
CS 341 – Algorithms

Lecture 7 – Directed Graphs

2 June 2021

Today’s Plan

1. Directed Graphs, Reachability, BFS/DFS

2. Strongly Connected Graphs

3. Directed Acyclic Graphs

4. Strongly Connected Components

Directed Graphs

If 𝑢𝑣 is a directed edge, then 𝑢 is the tail of the edge and 𝑣 is the head of the edge.

The in-degree of a vertex 𝑣, denoted by indeg(𝑣), is the number of edges with 𝑣 being the head.

The out-degree of a vertex 𝑣, denoted by outdeg(𝑣), is the number of edges with 𝑣 being the tail.

Directed graphs are useful in modeling asymmetric relations (e.g. web links, one-way streets).

A directed graph 𝐺 is a directed acyclic graph if there is no directed cycles in 𝐺.

Connectivity in Directed Graphs
Given two vertices 𝑠, 𝑡, we say 𝑡 is reachable from 𝑠 if there is a directed path from 𝑠 to 𝑡.

A directed graph 𝐺 = 𝑉, 𝐸 is strongly connected if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉,

𝑢 is reachable from 𝑣 and 𝑣 is reachable from 𝑢.

A subset 𝑆 ⊆ 𝑉 is called strongly connected if for every pair of vertices 𝑢, 𝑣 ∈ 𝑆,

𝑢 is reachable from 𝑣 and 𝑣 is reachable from 𝑢.

A subset 𝑆 ⊆ 𝑉 is called a strongly connected component if 𝑆 is a maximally strongly connected subset,

i.e. 𝑆 is strongly connected but 𝑆 + 𝑣 is not strongly connected for any 𝑣 ∈ 𝑉 − 𝑆.

Questions
We are interested in designing efficient algorithms for the following basic questions:

1. Determine if an input graph is a strongly connected graph.

2. Determine if an input graph is a directed acyclic graph.

3. Find all strongly connected components of a directed graph.

It will turn out that all these problems can be solved in 𝑂(𝑚 + 𝑛) time,

but they are not as easy to solve as in the undirected analogs especially Q3.

Data Structures
Both adjacency matrix and adjacency list can be defined for directed graphs.

We will only use adjacency list in this lecture, as only this allows us to design 𝑂(𝑚 + 𝑛) time algorithms.

DFS
Both DFS and BFS are defined as in undirected graphs, except that we only explore out-neighbors.

BFS and DFS
We can also define BFS for directed graphs analogously, by only exploring out-neighbors.

When a vertex 𝑣 is first visited, we remember its parent as the vertex 𝑢 when 𝑣 is first visited from.

The edges (𝑣, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑣) from a tree, and both BFS tree and DFS tree are defined this way.

Exercises

1. Time Complexity is 𝑂(𝑚 + 𝑛).

2. A vertex 𝑡 is reachable from 𝑠 if and only if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑡 = 𝑡𝑟𝑢𝑒.

3. The set of vertices reachable from 𝑠 forms a “directed cut”.

4. BFS can be used to compute a shortest path from 𝑠 to all other vertices in 𝑂(𝑚 + 𝑛) time.

BFS Tree

By setting 𝑑𝑖𝑠𝑡 𝑣 = 𝑑𝑖𝑠𝑡 𝑢 + 1, we can compute all shortest path distances from 𝑠.

In undirected graphs, for all non-tree edges 𝑢𝑣, 𝑑𝑖𝑠𝑡 𝑢 − 1 ≤ 𝑑𝑖𝑠𝑡 𝑣 ≤ 𝑑𝑖𝑠𝑡 𝑢 + 1.

In directed graphs, there could be non-tree edges 𝑢𝑣 with large difference between 𝑑𝑖𝑠𝑡 𝑢 and 𝑑𝑖𝑠𝑡[𝑣],

but they must be “backward edges”.

DFS Tree
In undirected graphs, all non-tree edges are back edges as we proved in L06.

In directed graphs, some non-tree edges could be “cross edges” or “forward edges”.

Structures in directed graphs are a bit more complicated.

Today’s Plan

1. Directed Graphs, Reachability, BFS/DFS

2. Strongly Connected Graphs

3. Directed Acyclic Graphs

4. Strongly Connected Components

Homework 2 is posted

Strongly Connected Graphs
Input: A directed graph 𝐺 = (𝑉, 𝐸).

Output: Yes if 𝐺 is strongly connected; no otherwise.

What did we do for undirected graphs?

What is a “succinct” condition to check for directed graphs?

Observation
Claim. 𝐺 is strongly connected if and only if every vertex 𝑣 ∈ 𝑉 is reachable from 𝑠

and 𝑠 is reachable from every vertex 𝑣 ∈ 𝑉, where 𝑠 is an arbitrary vertex.

How do we check whether 𝑠 is reachable from every vertex 𝑣 ∈ 𝑉?

Trick
Idea: Reverse the graph!

Claim: Given 𝐺 = (𝑉, 𝐸), we reverse the direction of all the edges to obtain 𝐺𝑅 = 𝑉, 𝐸← .

