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Today’s Plan

1. Framework
2. Weighted interval scheduling

3. Subset-sum and knapsack 2



Introduction

On a high level, we can solve a problem by dynamic programming if there is a recurrence relation

with only a polynomial number of subproblems.

This is a general and powerful technigue, and is also easy to use as it is more systematic.
It extends the ideas in the previous topics including divide and conquer, graph searches, and greedy.

Once you learnt it, you will feel much more confident as a problem solver, as then you can solve

interesting and nontrivial problems that were out of reach in a rather routine way.

So this is a topic that | hope you can learn well, and we will do many examples to achieve this goal.



Toy Example

To illustrate the framework, let’s consider the simple problem of computing the Fibonacci sequence.
Fin)=F(n—1)+ F(n— 2). F(1) =F(2) = 1.
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Top-Down Memorization

As in BFS/DFS, we can use an array visited|[i] to ensure that each subproblem is computed at most once,

and also we use an array answer][i] to store the value F (i) for future lookup.
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Time Complexity of Top-Down Memorization

The analysis is similar to what we did in BFS/DFS.
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Bottom-Up Computation

O—H 0O—H 0 —>© __mo
N h-\ n-"1v 3 1

T = FlU-0+ FG-a).

O (n) additions

buT npol OCn) time

the A ot S g(ow W?e-m't'\\al%



Dynamic Programming

So, this is basically the framework of dynamic programming, to store the intermediate values

so that we don’t need to compute the subproblems again.

From the top-down approach, as long as there is a recurrence with only a polynomial number of

subproblems (and polytime processing), then the problem can be solved in polynomial time.

So, the key to designing a dynamic programming algorithm is to come up with a nice recurrence.
We will see that many interesting and seemingly difficult problems have such a nice recurrence.

We will study many examples so that you will acquire the skills to come up with these recurrences.
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The word dynamic was chosen by Bellman to capture the time-varying aspect of the problems, and because it sounded impressive.[1]



Top-Down vs Bottom-Up

In practice, the bottom-up implementation is preferred as it requires no recursion and so more efficient.

In principle, to come up with a bottom-up implementation, we just need to use a topological ordering

of the “subproblem dependency graph” to have a correct order to solve the subproblems.
Usually, it is rather straightforward. Sometimes, it requires us to think clearly.

Our main focus will be to come up with the recurrence, as this already implies a polytime algorithm.

We will also mention the bottom-up implementations as much as possible.
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Today’s Plan

2. Weighted interval scheduling



Weighted Interval Scheduling

Input: n intervals [sq, f11, [S2, f>], .-, [Sn, fn], and a weight w; for each interval i.

Output: a subset of disjoint intervals that maximizes the total weight.

This is a generalization of the interval scheduling problem in LO8.pdf.
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Unlike the special case, there are no known greedy algorithms for this problem.
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Exhaustive Search

To come up with a good recurrence, first we see how exhaustive search is wasteful and how to improve it.
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Extending Partial Solutions

We do not need to remember the partial solution that we have chosen so far.

What really matters is the last interval of the current partial solution.
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This suggests that there should be a recurrence with only one parameter!



Good Ordering

For the recurrence, we use a good ordering of the intervals and pre-compute some useful information.
We sort the intervals by starting time so that s; < s, < - < s,,.

For each interval i, we define next(i) to be the smallest j such that j > i and s; > f;
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Better Recurrence

Let opt(i) be the maximum total weight of disjoint intervals using intervalsin {i, ..., n}only. < (<n

So, opt(1) is the answer that we would like to compute.
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Analysis
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Bottom-Up Computation

opt (nx1)=0
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This has the same time complexity as the greedy algorithm!
Somehow we can implement an exhaustive search algorithm as efficient as a greedy algorithm!

This is why dynamic programming is so useful and powerful, because it is very systematic

and yet it provides very competitive algorithms.

Exercise: Write a program to print out an optimal solution (i.e. the disjoint intervals).



Today’s Plan

3. Subset-sum and knapsack
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Subset-Sum

Input: n positive integers a4, a,, ..., a,, and an integer K.
Output: a subset S C [n] with },;cqa; = K, or report that no such subset exists.
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Knapsack

Input: n items, each of weight w; and value v;, and a positive integer IV/.

Output: a subset S € [n] with }};cow; < W that maximizes }};cs v;.
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Exhaustive Search



“Better” Recurrence

The subproblems are subsum|i][L]for1 <i<nand1 <L <K,

where subsumli][L] = true iff there is a subset in {i, ..., n} whose sum is L.
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Algorithm

Qubgum (Y,L)
if (L=0)  Yetun trua
\\Q C v n) (eturn folse A consdag gl all Numbers

\\-G- ( L <o) Yetumn {alc—( {f over tle tacpet

Cublum L;}L) = SubSum (f+(, L-a;) 93\ Subsum (i4(, L 3 )
Y~



Time Complexity
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Bottom-Up Computation

L
K< k-\ 2.1.0
Subsum TJLLY = folse  for all 1Si¢n and 0<LS K \ I {\
2 D~ /
Cubsum Tnllan) = subzum (nlle) = true 3 RS ;
_ i, S
Sub sum lxlio] = true tor oll Y= <¢n { Z/\b Y
Ll T ,¢ o “
Tor 1 Lcom o downte 1 de h- | v
"HLXL'X\XKXX\/)(X)(/
fDr = ‘Efom 1 +to k de Qn

h"‘% cubsuew L (JLLY = true . then Sub%um LItLY = drue .

it Q -0, 20 and subsum Lir (J{L-0:) = true 3 _ then  gubum TATLY = Loue.



Top-Down vs Bottom Up

Bottom-up: space efficient implementation
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Dynamic Programming and Graph Search

This algorithm can be understood as doing a graph search on the “subproblem dependency graph”.
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Knapsack: First Approach

: : e *
Input: n items, each of weight w; and value v;, and a positive integer IV/.

*
Output: a subset S € [n] with };cow; < W that maximizes }};cs v;.

The subproblems are knapsack(i, W, V), which is true if and only if there is a subset in {i, ..., n}
with total weight W and total value V.
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Better Recurrence roprock ( 3, 1,201 ) = o
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We don’t need to store all possible I/, we just need to store the maximum I/ achievable.

Define knapsack (i, W) as the maximum value of a subset in {i, ..., n} with total weight at most W'

More precisely, let knapsack(i, W) := sgrgﬁ.).,(n}{zjes Vi | LjesWj < W}.
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Remaining Steps

The following details are left as exercises.

Base cases.

Correctness.

Time Complexity.

Top-down implementation.
Bottom-up implementation.

Printing a solution.
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Check List for Dynamic Programming Solution

The following is a check list for designing a dynamic programming algorithm.

1.

Starting with exhaustive search to get an idea (we may skip this step).

Coming up with good subproblems.

Write down how to get the answer from the subproblems.

Write down the recurrence relations including base cases, with explanation as correctness proof.
Write down the algorithm (enough to say top-down memorization).

Analyze the time complexity.

Print out a solution if necessary.

Bottom-up implementation if necessary (e.g. to avoid stack overflow).



