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Today’s Plan

1. Depth First Search

2. DFS Tree, Back Edges, Starting and Finishing Time

——

3. Cut Vertices and Cut Edges Next +ima



Motivating Example

Imagine we are in a maze searching for the exit. _IJ__
This can be modeled as an s-t connectivity problem.

How would you search for a path in the maze? .
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Depth First Search
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DFS and BFS

Time Complexity:
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Graph Connectivity:
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Today’s Plan

2. DFS Tree, Back Edges, Starting and Finishing Time



DES Tree

As for BFS, we can construct a DFS tree to trace out the paths from s.
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Definitions/Terminology for DFS Tree
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Back Edges

Property (back edges). In an undirected graphs, all non-tree edges are back edges.
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Starting Time and Finishing Time

We record the time when a vertex is first visited and when a vertex finished exploring.
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Parenthesis Property

Property (parenthesis). The intervals [start[u],finish[u]] and [start[v] finish[v]] are

elthser disjoint or one interval contams the other.
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Today’s Plan

3. Cut Vertices and Cut Edges



Cut Vertices and Cut Edges

A vertex v is a cut vertex if G — v is not a connected graph. GK Comnectad.
1))
An edge e is a cut edge if G — e is not a connected graph.

We would like to design an algorithm to identify all cut vertices and cut edges of a given graph.
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ldea and Observation

The idea is to use a DFS tree to help us identify all cut vertices and cut edges.
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Claim. A subtree T; below(v is a connected componentin G — vy'f and only if

there are no edges with one endpoint in T; and another endpoint.i ancestor of v.
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Characterization for a Non-Root Vertex

The argument applies to every subtree gives a characterization for a non-root vertex to be a cut vertex.

Lemma. For a non-root vertex v in a DFS tree, v is a cut vertex if and only if

there is a subtree below v with no edges going to an ancestor of v.
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Characterization for the Root Vertex

The characterization for the root vertex is simple.

Lemma. For the root vertex v in a DFS tree, v is a cut vertex if and only if v has at least two children.
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Algorithm
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Computing the low/[] in Linear Time

To have an efficient implementation, we process the DFS tree using a bottom-up ordering.
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|dentify Cut Vertices Using low|]
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Exercise: Identify all cut edges in linear time.
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