CS 341 – Algorithms

Lecture 3 – Divide and Conquer

19 May 2021

Today's Plan

- 1. Counting Inversion Pairs
- 2. Maximum Sum Subarray
- 3. Computing the Median \times

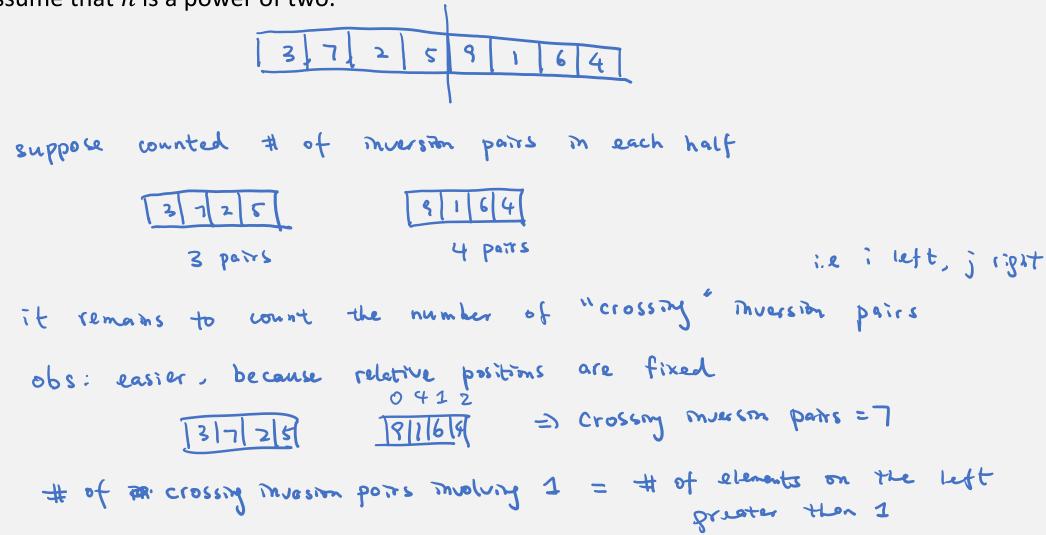
Counting Inversion Pairs

Input: *n* distinct numbers a_1, a_2, \ldots, a_n

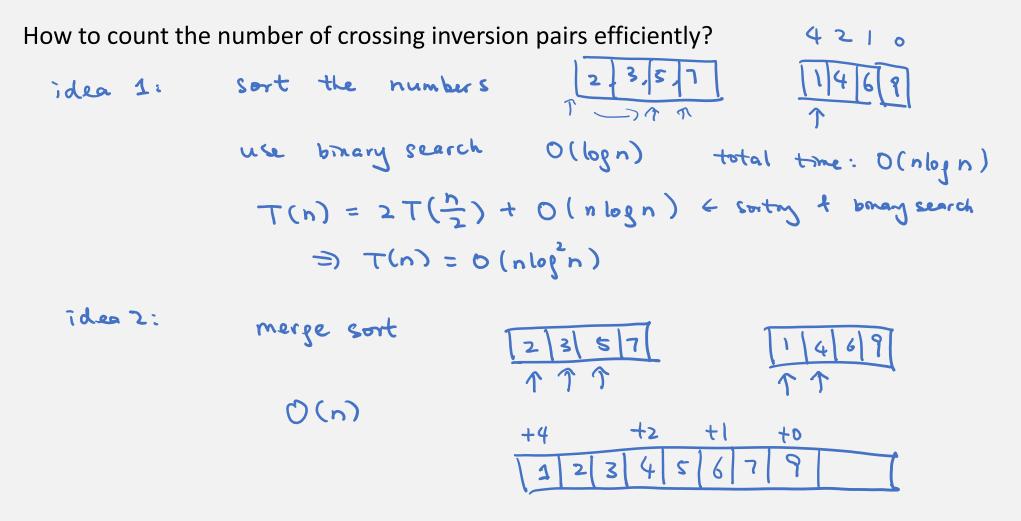
Output: the number of "inversion" pairs with i < j but $a_i > a_j$ $a_i \quad a_2 \quad a_3 \quad a_4 \quad a_5$ $a_2 \quad 3 = 7, 5 = 1, 4$ inversion pairs (3,1), (7,1), (7,5), (7,4) = (5,1) = (5,4) $6 \quad inversion \quad pairs = 0$ $a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5$

Divide and Conquer

Again assume that n is a power of two.



