CS 341 — Algorithms

Lecture 7 — Directed Graphs

2 June 2021

Today’s Plan

1. Directed Graphs, Reachability, BFS/DFS MW = s posted
2. Strongly Connected Graphs vundy to solve QL , @2 , Q%
3. Directed Acyclic Graphs

4. Strongly Connected Components

Directed Graphs

If uv is a directed edge, then u is the tail of the edge and v is the head of the edge.

(o

(-]
“xo-l heed

The in-degree of a vertex v, denoted by indeg(v), is the number of edges with v being the head.

The out-degree of a vertex v, denoted by outdeg(v), is the number of edges with v being the tail.

> ‘ - A “w N - <o
—i))}ﬁ Tﬁg:’)— \é%/ Siak 1§ h*d‘-fo /5\\1\-3 Sourc { *nd-ej

Directed graphs are useful in modeling asymmetric relations (e.g. web links, one-way streets).

G(oog(c.
A directed graph G is a directed acyclic graph if there is no directed cycles in G.

divected
g % a::ctrb 7‘ o\\’ X
.\,.;\,Nwt"‘k c;rv‘-‘k ‘vuwl- g'("‘Ql" S\ L/

acyedie

Connectivity in Directed Graphs

Given two vertices s, t, we say t is reachable from s if there is a directed path from s to t.

/\;g—%%‘%

S

A directed graph G = (V, E) is strongly connected if for every pair of vertices u,v € V,

u is reachable from v and v is reachable from wu. we &~—

\)

A subset S € V is called strongly connected if for every pair of verticesu,v €S, <&

u is reachable from v and v is reachable from wu. &)

X

A subset S € V is called a strongly connected component if S is a maximally strongly connected subset,

i.e. S is strongly connected but S + v is not strongly connected foranyv € V — S.

3
/|

Questions

We are interested in designing efficient algorithms for the following basic questions:
1. Determine if an input graph is a strongly connected graph.

2. Determine if an input graph is a directed acyclic graph.

3. Find all strongly connected components of a directed graph.

It will turn out that all these problems can be solved in O(m + n) time,

but they are not as easy to solve as in the undirected analogs especially Q3.

Data Structures

Both adjacency matrix and adjacency list can be defined for directed graphs.

o a b eirea
o1 Q

1 v|—>]

e § 1

Q
b
Q <)
P\% « S E)
Q (»)
(o &

We will only use adjacency list in this lecture, as only this allows us to design O (m + n) time algorithms.

DFS

Both DFS and BFS are defined as in undirected graphs, except that we only explore out-neighbors.

.TY\PVCt ‘~ A divected %\’a?\m G=(U,8) ond o vetex <.
Qutpul - Al Vertices Teachable {com ¢
1 Main program] visitedly] :'Fo\\gg Yue\ll . time = | | vigited Tl = true. 2xplore (s
Qy?\bre Cw) /[Yecucrsive —{zw\ctiov\ QKFLon .
W
— (é\
Stowt Tul = time . time <« timae 4+ L. ,lg“ \
C CY

'Go(goch \oﬂr\eixhbor v o oof w

v visited (V) - Tolse
wisited Tul = True . explore (v) .

Tinish Tul = time. time & fime + 1. put u m Q

BFS and DFS

We can also define BFS for directed graphs analogously, by only exploring out-neighbors.

When a vertex v is first visited, we remember its parent as the vertex u when v is first visited from.

The edges (v, parent|v]) from a tree, and both BFS tree and DFS tree are defined this way.

Exercises

1. Time Complexity is O(m + n).

o

D i

2. Avertex t is reachable from s if and only if visited|[t] = true. s

D
=
3. The set of vertices reachable from s forms a “directed cut”. "’ falsn
2>

4. BFS can be used to compute a shortest path from s to all other vertices in O(m + n) time.

BES Tree

By setting dist[v] = dist[u] + 1, we can compute all shortest path distances from s.

In undirected graphs, for all non-tree edges uv, dist[u] — 1 < dist[v] < dist[u] + 1.

In directed graphs, there could be non-tree edges uv with large difference between dist[u] and dist[v],

but they must be “backward edges”.

<
@
\ /\\[
O Ot _
2 2 -
6., &— O

DES Tree

In undirected graphs, all non-tree edges are back edges as we proved in LO6.

In directed graphs, some non-tree edges could be “cross edges” or “forward edges”.

P
AN =0
=0 i

YR O
QY o0s¢ on&czs

Structures in directed graphs are a bit more complicated.

Today’s Plan

Homework 2 is posted

Q ‘ . Q2 , Q& {Rad
2. Strongly Connected Graphs el

Strongly Connected Graphs

Input: A directed graph G = (V, E).

