CS 341 — Algorithms

Lecture 6 — Depth First Search

28 May 2021

Today’s Plan

1. Depth First Search

2. DFS Tree, Back Edges, Starting and Finishing Time

——

3. Cut Vertices and Cut Edges Next +ima

Motivating Example

Imagine we are in a maze searching for the exit. _IJ__
This can be modeled as an s-t connectivity problem.

How would you search for a path in the maze? .
no ?ﬁewis : BES . not efftau~t beck anst for th

Chale . marks o s Lloer Yoandew Wwallc O(hl) S04

Depth First Search

Input = an undirected qraph G=(LE) L a vevten sel\l

Ouﬂpuﬁ(f all vecXices feachable Trom S

1 Main proglam] visitedTy] = false Yuel | visited Tel = true. explore ($).

explore (W) /[Tewucswe {w\ctiov\ QKF(on.

%0(eoch ne‘lfhbor v o—% A

Vi visited (U] = foke

wisited (vl = true | explore (V).

DFS and BFS

Time Complexity:

Stack and Queue:

Graph Connectivity:

RQoch Vertex V T Called .Q,\t’r‘.NQ(V) T most one

fTor \loop. okcx W oRar ortivws

“otal bHwe WtW¥+3 ¥ ‘DQ n + VE\I N&QV) > = 0(h-\-hn) .

kT)
PES Yecurswe C N JAL“

non-Foowrsive Dmplamateton oL DEL | by ushq o Stk (exererce)

SYntmieally Yo sowe as StTS BFL Fito DF(LITO
@ QVepn Lennaked ¢V visitedlv]) = trua
@ Usrn Portnty S T‘N— 3 apath fraa et o

@ U tmeeckceh S
@) shetest patn X

Today’s Plan

2. DFS Tree, Back Edges, Starting and Finishing Time

DES Tree

As for BFS, we can construct a DFS tree to trace out the paths from s.

DTS Tree (V,Parm‘tfv]) v V

Definitions/Terminology for DFS Tree

* The g’ta(ﬂhg veltex Q is fQ&m(d\ld\ oS the toof o{- the DFC

o N vectex w i< called the

and. W 18 clogey to

M Of oo vertex v I‘% the QQLKQ

the <Ceoft thon \V/ is o the (ool.

tT(ee .

v [

in the

pocet /-J
ehild v /

'y

y

DTS Tree .

A wvectex w18 called on _ancestor O‘E a veetew N ;{ . is closer to the (ool than V.
.S"
onh w78 on the path from v to the roof. anctect
Tn this Sitwetion, we olso Sqa VT @ descendant of Vartex W, e v
* B montree 2dge wy s called a baock Qo\ge. W elther w iS o oncester or descendant of
T+ s colled oo bock Q&gz be couse this QaAgc Leom the descendant to the ancestor.

("

v

Back Edges

Property (back edges). In an undirected graphs, all non-tree edges are back edges.

— this Casc
i3 not]’°5‘:le

wiLot Replwe w fHivst beforn o

Starting Time and Finishing Time

We record the time when a vertex is first visited and when a vertex finished exploring.

1 Main program) visited[y] = Talse Jue\ . Time =\ | Vigited Tg) = true. explore ().
T.187]
<
o_\c?\bm Q7S] /[Tewursive —Fumct\ov\ QKF(O"Q. >
Yy
| ‘ b gc b JL—/
Stowt Tuld = time . Time « time &+ L.

‘Eo\’ eoch neighbor v oﬁ— W
v visited Tu) = foke

visited Tul = true explore (v) .

'g"\nis\r\ilﬂ = time . time & LTime + 1.

Parenthesis Property

Property (parenthesis). The intervals [start[u],finish[u]] and [start[v] finish[v]] are

elthser disjoint or one interval contams the other.

t 30

3
‘)‘,w&. ancector E: S:L l @
) SO At anasr (L (])@ X
J \ A2¢ can d.»k S(W) BT {ov)

gtmr‘t&;j < S_t P tt\’j < ‘Qﬁ\‘ts\'\t\)_“ ({NTS»\(-“-) St“‘t(u'} < ‘F\\‘\‘S‘\(Jk] < S'bﬂt&)] < ‘GHNS]\[\)J

3 o 17 23
A G [B

a

Today’s Plan

3. Cut Vertices and Cut Edges

Cut Vertices and Cut Edges

A vertex v is a cut vertex if G — v is not a connected graph. GK Comnectad.
1))
An edge e is a cut edge if G — e is not a connected graph.

We would like to design an algorithm to identify all cut vertices and cut edges of a given graph.

DB

nawve : CSNMQ, G-v . check wheddar G-v cemnetuh o not . fb(ql:lu

Limes O(N (n*m))

ldea and Observation

The idea is to use a DFS tree to help us identify all cut vertices and cut edges.

¢ ¢ Mr\fh-l.t

ve. U is discommected
4

Claim. A subtree T; below(v is a connected componentin G — vy'f and only if

there are no edges with one endpoint in T; and another endpoint.i ancestor of v.

T 0 Comp lemant

' Cmnu,'(_’d

Characterization for a Non-Root Vertex

The argument applies to every subtree gives a characterization for a non-root vertex to be a cut vertex.

Lemma. For a non-root vertex v in a DFS tree, v is a cut vertex if and only if

there is a subtree below v with no edges going to an ancestor of v.

Eroe:& é—_

-

tlea Uiy Ty T cenneted b

thon T3 will e hrsconnest o the Cowlawiat . ank so Gy IS Cesected

bﬁ e ?rcv‘.ns Ao

Characterization for the Root Vertex

The characterization for the root vertex is simple.

Lemma. For the root vertex v in a DFS tree, v is a cut vertex if and only if v has at least two children.

= V= ¢
v=S I

€00 @ 7 dagien 1 @ \\
) (

v s ot o et vaedtex V 1S a cul vertex

Algorithm

nged 1o Chelk -(—w eoch gubtter cooted

neadk Ao e MP Q& M\DQ.S

Q.&. Qfm’th& time y’/u . ctark)

M?t\\ v J/ “ OLLP'U'\. =

Km\a poca weber ¢

low (Ul = Mmin & stoct(w]) \—E’w oll edyes ww g
or Jefth w] with we Ty K(/\

at v hw"lurur w.o.enn&,?_s

romeber 49 meoiwe how clote 4v Ha oot @

< stertiv)
Arstoane t° the (oot ™ DFS tree

@ lew[vV] LBV =n \oe w?wt-m ™ On+m) ime

@ deatify ol ot vectvee

wﬁhS bwl]) ™ O(Cn+m) time

Computing the low/[] in Linear Time

To have an efficient implementation, we process the DFS tree using a bottom-up ordering.

boage. Cote : vV IS a u—“ﬁ

(owlu) = m™m™n is—h«tiw’] | vwe Eg
tme : O o\ﬂsw\)

T nduuction Ctep by TH. cmtwtul. low Cuws) bwutta

lowlv) = mm f\ (), lowlu) _ (owluy)

W‘\i stort Tw) | vw et} }

{'w + 0 (do.&(,v))

S total e OQEWo\agm) - 0 (n+tm).

|dentify Cut Vertices Using low|]

non- toot

4o chkeck whhethay v W a cut wverteay

we chare wheither (bwlus) ¢ starkTv] Vw1

@ 15 \szs _ Alken v ©@ not a caut wverter

@ ‘::& no, than v 18 0 bt vetex

b eCause T 7S ditlonnected ™ G‘l-v,

Exercise: Identify all cut edges in linear time.

/v

