Good problems

[KT] Let's consider a long, quiet country road with houses scattered very sparsely along it. (We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.) Further, let's suppose that despite the bucolic setting, the residents of all these houses are avid cell phone users. You want to place cell phone base stations at certain points along the road, so that every house is within four miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.
[KT] The wildly popular Spanish-language search engine El Goog needs to do a serious amount of computation every time it recompiles its index. Fortunately, the company has at its disposal a single large supercomputer, together with an essentially unlimited supply of high-end PCs.

They've broken the overall computation into π distinct jobs, labeled $J_{1}, J_{2}, \ldots, J_{n}$, which can be performed completely independently of one another. Each job consists of two stages: first it needs to be preprocessed on the supercomputer, and then it needs to be finished on one of the PCs. Let's say that job J_{i} needs p_{i} seconds of time on the supercomputer, followed by f_{i} seconds of time on a PC.

Since there are at least n PCs available on the premises, the finishing of the jobs can be performed fully in parallel-all the jobs can be processed at the same time. However, the supercomputer can only work on a single job at a time, so the system managers need to work out an order in which to feed the jobs to the supercomputer. As soon as the first job in order is done on the supercomputer, it can be handed off to a PC for finishing; at that point in time a second job can be fed to the supercomputer; when the second job is done on the supercomputer, it can proceed to a PC regardless of whether or not the first job is done (since the PCs work in parallel); and so on.

Let's say that a schedule is an ordering of the jobs for the supercomputer, and the completion time of the schedule is the earliest time at which all jobs will have finished processing on the PCs. This is an important quantity to minimize, since it determines how rapidly El Goog can generate a new index.

Give a polynomial-time algorithm that finds a schedule with as small a completion time as possible.
[KT] The manager of a large student union on campus comes to you with the following problem. She's in charge of a group of n students, each of whom is scheduled to work one shift during the week. There are different jobs associated with these shifts (tending the main desk, helping with package delivery, rebooting cranky information kiosks, etc.), but we can view each shift as a single contiguous interval of time. There can be multiple shifts going on at once.

She's trying to choose a subset of these π students to form a supervising committee that she can meet with once a week. She considers such a committee to be complete if, for every student not on the committee, that student's shift overlaps (at least partially) the shift of some student who is on the committee. In this way, each student's performance can be observed by at least one person who's serving on the committee.

Give an efficient algorithm that takes the schedule of n shifts and produces a complete supervising committee containing as few students as possible.

Example. Suppose $n=3$, and the shifts are
Monday 4 P.м.-Monday 8 P.м.,
Monday 6 P.M.-Monday 10 P.M,
Monday 9 P.M.-Monday 11 P.M.
Then the smallest complete supervising committee would consist of just the second student, since the second shift overlaps both the first and the third.
[KT] Consider the following variation on the Interval Scheduling Problem. You have a processor that can operate 24 hours a day, every day. People submit requests to run daily jobs on the processor. Each such job comes with a start time and an end time; if the job is accepted to run on the processor, it must run continuously, every day, for the period between its start and end times. (Note that certain jobs can begin before midnight and end after midnight; this makes for a type of situation different from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless of their length), subject to the constraint that the processor can run at most one job at any given point in time. Provide an algorithm to do this with a running time that is polynomial in n. You may assume for simplicity that no two jobs have the same start or end times. Example. Consider the following four jobs, specified by (start-time, endtime) pairs.
(6 P.M. 6 A.M.), (9 P.M., 4 A.M.), (3 A.M., 2 P.M.), (1 P.M., 7 P.M.).
The optimal solution would be to pick the two jobs (9 P.M., 4 A.M.) and (1 P.M., 7 P.M.), which can be scheduled without overlapping.
[DPV] We use Huffman's algorithm to obtain an encoding of alphabet $\{a, b, c\}$ with frequencies f_{a}, f_{b}, f_{c}. In each of the following cases, either give an example of frequencies $\left(f_{a}, f_{b}, f_{c}\right)$ that would yield the specified code, or explain why the code cannot possibly be obtained (no matter what the frequencies are).
(a) Code: $\{0,10,11\}$
(b) Code: $\{0,1,00\}$
(c) Code: $\{10,01,00\}$
[DPV] Ternary Huffman. Trimedia Disks Inc. has developed "ternary" hard disks. Each cell on a disk can now store values 0,1 , or 2 (instead of just 0 or 1). To take advantage of this new technology, provide a modified Huffman algorithm for compressing sequences of characters from an alphabet of size n, where the characters occur with known frequencies $f_{1}, f_{2}, \ldots, f_{n}$. Your algorithm should encode each character with a variable-length codeword over the values $0,1,2$ such that no codeword is a prefix of another codeword and so as to obtain the maximum possible compression. Prove that your algorithm is correct.
[DPV] Here's a problem that occurs in automatic program analysis. For a set of variables x_{1}, \ldots, x_{n}, you are given some equality constraints, of the form " $x_{i}=x_{j}$ " and some disequality constraints, of the form " $x_{i} \neq x_{j}$." Is it possible to satisfy all of them?
For instance, the constraints