Output: Yes if G is strongly connected; no otherwise.

v
(VS (\/\o
gfrb‘hjt\a (/rn)\-(.btd 0 U (A;U&V . O/_\/.Do :_ vV

O(n) pevs tv chack.

td

noive @{N 2ach pox . Check A o poth w v V| U w
total tme - 6C n"-(n\»m))
@ foc 2ach vertex o, whethar ol > Voctitd can be Toached oy

total e = o(N (hem))

choese emeg S Chocke whatles 7€ an feach all otlar Vetirs

What did we do for undirected graphs? s 50 N L
(»)
N NS O e
TN 3
//\ﬂ»

-
What is a “succinct” condition to check for directed graphs? N %5

Observation

Claim. G is strongly connected if and only if%very vertex v € V is reachable from 53 € ona BES [pRS

and<<; is reachable from every vertex v € V)where S is an arbitrary vertex.

Yoo -@ > -tw"v‘\ox\ _ 53 o‘u_"(v{.tﬁ»._
(Y \V; W)
<) o\/\o 0\ /o 2 walk
Ay S
¢
O“ha neod O check O(,ﬂ) Fa}‘-i
R
SNG S G
o ©

How do we check whether s is reachable from every vertex v € VV? (g/%? ﬁ

Trick
Idea: Reverse the graph! (r?l‘;x ‘ff\\,

Claim: Given G = (V, E), we reverse the direction of all the edges to obtain G = (V,E<).

Then, there is a path from v to s in G if and only if there is a path from s to v in G~.

So, s is reachable from every v € V in G if and only if every v € V is reachable from s in GR.

0 . R /‘ <\
G‘ O/ \LEQ GI & \
Gl o b— o & GR 6 —>Seo
S v s v
/ L R /\’D colve thz
G1 g o <§_/_" S C"\ g O (\,>

<o i N !

tme BES(OFRS

Algorithm

Check whather all vectices in G[a2 (ochable ’Rl(‘O‘m N bg ong RFES| DES. O(mfy\)
O(M-l-n)
. R . . R
Reverse the divection of all the edpes in & +to obtonn G m G . § Ts Yemchable
Z/\ Lromn all veV

Chede whether ol vectlices in G;R are

(eachable ,F{om] \oa one RFS [DS 0(”"-!-/1)

Irg both LAQ_S, {eturn ° gJCTOthlA Conne ctad “ 5, othecwise Yeturn h N ot S%fanj\\é Conne(ted i

Covlectress bated o= @ . batehA ™ He clam L s hides Q0.

Complxdy + OC(mtn)

Today’s Plan

3. Directed Acyclic Graphs

Directed Acyclic Graphs

Directed acyclic graphs are useful in modeling dependency relations (e.g. course prerequisites).

In such situations, it is useful to find an ordering of the vertices so that all the edges go forward.

This is called a topological ordering of the vertices.

VXY
L2l of <[o
/;) —
chiresbed acyclc Qropug @ no olirected Cycles *$ N X
, HREE R 9 R
Cs 34 ce “46b o
/7;\ — > NN
\ | 23 [2] 36T C&T
(o]
MatH 230 = T —>

Cs2%p

Topological Ordering

Proposition. A directed graph is acyclic if and only if there is a topological ordering of the vertices.

N ~ST
Emog_ c) 1L T o topological ovdery TT T T T | D no ovectad eycs,
& 'I-G E) o. ORivectedk usdf. leon ﬁ a +o(>o(oP§c4l lrro(mhj.

a/\)\o/—\’Q/\)
>) gead ©° DAG = T a tepdbgical mt;:l.\

l
need to Show - N —— ‘(
S DP{C-a 3 o vertex °€ “\M%Yl}- 0 must ke o vartex with MO‘J{ =0

o

+thx O alge Suffrcient % ‘FT"}’Q AN Topolepival ov
° = CLLTT N AR
oy o dectiem G f\
1 o (X
G-v s alse Geyclic @ AN\ 1‘°P°(°ﬁml
by TH. 3 o Topolopieal ordoay of &-vu O (T o~oleny of ¢\,

Topological Ordering

Proposition. A directed graph is acyclic if and only if there is a topological ordering of the vertices.

P«ov&- -9 YAG | o \Vertex of m.s’sn.svu 0.

Comtrapositive = Y vactex mu&m. > 1 =) olivact ad cﬂch,
Vet
= — q o wvaetae %W
CO)‘ 20
N we th uVve
Vé /
ro |/0\/>_ @ “m R united
VRN o > 2 a divected cﬂclg
\V
)

@ w 3 not wwited
but this acpums] Cannd”
fﬁ?‘*—t {b«wc-r, o€ the
gn?k 3
frwite

First Approach

Just follow the above proof.

fn?utd‘j frol Q vertey o«(n\—d.egrv. 2ero
Vu‘t Tt ™ tle bc.x“m-‘nj of t wPoLoTTml o-roLA-qu

Caw he MVUM**’—‘L ™ O(m+nd tmae.

