}}\mathrm{ and parent [v]=u
```

 idea: keep a tighter upper on the shortest path distance
 bound

Shortest Path Tree

It is possible to have a cycle in the edges (parent $[v], v)$.

Lemma. If there a directed cycle C in the edges (parent $[v], v$), then C must be a negative cycle.

$$
\begin{aligned}
& \operatorname{parent}\left[v_{i}\right]=v_{i-1} \quad \forall 2 \leq i \leq k \\
& \left\{\begin{aligned}
& d\left[v_{i}\right] \geqslant d\left[v_{i-1}\right]+\ell v_{i-1} v_{i} . \quad \forall 2 \leq i \leq k \\
& \neq \text { otherwise, update the parent of } v_{i} \\
& d\left[v_{1}\right]>d\left[v_{k}\right]+\ell v_{k} v_{1} \quad \text { as we reset the } \\
& \text { parent of } v .
\end{aligned}\right.
\end{aligned}
$$

add all these inequalities
Cor no negative cycle. shortest path tree $\sum_{j} \sum_{j=1}^{k} d\left[v_{j}\right]>\sum_{j=1}^{k} d\left[v_{j}\right]+\sum_{e \in C} l_{e} \Rightarrow 0>\sum_{e \in C} l_{e}$

Today's Plan

1. Shortest Paths with Negative Edges
2. Dynamic Programming and Bellman-Ford Algorithm
3. Negative Cycles
4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm
5. Traveling Salesman Problem

Ideas

Note that $D(v, i)$ is computed correctly even though the graph has negative cycles for any v and any $i \geq 0$.

Assumption: Every vertex can be reached $\left.\overrightarrow{\text { from }} \begin{array}{l}D \\ \text { vertex } \\ k\end{array}\right)$. finite $\quad \forall v$ as $k \rightarrow \infty$
This is without loss of generality for finding negative cycles, as the problem can be restricted to a SCC.

Observations

Claim 1. If the graph has a negative cycle, then $D(v, k) \rightarrow-\infty$ as $k \rightarrow \infty$ for some $v \in V$. uses assumphor that s can reach the nagative cycle

Claim 2. If the graph has no negative cycles, then $D(v, n)=D(v, n-1)$ for all $v \in V$.

proof

$$
\begin{aligned}
& D(v, n+1)=\min \left\{D(v, n), \min _{u \operatorname{unvE}}\{D(u, n)+\operatorname{luv}\}\right\} \\
&=\min \left\{D(v, n-1), \min _{u \sim u v E}\{D(u, n-1)+\operatorname{lnv}\}\right\} \text { by assuaprion } \\
&=D(v, n) \\
& \text { by induction } \Rightarrow D(v, k)=D(v, n-1) \quad \forall v \forall k \geqslant n-1 \\
& \Rightarrow D(v, k) \text { finite } \forall \vee \forall k \geqslant n-1
\end{aligned}
$$

Algorithms
Checking: claim $2+3$ says their no negative cycles $\Leftrightarrow \quad D(v, n)=D(v, n-1) \quad \forall \vee$
$c^{D}(v, n)<D(v, n-1)$ for some v
Finding: It would be easier to explain using the $\Theta\left(n^{2}\right)$ space dynamic programming algorithm.
compute $D(v, i) \forall v, t i \leq i \leq n$, parent $(v, i)=u$ if $D(v, i)=D(u, i-1)+l_{u}$
now if $D(v, n)<D(v, n-1)$,
then we know that shortest path using at most n edges to get to v must have exactly n edpes, otherinice $D(v, n)=D(v, n-1)$.

path must have repeated vertice
\Rightarrow च cycle C in the path
Clam C must be negative

Problem: Bellmen-Ford
$D(v, n-1) \leqslant$ length $\left(P^{\prime}\right) \leq$ length $(P)=D(v, n)$, contradiction
\Rightarrow by tracing ont P using parent information, we can foul C.

Today's Plan

1. Shortest Paths with Negative Edges
2. Dynamic Programming and Bellman-Ford Algorithm
3. Negative Cycles
4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm
5. Traveling Salesman Problem

All-Pairs Shortest Paths

Input: A directed graph $G=(V, E)$, a (possibly negative) length l_{e} on each edge $e \in E$.

