There are 60 marks. The full mark is 50 . This homework is counted 5% of the course grade.

1. Facility Scheduling (12 marks)

There are m facilities and n people. Each person requests to use a subset of facilities. Each facility can only be used by one person in one day. Suppose each person requests to use at most d facilities, and each facility is requested by at most d people. Model this as a graph problem and prove that there is a schedule (which person to use which facility on which day) that uses at most d days so that every person can use all the facilities that he/she requested. Give a polynomial time algorithm to output such a schedule.

Table 1: Input: Facility Requests

	Adam	Mary	John	Peter
Soccer	\checkmark		\checkmark	
Basketball	\checkmark	\checkmark		
Tennis			\checkmark	\checkmark

Table 2: Output: Final Schedule

	Day 1	Day 2
Soccer	Adam	John
Basketball	Mary	Adam
Tennis	John	Peter

(Hint: First consider the case when every person requests exactly d facilities, and each facility is requested by exactly d people.)
2. Hamiltonian Cycle (8 marks)

Prove that the Hamiltonian Cycle problem is NP-complete even when restricted to undirected bipartite graphs.
3. Degree Bounded Spanning Tree (8 marks)

Prove that the following problem is NP-complete.
Input: An undirected graph $G=(V, E)$ and an positive integer k.
Output: Does there exist a spanning tree $T \subseteq E$ with maximum degree at most k ?
(Hint: Hamiltonian Path)
4. Shortest Simple Path (10 marks)

Prove that the following problem is NP-complete.
Input: A directed graph $G=(V, E)$ where each edge $e \in E$ has a length l_{e}, an integer L, and two vertices $s, t \in V$. Note that both l_{e} and L could be negative numbers.
Output: Does there exist a simple path from s to t with total length at most L? A path is simple if it visits every vertex at most once.
5. Intersecting Set (10 marks)

Prove that the following problem is NP-complete.
Input: m sets $S_{1}, S_{2}, \ldots, S_{m}$ where each $S_{i} \subseteq\{1, \ldots, n\}$, and an positive integer k.
Output: Does there exist a subset $T \subset\{1, \ldots, n\}$ with $|T| \leq k$ such that $T \cap S_{i} \neq \emptyset$? In words, does there exists a subset T with at most k elements that intersects every set S_{i} ?
6. Acyclic Subgraph (12 marks)

Prove that the following problem is NP-complete.
Input: A directed graph $G=(V, E)$ and a positive integer k.
Output: Does there exist a subset $F \subseteq E$ with at most k edges such that $G-F$ is directed acyclic?