Counting "Crossing" Inversion Pairs



Recursive Algorithms

$$Count (A[1,n]) T(n)$$

$$bese case : return i$$

$$Count (A[1, \frac{n}{2}]) T(\frac{n}{2})$$

$$count (A[\frac{n}{2}+1,n]) T(\frac{n}{2})$$

$$sort (A[1, \frac{n}{2}]) nlogn$$

$$sort (A[\frac{n}{2}+1,n]) nlogn$$

$$merge-count n$$

$$T(n) \leq 2T(\frac{n}{2}) + O(n\log n)$$

$$\Rightarrow T(n) = O(n\log^2 n)$$

count-sort (A[1, n]) base case i n=1, return O. $S_1 = \text{count-sort} \left(A \left(1, \frac{n}{2} \right) \right)$ $S_{2} = count - sort(A[\frac{n}{2}t],n])$ $T(\frac{n}{2})$ Sz - merge - Count T Sort return Si+Set Sz O(n)E exercise $T(n) \leq 2T(\frac{n}{2}) + O(n)$ 1. \Rightarrow T(n) = O(nlop n) just a slight modification of marge sort!

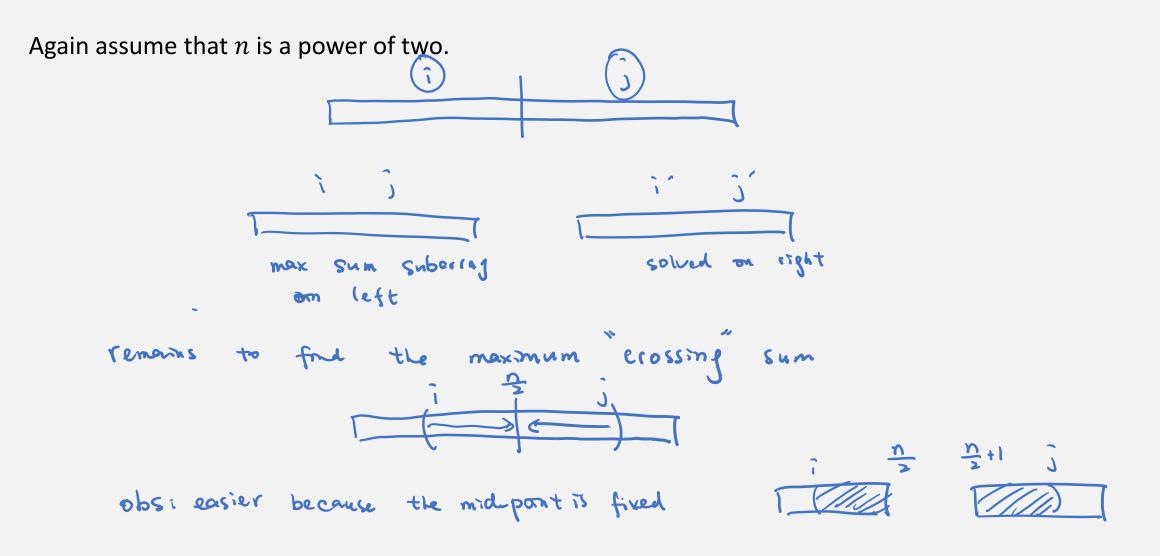
Today's Plan

- 1. Counting Inversion Pairs
- 2. Maximum Sum Subarray
- 3. Computing the Median

Maximum Sum Subarray

Input: *n* numbers a_1, a_2, \ldots, a_n

Divide and Conquer



Maximum Crossing Sum

Claim. For $i \leq \frac{n}{2} < j$, [i, j] is a maximum sum subarray crossing the mid-point if and only if $[i, \frac{n}{2}]$ is a max sum subarray ending at $\frac{n}{2}$ and $[\frac{n}{2} + 1, j]$ is a max sum subarray starting at $\frac{n}{2} + 1$. sum starty at 2 partial partial at 2+1 Sum startin 2+1 $\partial(h)$ O(n)

