CS 341 — Algorithms

Lecture 8 — Greedy Algorithms

11 June 2021

Today’s Plan

1. Minimizing Total Completion Time
2. Interval Scheduling

3. Interval Coloring

Greedy Algorithms

We will have three lectures about greedy algorithms.

Generally speaking, greedy algorithms work by using simple and/or local rules to make decisions

and then commit on them, an analogy to making maximum profit in short term.

Greedy algorithms are usually easy to propose, but may not work or not easy to analyze.

Today we will use scheduling problems as examples to analyze greedy algorithms.
Then we will talk about Hoffman coding, and then Dijkstra’s algorithm for single source shortest paths.

We won’t study the minimum spanning tree problem, solved by a classical greedy algorithm.

Minimizing Total Completion Time

We start with a problem which has a very intuition solution.

Input: n jobs, with processing times p4, 05, ...

»Pn-

Output: an ordering of the jobs to finish so as to minimize the total completion time,

where the completion time of a job is defined as the time when it is finished.

n=S

+ ot Cmylvt'm-\ ‘o

+otal

1\(\6
2

g\-z

8

-
-

2

2
a

48

%

N
2

A

o 24

total

19

:60

Algorithm

Imagine we are in a supermarket.

It is very intuitive that we should process the jobs in increasing order of processing times.
That’s the algorithm.

How to prove that it is correct?

Again just imagine that we are in a supermarket.

Exchange Argument

We use an exchange argument to prove the correctness of the greedy algorithm.

(‘mccmsm‘p
Goal : not r\on-durms‘ms ovder of processvy tmes. thea not optimal.
not nOn—d.cc«mgnj or dsr > 2 awn Musr o Fcny r._J:‘_J @
; 3
= 3 om adjolent ThusSion pair —’—1\?& 2
C P 7Y
NP
ConSider the now No\zﬂh& | [Pl el 7
Lo Ve i G —

Sowe

Same
FK*PL'N
the Cowpletibn of all jobs ace +hesame . except k-th and (kei)-th
old ordeang © CaPr ond Cepotpuy . el ez dceupy p,,
naw odang; Qo Pen ot CHPuitpe | bRl ot e = aceay 1p,

S ?(4‘ C?‘ Llen wow) Ndﬁ‘\\s ® better .

L d

a

Generalization

The following is a generalization where the greedy approach still works.

Input: n jobs, each with a processing time p; and a weight w;.

Output: an ordering of the jobs to finish so as to minimize the total weighted completion time.

where the weighted completion time of a job is defined as its weight times its completion time.

n=5 P= 37,12 ‘.—;\T\;_\
|

- A A 2 total = &2
W /® : 2 S 36:‘1%;

IY

o (a2
O ¥ i) totnl = G
21 3 v
\
x3

We leave it as a problem for you to think about.

Today’s Plan

2. Interval Scheduling

Interval Scheduling

_Lln ut: n intervals [Sl) fl]) [52, fZ]J sery [S‘nr fn]

Output: a maximum subset of disjoint intervals

G

S osegee G S ESmm——
~ma P

Imagine we have a room and we would like to use it to hold as many activities as possible.

Greedy Algorithms

There are multiple natural greedy algorithms for this problem.

1. Earliest starting time

Earliest finishing time

Shortest intervals

& Qood apprevimatom alpori hin 2
4 6
J

Minimum conflicts (i.e. choose an interval which overlaps with fewest other intervals)

il
)il

Algorithm

* Sorttheintervalssothat f; < f, < --- < f;,. Initial solution § = Q. O(nlopn)
* Forl<i<n

If interval [s;, f;] is disjoint from all intervalsin S, then S =S + i. o) S OCn)
e Output S.

- Tine Qlee\‘\‘h{) ¢ OCnlopn)

Proof of Correctness

We argue that any (optimal) solution would do no worse by using the interval with earliest finishing time.

Claim. There exists an optimal solution with [s;, f1] chosen.

A — optival golution

——— alse on onMl Solution

Proof of Correctness

Then, we can extend this exchange argument to show that the greedy solution always “stays ahead”.

Lemma. There is an optimal solution using the first k intervals of the greedy solution for any k.

v Pie nous claim

2(00% bose Cate 3
[Sja. £5.)
VA
— ——*— -

Secondk Wtevu ol \,‘3 +the sgro,uLn solutivw (s;z_\1-3

e B
?ru&s al&s&tk m > {l\ N < -FJ N

s, £3.) sl ana oftvwl S ol.sthd

p— — CE—— “
L]

csi:, .f?s-,l

(eQat the Soane oug«uu.t .E’:zg{‘

J3

Proof of Correctness

Lemma. There is an optimal solution using the first k intervals of the greedy solution for any k.

With the lemma, it is easy to finish the proof.

— opt go (us'ms Q ™tevals

?"""’Ld sol g k mtecuals
tath k< Q

lemme — == an opthal goluti,,

Today’s Plan

3. Interval Coloring

Interval Coloring

_Lln ut: n intervals [Sl) fl]) [Sz, fZ]J sery [Sn; fn]

Output: a coloring of the intervals using the minimum number of colors possible,

so that each interval gets one color and any two overlapping intervals get different colors.

———— e
SRt
.—-———:‘__-_'_ p—
———— — T E—
- P ———

@ Tnterval with

(eagt C,n‘f (i cts

A\
mm R of (owms ‘(:N oll actiyvitioy Color 1t last
use e Pueums

i # UQ gutc,{ ‘Ebv all {Z(Igld's. @ O.,LQO‘.‘-U‘”' 1o -G\a(

>< nax dn}bk‘t gubS&f
u<e owe eoley o e

+his D o Spe cal cace o{- ?(m\ﬂ\ cole r‘mx

Algorithm

* Sorttheintervals sothat s; < s, < -- < 5,,. InitiatsotutionS—=-0--

. Forl1<i<n

Use the minimum available color to color the i-th interval.

Analysis

To prove the correctness, if our algorithm uses k colors, we need to prove that there are no other ways

to color the intervals using less than k colors satisfying the constraints.

How to argue that? +
—
One way is to show that when the algorithm uses k colors, i % k mtwwl
there is a time t such that it is contained in k intervals. T

Then these k intervals are pairwise overlapping,

and so any algorithm needs to use k colors just for these k intervals.

This would prove that our algorithm is optimal.

Proof of Correctness

sort b:‘ mcrusﬂj Svl-u«hxj 30 O

OWY &"LULQ ml‘or‘.thm wuses k Colers

- v

3

0 —m—m—m—

\ 2 3 —1 4

T == <

G x & mtuwal v TS £43
Color K
| /;] all these intervals contem™ <t ?‘t"f'ﬁkt Himg S:
., —
- 3 > k ntevalg Oﬂf‘m\n\j S: — k Colors neceled o

Find a counterexample showing that using an arbitrary ordering of the intervals would not work.