- b.ngmmhj, veeo e ?rc?h, pwt Query Vet 8f moafrer 0

\\‘b Q W
W&ul\ﬂ\\;ﬂ\r o\u > -l
(=
=\
—~ Tterotioe vV ~—X<p, [9 R
X \g\;f_j'& Mdep=o

Second Approach

This is probably less intuitive, but the idea will be useful in the next problem as well.

Idea: Do a DFS on the whole graph.

7,

O‘”J wo!.nn»s of tle veekite s \ € 2

mitially . GsitedCi) = false W o

—F,, 1S 1€ n

]_g Vrgz't:.nl{'s:\ = -Fodu
DFs (5)

O (m+n)
t W

g ol conkobh Compmants W Undwectid Propks ™ D(min) tme.

Iny

Finishing Times =*

<
\s\
/)
w

0,

We will use the parenthesis property of starting and

L 1)

e
A
vovoow D Lu }4 t]u
inishing times, which still holds for directed graphs.
fmeblcd > ooier

—_— &

Lemma. If G is directed acyclic, then for any edge uv, finish|v] < finish[u] for any DFS.

& o
v
preet Cate 1: starttu) < start Cu)
v
OL/ H\\ smee & VPG ando u.veE, ®
w \> '
D W B aet teachable from v
Uo

= w Cannct be a descandmnt of Vv ™ DFS tve,

) {startfu), fmwhlal) ot [starty) _{mnh(s))
are on‘sjw-{- bﬂ Pqﬂwtuw Fro(»-‘lb.

=) startCv] fonhlu) startiuw) Shish Cu)
L |

|)
S TrRACv]) < fmn hTuwd

Finishing Times
We will use the parenthesis property of starting and finishing times, which still holds for directed graphs.

Lemma. If G is directed acyclic, then for any edge uv, finish|v] < finish[u] for any DFS.

:E‘roe&_ cateY = Start Tu) < staCo)

o\ the preef T Wwiler to Lob
e >°\/ “all nobh-tree n.).yu are back .Ld.s'u 7.

itlayr Cae—=o -

My N Vst of w
Y A

C € 3 1

v deScandant o-(w v child of w w Y] v W
S frnhTw) > furh.

Algorithm

. Run DES on the whole grogh. O (nam)

= 0(?*%) _ no Ned ‘o Sovt .
2. Out?\ﬁc the broker‘mg with okufeas:nj f‘tntshm& time.

4

) 1L Yot reCucn \\G.c,‘iC(.‘C—'
3. Check Tf Tt s o fopelogical Ofdecing . If nol . (etum 7 wot o\cﬂcnc"\

4 = ith Mot e
C orrectnes S : TL£ net oeyclic . thae P topologwal ““‘3 = alforthm nol Acycle

Tkt > fmhio)
I% otc,ac(;g . then lemaa Sagqs °© > o for ol uv L

wu v

oln.u.eucﬂa {va\f.n) towe N"Uf’*j S ol the oolyrs g0 favward 0

Time O(n-\-w\\ Exercrgg not a.qdc(tc. S avit‘n‘t o olivected edclo‘

Example

q ;‘?,f’] @6 15,197

Q,lo, (9,7)2/§/4)/)_§dg‘ [

mishCo)
—Q-m:s\\Cu.] > fmrhCo £ & oaAg

O._’._jo
q V

Today’s Plan

1. Homework 2 is posed, due on June 14

2. Discuss take-home midterm on June 28

4. Strongly Connected Components

Strongly Connected Components

Now we consider the more difficult problem of finding all connected components of a directed graph.

We will combine and extend the previous ideas to obtain an O(m + n)-time algorithm.

First, we understand better the structure of a general directed graph.

Claim. Two strongly connected components must be vertex disjoint. C, and C,
Q
YOo{- ' Cl
Qr-\/jo (<Y r_.’)o
w v \YJ “u

C\UCL gtYo“S(:) Crenected
but 1t Omtvaditte tha T

C,.Cy oare maxywal STYVwSl:) Cranectad QubseTr.
q

Structure of a Directed Graph

Observation. When every strongly connected component is “contracted” into a single vertex,

then the resulting directed graph is acyclic.

—_——— RN -7 TN
a . . ’ \ ’ > b
/ A / \ ’ \
/ — \ 1 — \ / - A
N J / \
! J—t T - \

So, a general directed graph is a directed acyclic graph on its strongly connected components.

ldea 1

How do we identify the vertices in a ' '
strongly connected component easily? g

¢

One natural attempt is do a BFS/DFS on a vertex v,

and hope that it identifies the SCC containing v.

But this doesn’t always work.

