
CS 341 – Algorithms

Lecture 12 – Dynamic Programming II

25 June 2021

Today’s Plan

1. Longest Increasing Subsequence (LIS)

2. Faster Algorithm for LIS

3. Longest Common Subsequence (LCS)

4. Edit Distance

Longest Increasing Subsequence
Given 𝑛 numbers 𝑎1, … , 𝑎𝑛, a subsequence is a subset 𝑎𝑖1 , 𝑎𝑖2 , … , 𝑎𝑖𝑘 with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘.

A subsequence is increasing if 𝑎𝑖1 < 𝑎𝑖2 < ⋯ < 𝑎𝑖𝑘.

Input: 𝑛 numbers 𝑎1, … , 𝑎𝑛.

Output: an increasing subsequence of maximum length.

Recurrence
Subproblems: Let 𝐿 𝑖 be the length of a longest increasing subsequence starting at 𝑎𝑖

and using the numbers in {𝑎𝑖 , 𝑎𝑖+1, … , 𝑎𝑛} only.

Bottom-Up Implementation

Time complexity:

Example: 3, 8, 7, 2, 6, 4, 12, 14, 9

Longest Path in Directed Acyclic Graphs
Printing a solution:

The longest increasing subsequence can be reduced to finding a longest path in a directed acyclic graph.

Exercise: Design a dynamic programming algorithm to find a longest path in a directed acyclic graph.

Today’s Plan

1. Longest Increasing Subsequence (LIS)

2. Faster Algorithm for LIS

3. Longest Common Subsequence (LCS)

4. Edit Distance

Faster Algorithm: Overview
Now we present a clever implementation that solves LIS in 𝑂(𝑛 log 𝑛) time.

The bottleneck is to find an increasing subsequence to extend 𝑎𝑖, which takes 𝑂 𝑛 times.

The observation is that we don’t need to store all the subproblems for future computation,

because some subproblems are “dominated” by other subproblems.

For each length 𝑘, we will only store the “best” position to start an increasing subsequence of length 𝑘.

Then, these “best subproblems” satisfy a monotone property, which allows us to use binary search.

For example, given …………, 3, 8, 7, 2, 6, 4, 12, 14, 9

Best Subproblems
Suppose we have already computed 𝐿 𝑖 + 1 ,… , 𝐿(𝑛), and we would like to compute 𝐿(𝑖).

Suppose 𝐿 𝑖1 = ⋯ = 𝐿 𝑖𝑙 = 𝑘, what is the best subproblem to keep for computation of 𝐿 1 ,… , 𝐿 𝑖 ?

Define 𝑝𝑜𝑠 𝑘 = argmax
𝑗>𝑖

𝑎𝑗 | 𝐿 𝑗 = 𝑘 to be the best position to extend a subsequence of length 𝑘.

Let 𝑚 = max
𝑖+1≤𝑗≤𝑛

𝐿(𝑗) be the length of a longest subsequence we have computed so far.

Then we will only store the subproblems 𝐿 𝑝𝑜𝑠 1 , 𝐿 𝑝𝑜𝑠 2 ,… , 𝐿(𝑝𝑜𝑠 𝑚) for future computations.

For example, ……, 2, 7, 6, 1, 4, 8, 5, 3

Monotonicity
Once we only keep the best subproblems, then we have the following useful property.

Claim. 𝑎 𝑝𝑜𝑠 1 > 𝑎 𝑝𝑜𝑠 2 > ⋯ > 𝑎(𝑝𝑜𝑠 𝑚).

Intuition: A longer increasing subsequence is harder to be extended than a shorter increasing subsequence.

Updating the Best Subproblems by Binary Search

Claim. 𝑎 𝑝𝑜𝑠 𝑚 < 𝑎 𝑝𝑜𝑠 𝑚 − 1 < ⋯ < 𝑎 𝑝𝑜𝑠 2 < 𝑎(𝑝𝑜𝑠 1).

Fast Algorithm

Example
10, 18, 25, 6, 70, 32, 2, 40, 11, 38, 21, 33, 86, 17, 51, 24, 57

18 18 6 6 2 2 2

25 25 25 11 11 11 11 11 11

32 32 32 32 32 32 21 21 21 21 21

40 40 40 40 40 40 40 40 38 38 33 33 17 17

70 70 70 70 70 51 51 51 51 51 51 51 51 51 51 24

86 86 86 86 86 86 86 86 86 86 86 86 86 57 57 57 57

7 6 5 6 2 4 6 3 5 3 4 3 1 3 2 2 1

Example
10, 18, 25, 6, 70, 32, 2, 40, 11, 38, 21, 33, 86, 17, 51, 24, 57

18 18 6 6 2 2 2

25 25 25 11 11 11 11 11 11

32 32 32 32 32 32 21 21 21 21 21

40 40 40 40 40 40 40 40 38 38 33 33 17 17

70 70 70 70 70 51 51 51 51 51 51 51 51 51 51 24

86 86 86 86 86 86 86 86 86 86 86 86 86 57 57 57 57

7 6 5 6 2 4 6 3 5 3 4 3 1 3 2 2 1

Today’s Plan

1. Longest Increasing Subsequence (LIS)

2. Faster Algorithm for LIS

3. Longest Common Subsequence (LCS)

4. Edit Distance

Longest Common Subsequence
Input: Two string 𝑎1𝑎2…𝑎𝑛 and 𝑏1𝑏2…𝑏𝑚, where each 𝑎𝑖 , 𝑏𝑗 is a symbol.

Output: The largest 𝑘 such that there exist 𝑖1 < ⋯ < 𝑖𝑘 and 𝑗1 < ⋯ < 𝑗𝑘 so that 𝑎𝑖𝑙 = 𝑏𝑗𝑙 for 1 ≤ 𝑙 ≤ 𝑘.

One example is that we are given two DNA sequences and want to identify common structure.

Note that longest increasing subsequence (LIS) is a special case of longest common subsequence (LCS).

Recurrence
Subproblems: Let 𝐶(𝑖, 𝑗) be the length of a longest common subsequence of 𝑎𝑖 …𝑎𝑛 and 𝑏𝑗 …𝑏𝑚.

Analysis

Bottom-Up Implementation

Today’s Plan

1. Longest Increasing Subsequence (LIS)

2. Faster Algorithm for LIS

3. Longest Common Subsequence (LCS)

4. Edit Distance

Edit Distance
Input: Two string 𝑎1𝑎2…𝑎𝑛 and 𝑏1𝑏2…𝑏𝑚, where each 𝑎𝑖 , 𝑏𝑗 is a symbol.

Output: The minimum 𝑘 s.t. we can do 𝑘 add/delete/change operations to transform 𝑎1…𝑎𝑛 to 𝑏1…𝑏𝑚.

Recurrence
Subproblems: Let 𝐷(𝑖, 𝑗) be the edit distance of 𝑎𝑖 …𝑎𝑛 and 𝑏𝑗 …𝑏𝑚.

Analysis

Important Exercise: Bottom-up implementation.

Recent Result: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)

Graph Searching

