
CS 341 – Algorithms

Lecture 1 – Course Introduction

11 May 2021

Today’s Plan

1. Course information/administration

2. Course overview

3. Time complexity and computation model

4. 3-SUM

Course Information

Course homepage: https://cs.uwaterloo.ca/~lapchi/cs341/.

You can find the course outline, course notes, slides, and homework there.

We have a piazza page for Q&A: https://piazza.com/uwaterloo.ca/spring2021/cs341.

You can also see the course homepage of my past offerings in Winter 2016 and Spring 2017.

https://cs.uwaterloo.ca/~lapchi/cs341/
https://piazza.com/uwaterloo.ca/spring2021/cs341

Course Requirements

Homework 50%

• 5 problem sets, each 10%

• one programming problem in each homework

Take home midterm 20%

Take home final exam 30%

Please find the tentative schedule in the course outline (e.g. midterm ~June 28, HW1 due ~May 31).

Academic honesty is very important.

Online Lectures

We have online live lectures via Zoom, probably on Wed and Fri 11:10am-12:40pm (TBA).

The lectures will be recorded and posted on YouTube afterwards.

o You are encouraged to show your video so that I could get some visual response.

o You are encouraged to interrupt me to ask questions directly.

o You are also encouraged to ask and answer questions in chat. I will check from time to time.

References

Course notes will be provided and usually posted the day before the lecture.

Slides will be provided and the unannotated version will be posted the day before the lecture,

and the annotated version will be posted after the lecture.

We will mostly use the problems discussed in the following three reference books.

o [DPV] Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-Hill.

o [KT] Algorithm Design, by Kleinberg and Tardos, Pearson.

o [CLRS] Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press.

Course Resources and Support
• Lectures (live on Zoom and recorded videos).

• Course notes.

• Slides.

• Homework and supplementary exercises.

• Tutorials (live on Zoom and recorded videos). Worked out sample problems.

• Office hours (live on Zoom): time TBA, after lectures.

• TA office hours (live on Zoom): time TBA.

• Piazza Q&A.

Hope these can support and accommodate different styles of learning.

Today’s Plan

1. Course information/administration

2. Course overview

3. Time complexity and computation model

4. 3-SUM

Syllabus

The main focus is on the design and analysis of algorithms.

We will also study the theory of NP-completeness in the end.

The tentative schedule is:

1. divide and conquer (~4 lectures).

2. graph algorithms (~4 lectures).

3. greedy algorithms (~3 lectures).

4. dynamic programming (~4 lectures).

5. bipartite matching (~3 lectures).

6. NP-completeness (~4 lectures).

Course Style

There are a few steps to develop an efficient algorithm useful in practice.

• Understand the structures and mathematical properties of the problem.

• Use these observations to design an algorithm. Prove correctness and analyze time complexity.

• Efficient implementation, with the use of good data structures.

This course is theoretically oriented.

o We will focus on the first two steps, and spend most of the time in writing mathematical proofs.

o Standard data structures will be enough (e.g. queue, stack, heap, balanced search tree, etc).

o The programming problems are to practice your implementation skills.

Two Classical Problems

We are given a graph 𝐺 = 𝑉, 𝐸 with a non-negative cost 𝑐𝑒 on each edge.

The traveling salesman problem askes us to find a minimum cost tour visiting every vertex at least once.

The Chinese postman problem askes us to find a minimum cost tour visiting every edge at least once.

Learning Outcome

o Know basic techniques and well-known algorithms well.

o Have the skills to design new algorithms for simple problems.

o Have the skills to prove correctness and analyze time complexity of an algorithm.

o Use reductions to solve problems and to prove hardness.

Today’s Plan

1. Course information/administration

2. Course overview

3. Time complexity and computation model

4. 3-SUM

Time Complexity
Roughly speaking, we count the number of operations that the algorithm requires.

But instead of counting precisely, we use the asymptotic time complexity to analyze algorithms.

Examples and Exercises

100𝑛2

2𝑛3 +
𝑛3

log 𝑛

𝑛 log 𝑛

𝑛3

log log 𝑛

2𝑛

2 𝑛 vs 𝑛log 𝑛

𝑛 vs 2 log 𝑛

2𝑛
1.1

vs 𝑛!

Worst Case Time Complexity

We say an algorithm has time complexity 𝑂 𝑓 𝑛 if it requires at most 𝑂 𝑓 𝑛 primitive operations

for all inputs of size 𝒏 (e.g. 𝑛 bits, 𝑛 numbers, 𝑛 vertices, etc).

22
100

𝑛2 vs 𝑛3?

Polynomial Time Algorithms

“Good” algorithms: worst case time complexity 𝑂 𝑝𝑜𝑙𝑦 𝑛 .

Computation Model
Word-RAM model

• Access an arbitrary position of an array in constant time.

• Each word operation (e.g. addition, multiplication, read/write) can be done in constant time.

Non-trivial example: computing determinant.

Be aware of what we are assuming!

Today’s Plan

1. Course information/administration

2. Course overview

3. Time complexity and computation model

4. 3-SUM

1. TA office hours

2. Tutorials

3. Video recordings

3-SUM

Input: 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛, and a target number 𝑐

Output: indices 𝑖, 𝑗, 𝑘 such that 𝑎𝑖 + 𝑎𝑗 + 𝑎𝑘 = 𝑐, or report that such triples do not exist.

3-SUM: Algorithm 2

Observe that 𝑎𝑖 + 𝑎𝑗 + 𝑎𝑘 = 𝑐 can be rewritten as 𝑐 − 𝑎𝑖 − 𝑎𝑗 = 𝑎𝑘.

Idea: Enumerate all pairs 𝑎𝑖 , 𝑎𝑗 and check whether 𝑐 − 𝑎𝑖 − 𝑎𝑗 = 𝑎𝑘 for some 𝑘.

3-SUM: Algorithm 3

Note that 𝑎𝑖 + 𝑎𝑗 + 𝑎𝑘 = 𝑐 can also be rewritten as 𝑎𝑖 + 𝑎𝑗 = 𝑐 − 𝑎𝑘.

Idea: Enumerate all 𝑎𝑘 and check whether 𝑎𝑖 + 𝑎𝑗 = 𝑐 − 𝑎𝑘 for some pair 𝑖, 𝑗.

We reduce the 3-SUM problem to 𝑛 instances of the 2-SUM problem.

2-SUM: Algorithm

Time complexity:

Input: 𝑛 numbers 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛, and a target number 𝑏.

Output: indices 𝑖, 𝑗 such that 𝑎𝑖 + 𝑎𝑗 = 𝑏, or report that such pairs do not exist.

2-SUM: Proof of Correctness

If this question was in the exam…

Literature (Optional)

Conjecture: 𝑂 𝑛2 algorithm is optimal for 3-SUM.

Researchers started to use this conjecture to prove hardness for other problems!

