CS 341 — Algorithms

Lecture 10 — Single Source Shortest Paths

18 June 2021

Today’s Plan

1. Dijkstra’s algorithm as simulating BFS

2. Dijkstra’s algorithm as a greedy algorithm

Single Source Shortest Paths

Input: A directed graph G = (V/, E), a non-negative length [, for each edge e € E, and two vertices s,t € V.

Output: A shortest path from s to t, where the length of a path is equal to the sum of the length of its edges.

Lo W (<SSP)
| v

Input: A directed graph G = (V, E), a non-negative length [, for each edge e € E, and a vertexs € V.

242
Output: A shortest path from s to v, for every vertex v € V. & R

Breadth First Search

In LO5.pdf, we see that if every edge has length one, then the problem can be solved by BFS.

We can reduce the non-negative length problem to this special case.

& ,zfo-i"ﬂi ° mo7‘‘°°'L_@-"’L'°"°°“~o|>
Q(RO;J/\" A~ \/
A 5N /\
U \>°ok ~ o
N c) A

a d

Cloim 3 o path of lLygth kK fow § b V™ Q
© 3 o path of MR K A sh VT g

The Reduction

What is wrong with the reduction?

m’c\m\s Wf°\3 with +le Cowrectness

but At (S nwot on _.Q-E-—f-‘(j%"" A et om

4 Verlces Th Q:(, = S (QQ—-\\ + n
_et(R)

l_&: loOODDO , QQ," N Q&:l

{
oo = Jwst keep G adk BFS ™ maud.
but e waat Q_‘(’{"\'CT%’{:LJ cwnlate —the

?(DCQ(‘

Physical Process

1
We can think of the process of BFS in G’ as follows. n/

e We start a fire at vertex s at time 0.

* It takes one unit of time to burn an edge e in G'.

Claim. The shortest path distance from s to t is just the first time when vertex t is burnt.

o (@)
/‘\
C()

(z)
/ \ /1 \
N

A \ ’
e 7
\ K -
(3){‘ \ /8(‘)
/

I

Efficient Simulation

The idea is that we just need to be able to keep finding out what is the next vertex to be burnt and when,

by keeping track of an upper bound on the time a vertex to be burnt.

\O 2) o N
/\c(;o »
(”)OK/\/ \ % (2) A ¢ oY

Py A >
- \/%m \ \/)

G :

Dijkstra’s Algorithm as BFS Simulation

dist (W = Foc every ve

st () = O

®\ = make- \)\’-\oﬁt%- %uaue C \/)

While @O s not ngﬁi oo

= delete- min (QB

foc each owﬁ-) neighbor v of W
o distw + Ry, < dust ()
dist (W) = distlw + Ry
decrease- Key (Q, W)

pacent (V) = w

/ the Intial upper bound on the time v 1S burned

/ start a Tice ot vectex $ ot time O

Ve all Uertices are Pmt

in the Photity queuwe
/

using distlvy) as +the hj vV alue Qpﬁmtj value) of v

// o(o,%uuzua the vartex with minimum ohist () value

// t.g. Find eut the nat vectex to be burned

f b works for Aifected gra\bhs oS well

f Fiad o shortec way o get to v throuph w

/I note that €his may be updated multiple times

TFibmacdi hmF

AnalySiS O(M-l-h(oxn)

/
COYYLCWQQS - Shoytest P""H" Mm CT[& gkm‘knst Pa‘th 0’} G\

7
Uunwaery wted . RFS

/
our o»l&o Qwutated BFS ™ G .

tme Q,am?\xg-‘ft): goch verkex W o enfumed ece C bzxmﬁ:‘ D) & O(n \oxn) Hme
\‘/}_ou Chatk Azt + ¢y < A priovity- gt
N Yo L -hos
/V‘\ oso . decrmce. z 4 ¢ V"Z t
Qach Mruh\« : 0 (o\@x W) - (oxn) in%u_u.o. qe%w.m,
deeface - ttg

tal tue + O Cnbga + T deptod-lopn Y = 0 ((ntm)lopa) . on
tota g § 1 § o O (togn) tr

Today’s Plan

2. Dijkstra’s algorithm as a greedy algorithm

Traditional Approach

Here we follow a more traditional approach to prove the correctness of Dijkstra’s algorithm.

Besides being more formal, the proof technique is also useful in analyzing other problems, e.g. MST.

We think of Dijkstra’s algorithm as a greedy algorithm.

The idea is to grow a subset R € V so that dist(v) for v € R are computed correctly.
Initially, R = {s}, and then at each iteration we add one more vertex to R.

Which vertex to be added in an iteration?

We will add the vertex which is closest to R to R, so in this sense the algorithm is greedy.

R

D

Dijkstra’s Algorithm as Greedy Algorithm

dist(WD) =00 Yuel . dist(D) =0 -

R=¢

w\’\-\\i R _‘\—& \{ d,D

peck the vertex we& R with <mallest dist (w). R € Ruiud
’?or each 2dge uve & ~_ t«/-v
Z‘F dist (W) + Ay < dist (W) / \

arst(V) = st + Loy

Note that u & R is a vertex with dist(u) = min {dist(v) + L, }.
VER,WER

Correctness by Induction

Invariant: For any v € R, dist(v) is the shortest path distance from s to v.

Loace case - R= {SB . Azt sd= o V4

hdction Step - Computad Covyactiy for vatiees a0 R
add w +o R . Showv QW()tho(, W(g,e‘tﬁ —Ev(vaetius ™ K*XM.I].

R
goa.l‘- Shovtes® pathk Leom € to @ u
< by T.H
3 a path o
@ Shotect path frm~ S 0L with (,en{(h('fsv):olnt (v)

< d,?rtLv) < Q
) o 2 Py v® 1 a]Je.\’k

Qa foomw 0w

| v,u. be e mmimies
Lt Vi 3 with loagle ozt Lo,

2
Note that u & R is a vertex with dist(u) = min {dist(v) + L, }.
VER,WER

Correctness by Induction

Invariant: For any v € R, dist(v) is the shortest path distance from s to v.

Qoal -
@ \gs’ko-rtas‘t path «%w S o W z dut W+ Quu

Comsidsr onyq poth P frow st @

(notves X covld be v . y cw(ollxu)

20
fangth (B) 2 dist 06 & By + (L)

> o\TS't (U)"\" Quu_

@*@ > dntu)tlyy T the Shotest Po\ﬁ olztonm ce. f,,,,, S P W,
[®]

Vv, u o m‘.mmiger

Note that u & R is a vertex with dist(u) = min {dist(v) + L, }.
VER,WER

Shortest Path Tree

From the proof, when a vertex v is added to R, any vertex u € R that

minimizes dist(u) + L, is the parent of v on a shortest path from s to v.

We keep track of these parent information, which can be used to trace back a shortest path from s.

R

—~ Lo

So, we have a succinct way to store all the shortest paths from s using onl nf(-l\’ es.

As in BFS tree, these edges (v, parent|[v]) form a tree.

The shortest path tree is a nice structure and is very useful algorithmically.

Negative Edge Length?

Question: How the algorithm will fail if the{'f?re some negative edge lengths?
G A v
'y

/o

T/rs'
S

3

3

We will come back to this more general setting after we introduce dynamic programming.

Concluding Remarks

We have seen a few greedy algorithms.
The exchange argument is useful because it allows us to compare two similar solutions.

This is the end of the third topic of the course, exactly finishing half of the lectures.

Next time, we will introduce the technique of dynamic programming.

The second half of the course will be more advanced and interesting.