$$
x_{1}=x_{2}, x_{2}=x_{3}, x_{3}=x_{4}, x_{1} \neq x_{4}
$$

cannot be satisfied. Give an efficient algorithm that takes as input m constraints over n variables and decides whether the constraints can be satisfied.
[DPV] Shortest paths are not always unique: sometimes there are two or more different paths with the minimum possible length. Show how to solve the following problem in $O((|V|+|E|) \log |V|)$ time.

Input: An undirected graph $G=(V, E)$; edge lengths $l_{e}>0$; starting vertex $s \in V$.
Output: A Boolean array usp $[\cdot]$: for each node u, the entry usp $[u]$ should be true if and only if there is a unique shortest path from s to u. (Note: usp $[s]=$ true.)
[DPV] In cases where there are several different shortest paths between two nodes (and edges have varying lengths), the most convenient of these paths is often the one with fewest edges. For instance, if nodes represent cities and edge lengths represent costs of flying between cities, there might be many ways to get from city s to city t which all have the same cost. The most convenient of these alternatives is the one which involves the fewest stopovers. Accordingly, for a specific starting node s, define

$$
\text { best }[u]=\text { minimum number of edges in a shortest path from } s \text { to } u \text {. }
$$

In the example below, the best values for nodes S, A, B, C, D, E, F are $0,1,1,1,2,2,3$, respectively.

Give an efficient algorithm for the following problem.
Input: Graph $G=(V, E)$; positive edge lengths l_{e}; starting node $s \in V$.
Output: The values of best $[u]$ should be set for all nodes $u \in V$.
[DPV] Generalized shortest-paths problem. In Internet routing, there are delays on lines but also, more significantly, delays at routers. This motivates a generalized shortest-paths problem.
Suppose that in addition to having edge lengths $\left\{l_{e}: e \in E\right\}$, a graph also has vertex costs $\left\{c_{v}: v \in V\right\}$. Now define the cost of a path to be the sum of its edge lengths, plus the costs of all vertices on the path (including the endpoints). Give an efficient algorithm for the following problem.

Input: A directed graph $G=(V, E)$; positive edge lengths l_{e} and positive vertex costs c_{v}; a starting vertex $s \in V$.
Output: An array cost [•] such that for every vertex u, cost $[u]$ is the least cost of any path from s to u (i.e., the cost of the cheapest path), under the definition above.

Notice that cost $[s]=c_{s}$.

Interesting problems

[DPV] Graphs with prescribed degree sequences. Given a list of n positive integers $d_{1}, d_{2}, \ldots, d_{n}$, we want to efficiently determine whether there exists an undirected graph $G=(V, E)$ whose nodes have degrees precisely $d_{1}, d_{2}, \ldots, d_{n}$. That is, if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, then the degree of v_{i} should be exactly d_{i}. We call $\left(d_{1}, \ldots, d_{n}\right)$ the degree sequence of G. This graph G should not contain self-loops (edges with both endpoints equal to the same node) or multiple edges between the same pair of nodes.
(a) Give an example of $d_{1}, d_{2}, d_{3}, d_{4}$ where all the $d_{i} \leq 3$ and $d_{1}+d_{2}+d_{3}+d_{4}$ is even, but for which no graph with degree sequence $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ exists.
(b) Suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ and that there exists a graph $G=(V, E)$ with degree

