CS 341 – Algorithms

Lecture 2 – Solving Recurrence

14 May 2021

Today's Plan

- 1. Merge Sort
- 2. Master Theorem
- 3. More Recurrences ²

Merge Sort

This is a classical algorithm using the idea of divide and conquer.

Input: n numbers a... an output: sorted list, increasing Obs: if both halves are sorted, then it is easy to "merge" Merge in O(n) time. Input: n numbers a... an Islating Islating

Recursive Algorithm

How do we assume that each halve is already sorted? The idea is to apply the same procedure **recursively**.

Sort
$$(1, n)$$

if $n=1$, return. // bace case
Sort $(1, \frac{n}{2})$
sort $(\underline{n}_{2} + 1, n)$
merge the two sorted lists

Solving the Recurrence Relation

To analyze the time complexity, we need to solve the recurrence relation.

for simplicity. n is a power of 2
T(n): the for
marge sort with
T(n) = 2.T(
$$\frac{n}{2}$$
) + Cn where c constant. n elements.
recursion tree
how many
leads?
 $T(\frac{n}{2}) = \frac{1}{2} T(\frac{n}{2}) = \frac{1}{2} C(\frac{n}{2}) = \frac{1$

Proving by Induction

induction hypothesis :
$$T(n) = cn \log_2 n$$

induction step : $T(m) = 2T(\frac{m}{2}) + cm$
 $= 2(c(\frac{m}{2})\log_2(\frac{m}{2})) + cm$
 $= cm (\log_2 m - 1) + cm$
 $= cm \log_2 m$, size $D(i)$
induction hypothesis : $T(n) = O(n)$ $O(i)$ time
 $T(m) = 2T(\frac{m}{2}) + cm$
 $= 2c(\frac{m}{2}) + cm$
 $= 2c(\frac{m}{2}) + cm$
 $= 2O(\frac{m}{2}) + cm$
 $= O(m)$.

Today's Plan

1. Merge Sort

- 2. Master Theorem
- 3. More Recurrences

- 1. Homework 1 posted
- 2. TA office hours, Tuesdays 8:30-9:30pm Thursdays 3:30-4:30pm
- 3. Tutorials, Mondays 1-2pm
 - First week on May 25 because of Victoria Day

Exercises

$$1. T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$T(n) = 0 \binom{n}{2} + n^{2}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n^{2}$$

$$T(n) = 0 \binom{n}{2} + \frac{\log_{2} n}{\log_{2} n}$$

$$\frac{\log_{2} n}{\log_{2} n}$$

Recursion Tree in the General Setting

Master Theorem

There are three cases to consider, depending on the ratio in the geometric sequence.

e are three cases to consider, depending on the ratio in the geometric sequence.
(1) if
$$\frac{a}{b^{c}} = 1$$
. every level has the same work
total work = (# levels) (work at each level) = n^c log_bn.
(2) if $\frac{a}{b^{c}} < 1$ root level dominates
total work = $O(n^{c})$ hidden emstornt $\leq \frac{1}{1-r} = \frac{1}{1-\frac{a}{b^{c}}}$
(3) if $\frac{a}{b^{c}} > 1$, leaf level dominates
total work = $O(n^{c})$ hidden emstornt $\leq \frac{1}{1-r} = \frac{1}{1-\frac{a}{b^{c}}}$
(3) if $\frac{a}{b^{c}} > 1$, leaf level dominates
total work = $O(n^{log_{b}a})$.
Then a,b,c constants.
 $T(n) = \begin{cases} O(n^{c} \log_{b} n) & \frac{a}{b^{c}} > 1 \\ O(n^{c} \log_{b} a) & \frac{a}{b^{c}} > 1 \\ O(n^{c}) & \frac{a}{b^{c}} > 1 \end{cases}$

Today's Plan

- 1. Merge Sort
- 2. Master Theorem
- 3. More Recurrences

Single Subproblem

1.
$$T(n) = T\left(\frac{n}{2}\right) + 1$$

S. J. binary search
2. $T(n) = T\left(\frac{n}{2}\right) + n$
3. $T(n) = T(\sqrt{n}) + 1$
i-th level $\frac{1}{2^{i}} \leq c$

$$T(n) 1$$

$$T(\frac{2}{2}) 1$$

$$T(\frac{2}{2}) 1$$

$$T(\frac{2}{3}) 1$$

$$T(\frac{2}{3}) 1$$

$$T(n) 1$$

$$T(n) 1$$

$$T(n) n$$

$$T(\frac{2}{2}) \frac{2}{3}$$

$$T(n) \frac{2}{3}$$

$$T(n) \frac{2}{3}$$

$$T(n+1) \frac{2}{3}$$

$$T(n+1) \frac{2}{3}$$

1

total work
=
$$\#$$
 levels
 $\equiv \log_2 n$
total work
 $\equiv O(n)$
 $if i \equiv \log_2 \log_2 n$
then $n \frac{105n}{105n} \equiv$
 $/= \#$ levels

then
$$n^{\frac{1}{\log_2 n}} = \Theta(1)$$

 $\frac{1}{2^{\frac{1}{2}}} \log n \leq \log c$
 $\log n \leq 2^{\frac{1}{2}} \log c$
 $i \geq \log \log n$

Uneven Subproblems

We will see an interesting problem later with this kind of recurrence relation.

Exponential Time

2.
$$T(n) = T(n-1) + T(n-2) + 1$$
 (Optional)

Fibonacci sequence
MATH 239
$$X^2 - X - 1 = 0$$

 $T(n) = \left(\frac{1+\sqrt{2}}{2}\right)^n \approx 1.618^n$

Analyzing Maximum Independent Set (Optional)

Input: Graph G = (V, E)

Output: An independent set $S \subseteq V$ of maximum size (where S is independent if $uv \notin E$ for all $u, v \in S$) naive : ensumerate all S : $\mathfrak{D}(2)$ iterations search Slightly better exhaustive $T(n) \leq T(n-1) + T(n-2) + n^{c}$ choose vin S not choosing v Th S $T(n) \leq O(1.618^{n} - n^{c})$ max rud set in G-V max md set in G-V-N(u) $\leq T(n-2)$ T(n-1)

NP- complete

Summary

Understand the recursion tree method.

This will be accepted as a correct solution. Of course, inductive solution will also be accepted.

We will apply this to analyzing time complexity of divide and conquer algorithms.