Time Complexity and Questions

$$T(n) = 2T(\frac{n}{2}) + O(n) \notin Cross sum$$

=)
$$T(n) = O(n\log n)$$

Challenge: Design a O(n) time algorithm for the maximum sum subarray problem.

greedy, dynamic programming

Today's Plan

- 1. Counting Inversion Pairs
- 2. Maximum Sum Subarray
- 3. Computing the Median

Finding the Median

Input: *n* distinct numbers a_1, a_2, \ldots, a_n

Output: the median of these numbers

sort : O(nlogn) time

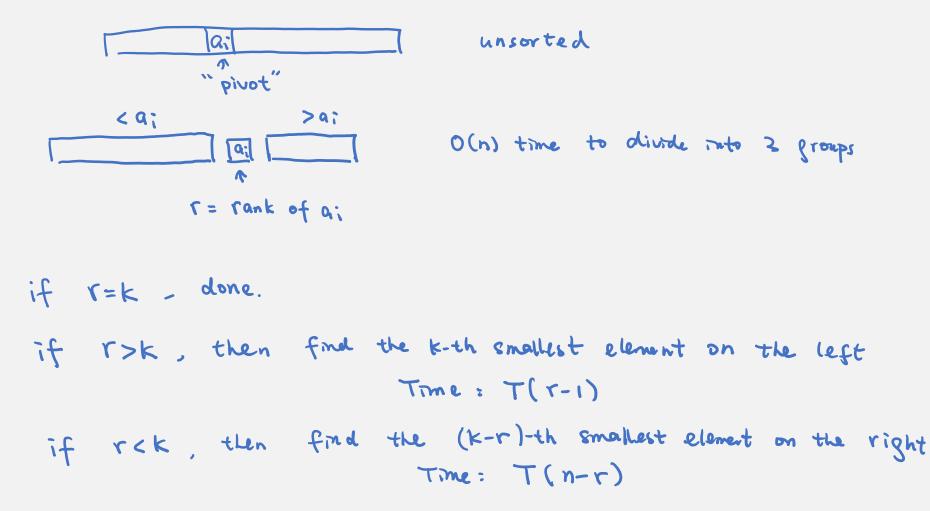
Input: *n* distinct numbers a_1, a_2, \dots, a_n and an integer $k \leq n$

Output: the k-th smallest number in a_1, a_2, \dots, a_n

easier for recursion

Divide and Conquer

The idea is similar to that in quicksort (which is a divide and conquer algorithm).



Finding a Good Pivot

$$T(n) \leq \max \left\{ T(r-i), T(n-r) \right\} + O(n)$$

$$eg. r=n, \quad \text{then } T(n) \leq T(n-i) + O(n) \Rightarrow T(n) = O(n^{2}).$$
Suppose $r=\frac{n}{2}$, $\text{them } T(n) \leq T(\frac{n}{2}) + P(n) + O(n) \Rightarrow T(n) = O(n)$
find a good pivot if $P(n) = O(n)$
suppose $\frac{n}{10} \leq r \leq \frac{qn}{10}$, then $T(n) \leq T(\frac{qn}{10}) + P(n) + O(n)$
 $\Rightarrow T(n) = O(n)$ if $P(n) = O(n)$

We have made some progress in the median problem, by reducing the problem of finding the middle number to the easier problem of finding a number not too far from the middle.

Median of Medians

マ

(1) divide the n elements into
$$\frac{n}{5}$$
 groups. each group has 5 numbers Time: O(n)
(2) compute the medican of each group call them by be be by the second by the secon

D

Time Complexity

 $P(n) \leq T(\frac{n}{5}) + c_{1}n \notin \text{median of each group}$ $T(n) \leq P(n) + T(\frac{7n}{10}) + C_{2}n \notin \text{splitting}.$ $good \text{ pivot} \qquad \text{because of}$ $splitty_{\text{using food pivot}}$ $\in T(\frac{n}{5}) + T(\frac{7n}{10}) + c_{1}n + c_{2}n$

$$LO2 \Rightarrow T(n) = O(n) \cdot \Box$$

uneven subproblems

Exercise: What if we divide into groups of 3, 7, 9,..., \sqrt{n} ? \leftarrow Alex tutorial 2

Exercise: Unfold the recursion to understand the algorithm better.