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Today’s Plan

1. Shortest Paths with Negative Edges

2. Dynamic Programming and Bellman-Ford Algorithm

3. Negative Cycles

4. All-Pairs Shortest Paths and Floyd-Warshall Algorithm

5. Traveling Salesman Problem



Shortest Paths with Negative Edges
Input: A directed graph 𝐺 = (𝑉, 𝐸), a (possibly negative) length 𝑙𝑒 on each edge 𝑒 ∈ 𝐸, a vertex 𝑠 ∈ 𝑉.

Output: The shortest path distance from 𝑠 to every vertex 𝑣 ∈ 𝑉.

What’s wrong with Dijkstra’s algorithm in this more general setting? 



Negative Cycles
There could be negative cycles so that the shortest path distance is not well-defined.

We will study algorithms to solve the following two problems:

1. If 𝐺 has no negative cycles, solve the single-source shortest paths problem.

2. Given a directed graph 𝐺, check if there is a negative cycle 𝐶, i.e. σ𝑒∈𝐶 𝑙𝑒.
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Intuition
Although Dijkstra’s algorithm may not compute all distances in one pass,

it will compute the distance to some vertices correctly, e.g. first vertex on a shortest path.



Dynamic Programming
Subproblems: Let 𝐷(𝑣, 𝑖) be the shortest path distance from 𝑠 to 𝑣 using at most 𝑖 edges.



Analysis



Bellman-Ford Algorithm
The algorithm can made simpler, by using just one array instead of two.



Shortest Path Tree
It is possible to have a cycle in the edges (𝑝𝑎𝑟𝑒𝑛𝑡 𝑣 , 𝑣).

Lemma.  If there a directed cycle 𝐶 in the edges (𝑝𝑎𝑟𝑒𝑛𝑡 𝑣 , 𝑣), then 𝐶 must be a negative cycle.
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Ideas
Note that 𝐷(𝑣, 𝑖) is computed correctly even though the graph has negative cycles for any 𝑣 and any 𝑖 ≥ 0.

Assumption: Every vertex can be reached from vertex 𝑠.

This is without loss of generality for finding negative cycles, as the problem can be restricted to a SCC.



Observations
Claim 1.  If the graph has a negative cycle, then 𝐷 𝑣, 𝑘 → −∞ as 𝑘 → ∞ for some 𝑣 ∈ 𝑉.

Claim 2.  If the graph has no negative cycles, then 𝐷 𝑣, 𝑛 = 𝐷(𝑣, 𝑛 − 1) for all 𝑣 ∈ 𝑉.

Claim 3.  If 𝐷 𝑣, 𝑛 = 𝐷(𝑣, 𝑛 − 1) for all 𝑣 ∈ 𝑉, then the graph has no negative cycles.

Remark: Early termination rule is 𝐷 𝑣, 𝑘 + 1 = 𝐷(𝑣, 𝑘) for all 𝑣 ∈ 𝑉.



Algorithms
Checking:

Finding: It would be easier to explain using the Θ 𝑛2 space dynamic programming algorithm.
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All-Pairs Shortest Paths
Input: A directed graph 𝐺 = (𝑉, 𝐸), a (possibly negative) length 𝑙𝑒 on each edge 𝑒 ∈ 𝐸.

Output: The shortest path distance from 𝑠 to 𝑡 for all 𝑠, 𝑡 ∈ 𝑉.



Dynamic Programming
Subproblems: 𝐷(𝑖, 𝑗, 𝑘) is the shortest path distance from 𝑖 to 𝑗 using {1, … , 𝑘} as intermediate vertices.



Floyd-Warshall Algorithm

Time Complexity:

Open Problem: Is there an 𝑂(𝑛3−𝜖) algorithm for all-pairs shortest paths?
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Traveling Salesman Problem
Input: A directed graph 𝐺 = (𝑉, 𝐸), a (possibly negative) length 𝑙𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝑉.

Output: A directed cycle 𝐶 that visits every vertex exactly once that minimizes σ𝑒∈𝐶 𝑙𝑒.

It is one of the most famous problems in combinatorial optimization.



Dynamic Programming
Subproblems: 𝐶(𝑖, 𝑆) be the shortest path distance from 1 to 𝑖 with vertices in 𝑆 on the path.



Analysis



Concluding Remarks
We have seen many examples and structures to design dynamic programming algorithms,

from lines to trees to graphs.

I hope that you will be familiar with this technique, and be able to solve new problems with ease!