Then, there is a path from 𝑣 to 𝑠 in 𝐺 if and only if there is a path from 𝑠 to 𝑣 in 𝐺𝑅.

So, 𝑠 is reachable from every 𝑣 ∈ 𝑉 in 𝐺 if and only if every 𝑣 ∈ 𝑉 is reachable from 𝑠 in 𝐺𝑅.

Algorithm

Today’s Plan

1. Directed Graphs, Reachability, BFS/DFS

2. Strongly Connected Graphs

3. Directed Acyclic Graphs

4. Strongly Connected Components

Directed Acyclic Graphs
Directed acyclic graphs are useful in modeling dependency relations (e.g. course prerequisites).

In such situations, it is useful to find an ordering of the vertices so that all the edges go forward.

This is called a topological ordering of the vertices.

Topological Ordering
Proposition. A directed graph is acyclic if and only if there is a topological ordering of the vertices.

Topological Ordering
Proposition. A directed graph is acyclic if and only if there is a topological ordering of the vertices.

First Approach
Just follow the above proof.

Second Approach
This is probably less intuitive, but the idea will be useful in the next problem as well.

Idea: Do a DFS on the whole graph.

Finishing Times
We will use the parenthesis property of starting and finishing times, which still holds for directed graphs.

Lemma. If 𝐺 is directed acyclic, then for any edge 𝑢𝑣, 𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 < 𝑓𝑖𝑛𝑖𝑠ℎ[𝑢] for any DFS.

Finishing Times
We will use the parenthesis property of starting and finishing times, which still holds for directed graphs.

Lemma. If 𝐺 is directed acyclic, then for any edge 𝑢𝑣, 𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 < 𝑓𝑖𝑛𝑖𝑠ℎ[𝑢] for any DFS.

Algorithm

Example

Today’s Plan

1. Directed Graphs, Reachability, BFS/DFS

2. Strongly Connected Graphs

3. Directed Acyclic Graphs

4. Strongly Connected Components

1. Homework 2 is posed, due on June 14

2. Discuss take-home midterm on June 28

Strongly Connected Components
Now we consider the more difficult problem of finding all connected components of a directed graph.

We will combine and extend the previous ideas to obtain an 𝑂(𝑚 + 𝑛)-time algorithm.

First, we understand better the structure of a general directed graph.

Claim. Two strongly connected components must be vertex disjoint.

Structure of a Directed Graph
Observation. When every strongly connected component is “contracted” into a single vertex,

then the resulting directed graph is acyclic.

So, a general directed graph is a directed acyclic graph on its strongly connected components.

Idea 1
How do we identify the vertices in a

strongly connected component easily?

One natural attempt is do a BFS/DFS on a vertex 𝑣,

and hope that it identifies the SCC containing 𝑣.

But this doesn’t always work.

Observation. Suppose we start a BFS/DFS on a “sink component” (a component with no outgoing edges),

then we can identify the vertices in that sink component.

Idea 1: Cut Out Sink Components

How do we find a vertex in a sink component efficiently?

It doesn’t look easy, especially we have to find such a vertex many times (one for each component),

and yet the total time complexity should be 𝑂(𝑛 +𝑚).

Idea 2: Topological Sort
Recall that a directed graph is a directed acyclic graph on its strongly connected component.

For directed acyclic graphs, if we do a DFS on the whole graph,

then the vertex with the smallest finishing time is a sink.

Let’s try this in a general directed graph.

A Counterexample
This is a nice strategy, but unfortunately it doesn’t always work.

If we look at the proof about finishing times of vertices in a DAG,

then we realize that the proof still works in one way.

Idea 3
Lemma. If 𝐶1 and 𝐶2 are strongly connected components and there are directed edges from 𝐶1 to 𝐶2,

then the largest finishing time in 𝐶1 is larger than the largest finishing time in 𝐶2.

Idea 3: Source Components
So, if we do a DFS on the whole graph, and then sort the vertices in decreasing finishing time.

And then do a DFS again using this ordering.

Then we will always first visit an “ancestor component” before we first visit a “descendant component”

But this is not what we want, we want to first visit a descendant component before we first visit

an ancestor component, so that we can cut out the sink components one at a time.

Idea 4: Reverse the Graph
1. The strongly connected components in 𝐺 and 𝐺𝑅 are the same.

2. The source components in 𝐺 become the sink components in 𝐺𝑅 and vice versa.

So, the ordering in 𝐺 visiting ancestor components before descendant components

is an ordering in 𝐺𝑅 visiting descendant components before ancestor components.

This is exactly what we want (although in 𝐺𝑅, it doesn’t matter as SCCs in 𝐺 and 𝐺𝑅 are the same).

Algorithm

Algorithm

Example

Take-Home Midterm
Content from L01.pdf to L07.pdf.

Will be posted on piazza on June 28 9am EST, and the deadline is on June 29 9am EST.

No late submission.

Will post more information on piazza.

Will post midterm questions from previous years.

Midterm questions will be easier than those in homework.

Allowed to use lecture notes, tutorials notes, and information on piazza.

Not allowed to use any other references (including the reference books).

Definitely no communications with others and no looking up of other resources (e.g. internet).

