CS 341 - Algorithms

Lecture 12 - Dynamic Programming II

25 June 2021

Today's Plan

1. Longest Increasing Subsequence (LIS)
2. Faster Algorithm for LIS
3. Longest Common Subsequence (LCS)
4. Edit Distance

Longest Increasing Subsequence
Given n numbers a_{1}, \ldots, a_{n}, a subsequence is a subset $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ with $i_{1}<i_{2}<\cdots<i_{k}$.
A subsequence is increasing if $a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}$.

Input: n numbers a_{1}, \ldots, a_{n}.
Output: an increasing subsequence of maximum length.

$$
5,1,9,8,8,8,4,5,6,7
$$

$$
\operatorname{LIS}(i, a)
$$

$$
\begin{aligned}
\max \{ & \operatorname{LIS}(i+1, a) \\
& \left.\operatorname{LIS}\left(i+1, a_{i}\right) \text { if } a_{i}>a\right\}
\end{aligned}
$$

Recurrence

Subproblems: Let $L(i)$ be the length of a longest increasing subsequence starting at a_{i} and using the numbers in $\left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\}$ only.

```
answer: }\mp@subsup{\operatorname{max}}{1\leqi\leqn}{}{L(i)
base case: L}L(n)=1
```

recurrance:

$$
\begin{aligned}
& \frac{a_{i}|\cdots| a_{j}| | a_{1} \mid}{v} \\
& L(i)=\max _{i+1 \leq j \leq n}\left\{1+L(j) \mid a_{j}>a_{i}\right\}
\end{aligned}
$$

Bottom-Up Implementation

$$
L(i)=1 \quad \forall 1 \leq i \leq n \quad / / \text { initialization } \quad L(n+1)=0
$$

for i from n downto 1 do

for j from it 1 to n do if $a_{j}>a_{i}$ and $L(j)+1>L(i)$ then update $L(i) \leqslant L(j)+1$.

$$
\max _{i+1 \leq j \leq n}\left\{1+L(j) \mid a_{j}>a_{i}\right\}
$$

Time complexity: $\quad \theta\left(n^{2}\right)$
Example: $3,8,7,2,6,4,12,14,9$

$$
4,3,3,4,3,3,2,1,1 \text { L-values }
$$

Longest Path in Directed Acyclic Graphs

Printing a solution:

```
(2) look at table
```

The longest increasing subsequence can be reduced to finding a longest path in a directed acyclic graph.

$$
\begin{aligned}
& \text { Claim a directed pooth } \\
& \Leftrightarrow \text { an increasing subsequence }
\end{aligned}
$$

Exercise: Design a dynamic programming algorithm to find a longest path in a directed acyclic graph.

Today's Plan

1. Longest Increasing Subsequence (LIS)
2. Faster Algorithm for LIS
3. Longest Common Subsequence (LCS)

Hw3 deadline
Wed July 7, 11 pm
midterm

Faster Algorithm: Overview

Now we present a clever implementation that solves LIS in $O(n \log n)$ time.
The bottleneck is to find an increasing subsequence to extend a_{i}, which takes $O(n)$ times.
The observation is that we don't need to store all the subproblems for future computation, because some subproblems are "dominated" by other subproblems.

For each length k, we will only store the "best" position to start an increasing subsequence of length k.
Then, these "best subproblems" satisfy a monotone property, which allows us to use binary search.

Best Subproblems

Suppose we have already computed $L(i+1), \ldots, L(n)$, and we would like to compute $L(i)$.
Suppose $L\left(i_{1}\right)=\cdots=L\left(i_{l}\right)=k$, what is the best subproblem to keep for computation of $L(1), \ldots, L(i)$?

