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Today’s Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray

3. Computing the Median



Counting Inversion Pairs

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: the number of “inversion” pairs with 𝑖 < 𝑗 but 𝑎𝑖 > 𝑎𝑗



Divide and Conquer

Again assume that 𝑛 is a power of two.



Counting “Crossing” Inversion Pairs

How to count the number of crossing inversion pairs efficiently?



Recursive Algorithms
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Maximum Sum Subarray

Input: 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: 𝑖, 𝑗 that maximizes σ𝑘=𝑖
𝑗

𝑎_𝑘



Divide and Conquer

Again assume that 𝑛 is a power of two.



Maximum Crossing Sum

Claim.  For 𝑖 ≤
𝑛

2
< 𝑗, [𝑖, 𝑗] is a maximum sum subarray crossing the mid-point if and only if

[𝑖,
𝑛

2
] is a max sum subarray ending at 

𝑛

2
and [

𝑛

2
+ 1, 𝑗] is a max sum subarray starting at 

𝑛

2
+ 1.



Time Complexity and Questions

Challenge: Design a 𝑂(𝑛) time algorithm for the maximum sum subarray problem.
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Finding the Median

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: the median of these numbers

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛 and an integer 𝑘 ≤ 𝑛

Output: the 𝑘-th smallest number in 𝑎1, 𝑎2, … , 𝑎𝑛



Divide and Conquer

The idea is similar to that in quicksort (which is a divide and conquer algorithm).



Finding a Good Pivot

We have made some progress in the median problem, by reducing the problem of finding the

middle number to the easier problem of finding a number not too far from the middle.



Median of Medians



Time Complexity

Exercise: What if we divide into groups of 3, 7, 9,…, 𝑛?

Exercise: Unfold the recursion to understand the algorithm better.