[DPV] Graphs with prescribed degree sequences. Given a list of n positive integers $d_{1}, d_{2}, \ldots, d_{n}$, we want to efficiently determine whether there exists an undirected graph $G=(V, E)$ whose nodes have degrees precisely $d_{1}, d_{2}, \ldots, d_{n}$. That is, if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, then the degree of v_{i} should be exactly d_{i}. We call $\left(d_{1}, \ldots, d_{n}\right)$ the degree sequence of G. This graph G should not contain self-loops (edges with both endpoints equal to the same node) or multiple edges between the same pair of nodes.
(a) Give an example of $d_{1}, d_{2}, d_{3}, d_{4}$ where all the $d_{i} \leq 3$ and $d_{1}+d_{2}+d_{3}+d_{4}$ is even, but for which no graph with degree sequence $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ exists.
(b) Suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ and that there exists a graph $G=(V, E)$ with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$. We want to show that there must exist a graph that has this degree sequence and where in addition the neighbors of v_{1} are $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$. The idea is to gradually transform G into a graph with the desired additional property.
i. Suppose the neighbors of v_{1} in G are not $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$. Show that there exists $i<$ $j \leq n$ and $u \in V$ such that $\left\{v_{1}, v_{i}\right\},\left\{u, v_{j}\right\} \notin E$ and $\left\{v_{1}, v_{j}\right\},\left\{u, v_{i}\right\} \in E$.
ii. Specify the changes you would make to G to obtain a new graph $G^{\prime}=\left(V, E^{\prime}\right)$ with the same degree sequence as G and where $\left(v_{1}, v_{i}\right) \in E^{\prime}$.
iii. Now show that there must be a graph with the given degree sequence but in which v_{1} has neighbors $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$.
(c) Using the result from part (b), describe an algorithm that on input d_{1}, \ldots, d_{n} (not necessarily sorted) decides whether there exists a graph with this degree sequence. Your algorithm should run in time polynomial in n and in $m=\sum_{i=1}^{n} d_{i}$.

[CLRS] 16-1 Coin changing

Consider the problem of making change for n cents using the fewest number of coins. Assume that each coin's value is an integer.
a. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pennies. Prove that your algorithm yields an optimal solution.
b. Suppose that the available coins are in the denominations that are powers of c, i.e., the denominations are $c^{0}, c^{1}, \ldots, c^{k}$ for some integers $c>1$ and $k \geq 1$. Show that the greedy algorithm always yields an optimal solution.
c. Give a set of coin denominations for which the greedy algorithm does not yield an optimal solution. Your set should include a penny so that there is a solution for every value of n.
d. Give an $O(n k)$-time algorithm that makes change for any set of k different coin denominations, assuming that one of the coins is a penny.

Challenging problems (optional)

[CLRS] 16-5 Off-line caching

Modern computers use a cache to store a small amount of data in a fast memory. Even though a program may access large amounts of data, by storing a small subset

Modern computers use a cache to store a small amount of data in a fast memory. Even though a program may access large amounts of data, by storing a small subset of the main memory in the cache - a small but faster memory-overall access time can greatly decrease. When a computer program executes, it makes a sequence $\left\langle r_{1}, r_{2}, \ldots, r_{n}\right\rangle$ of n memory requests, where each request is for a particular data element. For example, a program that accesses 4 distinct elements $\{a, b, c, d\}$ might make the sequence of requests $\langle d, b, d, b, d, a, c, d, b, a, c, b\rangle$. Let k be the size of the cache. When the cache contains k elements and the program requests the $(k+1)$ st element, the system must decide, for this and each subsequent request, which k elements to keep in the cache. More precisely, for each request r_{i}, the cache-management algorithm checks whether element r_{i} is already in the cache. If it is, then we have a cache hit; otherwise, we have a cache miss. Upon a cache miss, the system retrieves r_{i} from the main memory, and the cache-management algorithm must decide whether to keep r_{i} in the cache. If it decides to keep r_{i} and the cache already holds k elements, then it must evict one element to make room for r_{i}. The cache-management algorithm evicts data with the goal of minimizing the number of cache misses over the entire sequence of requests.

Typically, caching is an on-line problem. That is, we have to make decisions about which data to keep in the cache without knowing the future requests. Here, however, we consider the off-line version of this problem, in which we are given in advance the entire sequence of n requests and the cache size k, and we wish to minimize the total number of cache misses.

We can solve this off-line problem by a greedy strategy called furthest-in-future, which chooses to evict the item in the cache whose next access in the request sequence comes furthest in the future.
a. Write pseudocode for a cache manager that uses the furthest-in-future strategy. The input should be a sequence $\left\langle r_{1}, r_{2}, \ldots, r_{n}\right\rangle$ of requests and a cache size k, and the output should be a sequence of decisions about which data element (if any) to evict upon each request. What is the running time of your algorithm?
b. Show that the off-line caching problem exhibits optimal substructure.
c. Prove that furthest-in-future produces the minimum possible number of cache misses.