L- values

Define $\operatorname{pos}[k]=\arg \max _{j>i}\left\{a_{j} \mid L(j)=k\right\}$ to be the best position to extend a subsequence of length k.

$$
i_{v}
$$

Let $m=\max _{i+1 \leq j \leq n}\{L(j)\}$ be the length of a longest subsequence we have computed so far.
Then we will only store the subproblems $L(\operatorname{pos}[1]), L(\operatorname{pos}[2]), \ldots, L(\operatorname{pos}[m])$ for future computations.
$\downarrow \downarrow$
\downarrow
For example,, 2, 7, 6, 1, 4, 8, 5, 3

$$
\operatorname{pos}[1]=n-2
$$

[^0]$$
\operatorname{pos}[2]=n-7
$$
$$
\operatorname{pos}(3)=n-8
$$

Monotonicity

Once we only keep the best subproblems, then we have the following useful property.

Claim. $a(\operatorname{pos}[1])>a(\operatorname{pos}[2])>\cdots>a(\operatorname{pos}[m])$.
$6,7,8$

$$
\begin{aligned}
& a(\operatorname{pos}[3])=10 \\
& a(\operatorname{pos}[4])=2
\end{aligned}
$$

Intuition: A longer increasing subsequence is harder to be extended than a shorter increasing subsequence.
proof
suppose by contradition
$a(\operatorname{pos}[j]) \geqslant a(\operatorname{pos}[j-1])$

Updating the Best Subproblems by Binary Search
Claim. $a(\operatorname{pos}[m])<a(\operatorname{pos}[m-1])<\cdots<a(\operatorname{pos}[2])<a(\operatorname{pos}[1])$.
consider the element a_{i}
(1) $a_{i}<a(\operatorname{pos}[m])$

great, form longer increasing subset
$m \in m+1 \quad \operatorname{pos}[m] \leftarrow i$
(2) $a(p o s[j]) \leqslant a_{i}<a(\operatorname{pos}[j-1])$
cannot we a_{i} to form a_{n} increasy subset of length $\geqslant j+1$ but con use $a_{i} \ldots .$. of length j i would at least as good a startry number for length $j \Rightarrow \operatorname{pos}[j]=i$
(3) $a(\operatorname{pos}[1])<a_{i} \quad \operatorname{pos}[1]=i$

Fast Algorithm

$$
\begin{aligned}
& m=1 \text {. } \operatorname{pos}[1]=n \text { base case. } \\
& \text { for } i \text { from } n-1 \text { downto } 1 \text { do } \\
& \text { if } a_{i}<a[\operatorname{pos}[m]] \text {, then set } m \in m+1 \text { and pos }[m]=i \text {. I/ longer increasing subsequence } \\
& \text { else use binary search to find the smallest } j \text { so that } a[\operatorname{pos}[j]-1]) \\
& \text { f }] \text { a } a_{i} \text {, then set pos }[j]=i .
\end{aligned}
$$

Example

$10,18,25,6,70,32,2,40,11,38,21,33,86,17,51,24,57$

10										

Example

$10,18,25,6,70,32,2,40,11,38,21,33,86,17,51,24,57$

| 7 | 6 | 5 | 6 | 2 | 4 | 6 | 3 | 5 | 3 | 4 | 3 | 1 | 3 | 2 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad L$-values

101010
18 18 6 6 2 2 2 25 25 25 11 11 11 11 11 11 32 32 32 32 32 32 21 21 21 21 21 40 40 40 40 40 40 40 40 38 38 33 33 17 17 70 70 70 70 70 51 51 51 51 51 51 51 51 51 51 24 86 86 86 86 86 86 86 86 86 86 86 86 86 57 57 57 57$\epsilon a(p \cos (2))$

Today's Plan

1. Longest Increasing Subsequence (LIS)
2. Faster Algorithm for LIS
3. Longest Common Subsequence (LCS)
4. Edit Distance

Longest Common Subsequence

Input: Two string $a_{1} a_{2} \ldots a_{n}$ and $b_{1} b_{2} \ldots b_{m}$, where each a_{i}, b_{j} is a symbol.

Output: The largest k such that there exist $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{k}$ so that $a_{i_{l}}=b_{j_{l}}$ for $1 \leq l \leq k$.

