
CS 341 – Algorithms

Lecture 2 – Solving Recurrence

14 May 2021

Today’s Plan

1. Merge Sort

2. Master Theorem

3. More Recurrences

Merge Sort

This is a classical algorithm using the idea of divide and conquer.

Recursive Algorithm

How do we assume that each halve is already sorted? The idea is to apply the same procedure recursively.

To analyze the time complexity, we need to solve the recurrence relation.

Solving the Recurrence Relation

Proving by Induction

Today’s Plan

1. Merge Sort

2. Master Theorem

3. More Recurrences

1. Homework 1 posted

2. TA office hours, Tuesdays 8:30-9:30pm

Thursdays 3:30-4:30pm

3. Tutorials, Mondays 1-2pm

First week on May 25 because of Victoria Day

1. 𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑛

2. 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

Exercises

Consider the recurrence relation 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑛𝑐 where 𝑎 ≥ 1, 𝑏 > 0, 𝑐 ≥ 0.

Recursion Tree in the General Setting

There are three cases to consider, depending on the ratio in the geometric sequence.

Master Theorem

Today’s Plan

1. Merge Sort

2. Master Theorem

3. More Recurrences

1. 𝑇 𝑛 = 𝑇
𝑛

2
+ 1

2. 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛

3. 𝑇 𝑛 = 𝑇 𝑛 + 1

Single Subproblem

1. 𝑇 𝑛 = 𝑇
2𝑛

3
+ 𝑇

𝑛

3
+ 𝑛

2. 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑇

𝑛

4
+ 𝑛

We will see an interesting problem later with this kind of recurrence relation.

Uneven Subproblems

1. 𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1

2. 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1 (Optional)

Exponential Time

Analyzing Maximum Independent Set (Optional)

Input: Graph 𝐺 = (𝑉, 𝐸)

Output: An independent set 𝑆 ⊆ 𝑉 of maximum size (where 𝑆 is independent if 𝑢𝑣 ∉ 𝐸 for all 𝑢, 𝑣 ∈ 𝑆)

Summary

Understand the recursion tree method.

This will be accepted as a correct solution. Of course, inductive solution will also be accepted.

We will apply this to analyzing time complexity of divide and conquer algorithms.

