
CS 341 – Algorithms

Lecture 3 – Divide and Conquer

19 May 2021

Today’s Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray

3. Computing the Median

Counting Inversion Pairs

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: the number of “inversion” pairs with 𝑖 < 𝑗 but 𝑎𝑖 > 𝑎𝑗

Divide and Conquer

Again assume that 𝑛 is a power of two.

Counting “Crossing” Inversion Pairs

How to count the number of crossing inversion pairs efficiently?

Recursive Algorithms

Today’s Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray

3. Computing the Median

Maximum Sum Subarray

Input: 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: 𝑖, 𝑗 that maximizes σ𝑘=𝑖
𝑗

𝑎_𝑘

Divide and Conquer

Again assume that 𝑛 is a power of two.

Maximum Crossing Sum

Claim. For 𝑖 ≤
𝑛

2
< 𝑗, [𝑖, 𝑗] is a maximum sum subarray crossing the mid-point if and only if

[𝑖,
𝑛

2
] is a max sum subarray ending at

𝑛

2
and [

𝑛

2
+ 1, 𝑗] is a max sum subarray starting at

𝑛

2
+ 1.

Time Complexity and Questions

Challenge: Design a 𝑂(𝑛) time algorithm for the maximum sum subarray problem.

Today’s Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray

3. Computing the Median

Finding the Median

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Output: the median of these numbers

Input: 𝑛 distinct numbers 𝑎1, 𝑎2, … , 𝑎𝑛 and an integer 𝑘 ≤ 𝑛

Output: the 𝑘-th smallest number in 𝑎1, 𝑎2, … , 𝑎𝑛

Divide and Conquer

The idea is similar to that in quicksort (which is a divide and conquer algorithm).

Finding a Good Pivot

We have made some progress in the median problem, by reducing the problem of finding the

middle number to the easier problem of finding a number not too far from the middle.

Median of Medians

Time Complexity

Exercise: What if we divide into groups of 3, 7, 9,…, 𝑛?

Exercise: Unfold the recursion to understand the algorithm better.