Output: The shortest path distance from s to t for all $s, t \in V$.

$$
\begin{aligned}
& \text { apply Bellman-Ford for all } S \text {, } \begin{aligned}
& \text { time } O(n m \cdot n)=O\left(n^{2} m\right) \\
& \Omega\left(n^{4}\right) \text { if } m=\Omega\left(n^{2}\right) \\
& O\left(n^{3}\right) \\
& \text { Floyd-warshall: }
\end{aligned} \\
& \text { more subproblems: } \quad D(u, v, i)
\end{aligned}
$$

Dynamic Programming
Subproblems: $D(i, j, k)$ is the shortest path distance from i to j using $\{1, \ldots, k\}$ as intermediate vertices.
answers: $D(i, j, n) \quad \forall i, j$

- possible $\quad 0^{\rightarrow \rightarrow D_{0}^{k} \rightarrow 0}$;
base cases: $D(i, j, 0)=\ell_{i j} \quad \forall i j \in E \quad D(i, j, 0)=\infty \quad \forall i j \notin E$.
recurrence: computed $D(i, j, k) \quad \forall i, j$
want to compute $D(i, j, k+1)$

$$
D(i, j, k+1)=\min \left\{\begin{array}{l}
D(i, j, k), \\
D(i, k+1, k)+D(k+1, j, k)\}
\end{array}\right.
$$

use $k+1$ once, becauce there are no nepatre cycles

Floyd-Warshall Algorithm
$D(i, j, 0)=\infty \quad \forall i j \notin E . \quad D(i, j, 0)=\ell_{i j} \quad \forall i j \in E . \quad$ I/ base cases
for k from 1 to n do
for i from 1 to n do
for j from 1 to n do

$$
D(i, j, k+1)=\min \{D(i, j, k), \quad D(i, k+1, k)+D(k+1, j, k)\} .
$$

Time Complexity: $\quad \theta\left(n^{3}\right)$
Open Problem: Is there an $O\left(n^{3-\epsilon}\right)$ algorithm for all-pairs shortest paths? e.g. $O\left(n^{2.1999}\right)$

Today's Plan

1. Shortest Paths with Negative Edges
2. Dynamic Programming and Bellman-Ford Algorithm
3. Negative Cycles
4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm
5. Traveling Salesman Problem

Traveling Salesman Problem

Input: A directed graph $G=(V, E)$, a (possibly negative) length $l_{i j}$ for all $i, j \in V$.
Output: A directed cycle C that visits every vertex exactly once that minimizes $\sum_{e \in C} l_{e}$.

It is one of the most famous problems in combinatorial optimization.

$$
\begin{aligned}
& N P \text { - complete } \\
& \text { naive } O(n!\cdot n) \quad \text { impractical } n \approx 13 \\
& D P \quad O\left(2^{n} \cdot n^{2}\right) \quad n \approx 30 \\
& \text { rementer which nodes thet visited. }
\end{aligned}
$$

Dynamic Programming
Subproblems: $C(i, S)$ be the shortest path distance from $\underset{=}{1}$ to $\underset{i}{i}$ with vertices in S on the path.

$$
\text { answer: } \min _{1 \leq i \leq n}\left\{c(i, V)+\ell_{i 1}\right\}
$$

$\underline{\text { base cases }}=C(i,\{1, i\})=\ell_{1 i} \quad \forall i$
computed $\quad C(i, S) \quad \forall|s| \leq k$. want to compute $c(i, s)$ for $|s|=k+1$
idea: try all possible secund

last vortex of the path

$$
C(i, s)=\min _{j \in S-\{1, i\}}\left\{C(j, S-\{i\})+\ell_{j} i\right\}
$$

Analysis

Time: $O\left(2^{n} \cdot n\right)$ subproblems each subproblem $O(n)$ time total $O\left(2^{n} \cdot n^{2}\right)$

Space: $\quad \theta\left(2^{n} \cdot n\right)$
$\begin{array}{rc}\text { best. } O\left(2^{n} \cdot n\right) & O(\text { poly }(n)) \\ \text { time } & \text { space }\end{array}$

Concluding Remarks

We have seen many examples and structures to design dynamic programming algorithms, from lines to trees to graphs.

I hope that you will be familiar with this technique, and be able to solve new problems with ease!