One example is that we are given two DNA sequences and want to identify common structure.

```
S
S
```

ACCTAGT ACTTTG

Note that longest increasing subsequence (LIS) is a special case of longest common subsequence (LCS).

Sorted
(LS)

Recurrence

Subproblems: Let $C(i, j)$ be the length of a longest common subsequence of $a_{i} \ldots a_{n}$ and $b_{j} \ldots b_{m}$. answer: $C(1,1)$
base cases: $C(n+1, j)=0 \quad \forall j \quad C(i, m+1)=0 \quad \forall i$
recurrence: $C(i, j)$
(1) if $a_{i}=b_{j}$, then $S_{0} L_{1}=1+C(i+1, j+1)$
else, then $S O L_{1}=0$
(2) drop a_{i}, then sol $h_{2}=c(i+1, j)$
(3) drop by, then $\mathrm{Sol}_{3}=C(i, j+1)$

$$
C(i, j)=\max \left\{s o L_{1}, \text { sol } L_{2}, S O L_{3}\right\} .
$$

Analysis

Correctness : recurrence
time complexity: $O(n \cdot m)$ subproblems
each takes $O(1)$ tine total $O(n \cdot m)$

Bottom-Up Implementation
$C(i, m+1)=0 \quad \forall 1 \leq i \leq n \quad C(n+1, j)=0 \quad \forall 1 \leq j \leq m$. // base cases
for i from n downto 1 do
for j from m downto 1 do
if $a_{i}=b_{j}$, set SoL $\leftarrow 1+C(i+1, j+1)$, else sol $\leqslant 0$.

$$
C(i, j)=\max \{\text { sol, } \quad C(i+1, j), \quad C(i, j+1)\}
$$

Today's Plan

1. Longest Increasing Subsequence (LIS)
2. Faster Algorithm for LIS
3. Longest Common Subsequence (LCS)
4. Edit Distance

Edit Distance

Input: Two string $a_{1} a_{2} \ldots a_{n}$ and $b_{1} b_{2} \ldots b_{m}$, where each a_{i}, b_{j} is a symbol.

Output: The minimum k s.t. we can do k add/delete/change operations to transform $a_{1} \ldots a_{n}$ to $b_{1} \ldots b_{m}$.

Recurrence

Subproblems: Let $D(i, j)$ be the edit distance of $a_{i} \ldots a_{n}$ and $b_{j} \ldots b_{m}$.
answer: $D(1,1)$
base case: $D(n+1, m+1)=0$
recurrence: $D(i, j)$
(1) ADD if $j \leq m, S O L_{1}=1+D(i, j+1)$

$$
\text { else, sol }=\infty
$$

(2) DELETE if $i \leq n, S O L_{2}=1+D(i+1-j)$

$$
\text { else } \quad \mathrm{SOl}_{2}=\infty
$$

(3) CHANGE if $i \leq n \& j \leq m, S \mathrm{Sol}_{3}=1+D(i+1, j+1)$ else $\mathrm{Sol}_{3}=\infty$
$\cdots \left\lvert\, \begin{aligned} & a b c \\ & \cdots\end{aligned}\right.$

$$
\begin{array}{l|l}
a & b c \\
a & e f
\end{array}
$$

(4) MATCH if $i \leqslant n \& j \leqslant m \& a_{i}=b_{j}, S O C_{4}=D(i+1, j+1)$ else sol $_{4}=\infty$

$$
D(i, j)=\min \left(\mathrm{SoL}_{1}, \mathrm{Sol}_{2}, \mathrm{SOL}_{3}, \mathrm{Sox}_{4}\right) .
$$

Analysis

```
Correctmess: recerrence
    t.me : O(nm) subproblems, each }O(1)\mathrm{ time
    total O(nm).
```

Important Exercise: Bottom-up implementation.

Recent Result: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)

Graph Searching

[^0]: 32232111

