CS 341 - Algorithms

Lecture 3 - Divide and Conquer

19 May 2021

Today's Plan

1. Counting Inversion Pairs
2. Maximum Sum Subarray
3. Computing the Median

Counting Inversion Pairs

Input: n distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$
Output: the number of "inversion" pairs with $i<j$ but $a_{i}>a_{j}$

$$
\begin{array}{lllll}
& a_{1}, & a_{2}, & a_{3} & a_{4}, \\
a_{5} \\
\text { one. } & 3,7,5, & 1,4
\end{array}
$$

inversion pairs $(3,1),(7,1),(7,5),(7,4),(5,1),(5,4)$ 6 inversion pairs.
naive: $\theta\left(n^{2}\right)$

Divide and Conquer

Again assume that n is a power of two.

3	7	2	5	9	1	6

suppose counted \# of inversion pairs in each half

ie : left, j right
it remains to count the number of "crossing" inversion pairs
obs: easier, because relative positions are fixed

$$
|317| 2 \left\lvert\, 5 \quad \frac{0412}{\mid 91 / 1619} \quad \Rightarrow\right. \text { crossing meson parts }=7
$$

\# of ar o crossing invasion pairs involving $1=$ \# of elements on the left greater then 1

Counting "Crossing" Inversion Pairs

How to count the number of crossing inversion pairs efficiently?
idea 1: sort the numbers
use binary search $O(\log n)$ total time: $O(n \log n)$

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+O(n \log n) \leftarrow \text { sooty } t \text { byway search } \\
& \Rightarrow T(n)=O\left(n \log ^{2} n\right)
\end{aligned}
$$

idea 2: merge sort

1	4	6	9
$个$			

$O(n)$

Recursive Algorithms

$$
\left.\begin{array}{cc}
\text { count }(A[1, n]) & T(n) \\
\text { bose case : return : } & \\
\text { count }\left(A\left[1, \frac{n}{2}\right]\right) & T\left(\frac{n}{2}\right) \\
\text { count }\left(A\left[\frac{n}{2}+1, n\right]\right) & T\left(\frac{n}{2}\right) \\
\text { sort }\left(A\left[1, \frac{n}{2}\right]\right) & n \log n \\
\text { sort }\left(A\left[\frac{n}{2}+1, n\right]\right) & n \log n
\end{array}\right\}
$$

$$
\begin{aligned}
& T(n) \leq 2 T\left(\frac{n}{2}\right)+O(n \log n) \\
& \Rightarrow T(n)=o\left(n \log ^{2} n\right)
\end{aligned}
$$

count-sort ($A[1, n]$)
base case: $n=1$, return 0 .

$$
\begin{array}{ll}
S_{1} & =\operatorname{count-\operatorname {sot}t(A[1,\frac {n}{2}])} \\
S_{2} & =\operatorname{count}-\operatorname{sort}\left(A\left[\frac{n}{2}+1, n\right]\right) \\
S_{3} & =\underbrace{}_{\substack{\text { merge-count } \\
\text { sort }}} \quad T\left(\frac{n}{2}\right) \\
T(n) \leq 2 T\left(\frac{n}{2}\right)+O(n) \\
& O T(n)=O(n \log n)
\end{array}
$$

just a slight modification of marge sort!

Today's Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray
3. Computing the Median

Maximum Sum Subarray

Input: n numbers $a_{1}, a_{2}, \ldots, a_{n}$
Output: i, j that maximizes $\sum_{k=i}^{j} a_{-} k$
$\sum_{i=j}^{k=i} j$ j
e.g. $3,-4,5,6,1,-10,2,7,8,-13,7,7$
naive: try i, j, compute $\sum_{k=i}^{j} a_{k}$ Time: $\theta\left(n^{3}\right)$
better: try i
compute $\sum_{k=i}^{j} a_{k}$ for all $j \leftarrow O(n)$ time
Time: $\theta\left(n^{2}\right)$

Divide and Conquer

Again assume that n is a power of two.

