CS 341 — Algorithms

Lecture 1 — Course Introduction

11 May 2021
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Course Information

Course homepage: https://cs.uwaterloo.ca/~lapchi/cs341/.

You can find the course outline, course notes, slides, and homework there.

We have a piazza page for Q&A: https://piazza.com/uwaterloo.ca/spring2021/cs341.

You can also see the course homepage of my past offerings in Winter 2016 and Spring 2017.


https://cs.uwaterloo.ca/~lapchi/cs341/
https://piazza.com/uwaterloo.ca/spring2021/cs341

Course Requirements

Homework 50%

5 problem sets, each 10%

* one programming problem in each homework

Take home midterm 20% June 23 (Mon) posted Fam , collected Jam  June 2§

Take home final exam 30%

Please find the tentative schedule in the course outline (e.g. midterm ~June 28, HW1 due ~May 31).

Academic honesty is very important.



Online Lectures

We have online live lectures via Zoom, probably on Wed and Fri 11:10am-12:40pm (TBA).

The lectures will be recorded and posted on YouTube afterwards.

o You are encouraged to show your video so that | could get some visual response.
o You are encouraged to interrupt me to ask questions directly.

o You are also encouraged to ask and answer questions in chat. | will check from time to time.



References

Course notes will be provided and usually posted the day before the lecture.

Slides will be provided and the unannotated version will be posted the day before the lecture,

and the annotated version will be posted after the lecture.

We will mostly use the problems discussed in the following three reference books.

o [DPV] Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-Hill.
o [KT] Algorithm Design, by Kleinberg and Tardos, Pearson.

o [CLRS] Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press.



Course Resources and Support

e Lectures (live on Zoom and recorded videos).
* Course notes.

e Slides.

* Homework and supplementary exercises.

* Tutorials (live on Zoom and recorded videos). Worked out sample problems. Mon
e Office hours (live on Zoom): time TBA, after lectures. Wed-Fet |15 2: 03

e TA office hours (live on Zoom): time TBA. Twe, Thw oL on euening

* Piazza Q&A.

Hope these can support and accommodate different styles of learning.
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2. Course overview



Syllabus

The main focus is on the design and analysis of algorithms.

We will also study the theory of NP-completeness in the end.

The tentative schedule is:

1.
2.
3
4.
5
6

divide and conquer (~4 lectures).

graph algorithms (~4 lectures). BTS, UES
greedy algorithms (~3 lectures). MST X
dynamic programming (~4 lectures).

bipartite matching (~3 lectures). \ocal Ceovrch

NP-completeness (~4 lectures).
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Course Style

There are a few steps to develop an efficient algorithm useful in practice. ’ Loermulate probles,

* Understand the structures and mathematical properties of the problem. 2. nict vecurrence
* Use these observations to design an algorithm. Prove correctness and analyze time complexity.
* Efficient implementation, with the use of good data structures.

inductibn, contyadiction

This course is theoretically oriented. ;MH 23%
o We will focus on the first two steps, and spend most of the time in writing mathematical proofs.
o Standard data structures will be enough (e.g. queue, stack, heap, balanced search tree, etc).

o The programming problems are to practice your implementation skills.



Two Classical Problems T

We are given a graph G = (V, E) with a non-negative cost c, on each edge. 2

The traveling salesman problem askes us to find a minimum cost tour visiting every vertex at least once.

The Chinese postman problem askes us to find a minimum cost tour visiting every edge at least once.
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Learning Outcome

o Know basic techniques and well-known algorithms well.
o Have the skills to design new algorithms for simple problems.
o Have the skills to prove correctness and analyze time complexity of an algorithm.

o Use reductions to solve problems and to prove hardness.

YeCursiom
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3. Time complexity and computation model



Time Complexity

Roughly speaking, we count the number of operations that the algorithm requires.

But instead of counting precisely, we use the asymptotic time complexity to analyze algorithms.
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Examples and Exercises

100n2 =0n>y . B

2
M3+ = o) L Bln)

logn
nlogn = o(nw) , = wln)
3 39
= z o(n) = w(nz )
loglogn
n
2N =~ on)
(o)
(ogan logy»n log.n
2Vn ys plogn 7.“ n=2 " 3 v 2 1
= »
(o ‘O&z‘\ 2 133& S\\L&
Vnvs 2vlogn n=2 wn &'-Qz ) = L 2 vs 2
p n N n-+l (n-ﬂ)lg ah
A o e



Worst Case Time Complexity

We say an algorithm has time complexity O(f(n)) if it requires at most O(f(n)) primitive operations

for all inputs of size n (e.g. n bits, n numbers, n vertices, etc).
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Polynomial Time Algorithms

“Good” algorithms: worst case time complexity O(poly(n)). TSP ) (2_“)
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Computation Model

Word-RAM model

e Access an arbitrary position of an array in constant time.
* Each word operation (e.g. addition, multiplication, read/write) can be done in constant time.
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3-SUM

Input: n numbers a4, a,, ..., a,, and a target number ¢

Output: indices i, j, k such that a; + a; + a; = ¢, or report that such triples do not exist.
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3-SUM: Algorithm 2

Observe that a; + a; + a; = c can be rewrittenas ¢ — a; — a; = ay.

Idea: Enumerate all pairs a;, a; and check whether ¢ — a; — a; = a; for some k.
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3-SUM: Algorithm 3

Note that a; + a; + a, = c can also be rewritten as a; + a; = ¢ — a.

Idea: Enumerate all a; and check whether a; + a; = ¢ — ay for some pair i, j.
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We reduce the 3-SUM problem to n instances of the 2-SUM problem.



2-SUM: Algorithm

Input: n numbers a; < a, < --- < a,, and a target number b.

Output: indices i, j such that a; + a; = b, or report that such pairs do not exist. b=19
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2-SUM: Proof of Correctness
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If this question was in the exam...

— T§ no Such pairs axBt | we wen t Fnd  them
_ 'S_-ﬁ- such o  Peixr R,] 2xt¢ . tlea the q\&o w L Pn.ek Tt

S 5‘3 contradiction , Supposrt ‘ui\ exsts  but e algm missedk 14 .

N———
- L>R
22 o time St. L= or R;‘\ N ’
h 3
Concder the Giest  thwe tat Tt happus . L1\ \ )|
4 s
WLOGT  assuwa L= R<
= 1?5 \‘ ;
at that oo QL OR =07+ > a1+0p =} L1l Vb)) T
”l: v

> tle o.,\go wowd deuase & bj 1

-

= R wowld. moue ® |\



Literature (Optional)

Conjecture: O(nz) algorithm is optimal for 3-SUM.

Researchers started to use this conjecture to prove hardness for other problems!
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