Observation. Suppose we start a BFS/DFS on a “sink component” (a component with no outgoing edges),

then we can identify the vertices in that sink component.

= o

o

ldea 1: Cut Out Sink Components

This Suggzsts the —go\LoumS St(odo,ga.
. T~k o vertex Vv in & sink C,Dm?oneﬂf C.
2. Do a DFS] REL <o idhentify .

=y Remove C Krom the K(D\P\n ok (epeat .

How do we find a vertex in a sink component efficiently?

It doesn’t look easy, especially we have to find such a vertex many times (one for each component),

and yet the total time complexity should be O (n + m).

l[dea 2: Topological Sort

Recall that a directed graph is a directed acyclic graph on its strongly connected component.

For directed acyclic graphs, if we do a DFS on the whole graph, RS~ Q ?
then the vertex with the smaj_l@fmlshmg time is a sink. m
s“nk
Let’s try this in a general directed graph. Start DTS ;WL

_ olzuam.“ &m‘.:k.j towe . e

@E)P.0FHOMRODO

&

PFs on whole praph

A Counterexample

This is a nice strategy, but unfortunately it doesn’t always work.

C has HtHoe gmallest —st\'\tkﬁnl S nen

but Tt @ not ™ a Sk Lom poront

If we look at the proof about finishing times of vertices in a DAG,

then we realize that the proof still works in one way.

ldea 3

Lemma. If C; and C, are strongly connected components and there are directed edges from C; to (5,

then the largest finishing time in C; is larger than the largest finishing time in C,.

Some ag the |2mma aben + ‘(’Vfblczs‘?ol b‘fdn—rha

o0

@ Ehst vetex to be untted ™ C,UC, g ™ C,

then vy Verte, M G w Yeechable frewm o
no vt 113 C; 3 ‘”C“ALL’— ‘Ffvﬂ\. a -

Cy {mahed but

vefe €, std S fuscy Vit Th C, will be foxhed befve e vwv;&fa:_j.

@ Civst vakax to be visitad m CuCy R m C,

Cv(ly Can be frached ‘F"W \%

v wall have the lecpect sy 11 e
\J\j .

|[dea 3: Source Components

So, if we do a DFS on the whole graph, and then sort the vertices in decreasing finishing time.
c, > ¢, — Ce

And then do a DFS again using this ordering. Y
G C&‘
Then we will always first visit an “ancestor component” before we first visit a “descendant %_omponent”
DFS D1 +h3 eroleny C C, ., StaC
> N ; L G
ALB D B F U, KL.T T G.C SOy O Sinte OR
C, C C, Cq Ce LN

But this is not what we want, we want to first visit a descendant component before we first visit

an ancestor component, so that we can cut out the sink components one at a time.

|dea 4: Reverse the Graph

1. The strongly connected components in G and GR are the same.

' [© “ ol-®@—o-

A= - o x‘

2. The source components in G become the sink components in GR and vice versa.

So, the ordering in G visiting ancestor components before descendant components

is an ordering in G® visiting descendant components before ancestor components.

This is exactly what we want (although in G%, it doesn’t matter as SCCs in G and GR are the same).

Algorithm

(. Run DES on the whle S{Q?\“ GT us\nj on Ow\ol’wo\ng o(okz(‘w\ﬁ b’g‘ vectices .
O(Mi-n)

2. Ofdec the vectices in Okec.ce.aﬁng order o\C %ngh?r\f times obtoined in %JCQ,P 1.

2. Reverse the ci(e\a\n & to obton the Qfoph Gyn O(mn)

S Tollow the o(o\wmg n St&LP 2 to Qkaofe thae X(m‘)\\ C}\F to cut out tha c,om\)onen’t& one at a time.

Algorithm

Gy Le® v be the vertex of -tk locgest '&Z‘mssh‘ma Time an step 2.

Gy Let e= 1. / Tt s o valiable Countin g the numbec of iffOV\g Connected Components.

Cnd) Yoy V<€ 1 < n oo & br¢ uﬂ% = Wd‘"‘:\ o'e d_a((uwa -(:‘nnhnj T
L uisited) = Tolse

DYS (& 1)
O(M*tn)

. R .
Mock o\l the vecrtices veochable &:‘(bm v Tn C—,(In this dteratisn T b In C,Dnn\:c;v\en‘t C.

C & C4 |

Example

Take-Home Midterm

Content from LO1.pdf to LO7.pdf.

Will be posted on piazza on June 28 9am EST, and the deadline is on June 29 9am EST.
No late submission.

Will post more information on piazza.

Will post midterm questions from previous years.

Midterm questions will be easier than those in homework.

Allowed to use lecture notes, tutorials notes, and information on piazza.

Not allowed to use any other references (including the reference books).

Definitely no communications with others and no looking up of other resources (e.g. internet).