obsi easier because the mid-pont is fived

Maximum Crossing Sum

Claim. For $i \leq \frac{n}{2}<j,[i, j]$ is a maximum sum subarray crossing the mid-point if and only if $\left[i, \frac{n}{2}\right]$ is a max sum subarray ending at $\frac{n}{2}$ and $\left[\frac{n}{2}+1, j\right]$ is a max sum subarray starting at $\frac{n}{2}+1$.

partial sum starty at $\frac{n}{2}$

$O(n)$

partial sum starting at $\frac{n}{2}+1$

$\frac{n}{2}+1$
$O(n)$

Time Complexity and Questions

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+O(n)<\text { cross sum } \\
& \Rightarrow T(n)=O(n \log n)
\end{aligned}
$$

Challenge: Design a $O(n)$ time algorithm for the maximum sum subarray problem.
greedy, dynamic programming

Today's Plan

1. Counting Inversion Pairs

2. Maximum Sum Subarray
3. Computing the Median

Finding the Median

Input: n distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$

Output: the median of these numbers

$$
\text { sort: } O(n \log n) \text { time }
$$

Input: n distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$ and an integer $k \leq n$

Output: the k-th smallest number in $a_{1}, a_{2}, \ldots, a_{n}$
easier for recursion

Divide and Conquer

The idea is similar to that in quicksort (which is a divide and conquer algorithm).

$O(n)$ time to divide into 2 groups
$r=$ rank of a_{i}
if $r=k$ - done.
if $r>k$, then find the k-th smallest element on the left

$$
\text { Time: } T(r-1)
$$

if $r<k$, then find the $(k-r)$-th smallest element on the right Time: $T(n-r)$

Finding a Good Pivot

$$
T(n) \leqslant \max \{T(r-1), T(n-r)\}+O(n)
$$

e.f. $r=n$, then $T(n) \leqslant T(n-1)+O(n) \Rightarrow T(n)=O\left(n^{2}\right)$.

Suppose $r=\frac{n}{2}$, then $T(n) \leq T\left(\frac{n}{2}\right)+\underbrace{P(n)}+O(n) \Rightarrow T(n)=O(n)$
find a good pivot
if $\underbrace{P(n)=O(n)}$
suppose $\frac{n}{10} \leq r \leq \frac{9 n}{10}$, then $T(n) \leq T\left(\frac{q n}{10}\right)+P(n)+O(n)$ time to median

$$
\Rightarrow T(n)=O(n) \text { if } P(n)=O(n)
$$

We have made some progress in the median problem, by reducing the problem of finding the middle number to the easier problem of finding a number not too far from the middle.

Median of Medians
(1) divide the n elements into $\frac{n}{5}$ groups. each group has 5 numbers Time: $O(n)$
(2) compute the median of each group, call them $b_{1}, b_{2}, \ldots, b_{n} \frac{n}{5}$ Time: $O(n)$
(3) return the median of these medions, $b_{1}, b_{2} \ldots, b_{\frac{n}{5}} \quad$ Time $=T\left(\frac{n}{5}\right)$

Lemma Let r be the rank of median of medrans. Then $\frac{3 n}{10} \subseteq r \leq \frac{7 n}{10}$.
proof
$\geqslant \frac{3 n}{10}$ elements
smaller than the medran of medrans

Time Complexity

$$
\begin{aligned}
& P(n) \leqslant T\left(\frac{n}{5}\right)+c_{1} n \text { e median of each group } \\
T(n) \leqslant & \underbrace{P(n)}_{\text {food pivot }}+\underbrace{T\left(\frac{7 n}{10}\right)}_{\begin{array}{c}
\text { becanle of } \\
\text { splitty } \\
\text { using pood pivot }
\end{array}}+c_{2} n \in \text { splitting. } \\
\leqslant & T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c_{1} n+c_{2} n
\end{aligned}
$$

LO $\quad \Rightarrow \quad T(n)=O(n)$.
uneven subproblem
Exercise: What if we divide into groups of $3,7,9, \ldots, \sqrt{n}$? \leftarrow Alex tutorial 2 \downarrow
Exercise: Unfold the recursion to understand the algorithm better.

