
Cut ‘n Paste; Drag ‘n Drop

1

2

Transferring Data

• Cut and paste via the clipboard and drag and

drop allows for (relatively) easy data transfer

within and between applications

• Expected behaviour of any application

3

The Clipboard

• Ubiquitous data transfer method

– Copy information (or pointer to information) to clipboard

– Other applications can read data from the clipboard

• Any application can read this information

– A potential security risk

– Clipboard not accessible to Java applets running in web
browser

• Requires common data formats to work seamlessly

– Text is no problem

– What about other formats?

4

The Clipboard: Formats

• Consider graphics

• How do we deal with:

– Drawings in vector-based drawing programs?

– Bitmap images?

– Images from different file formats (JPEG, TIFF, GIF…)

– 3D graphics?

– PostScript drawings?

– Charts?

– Proprietary graphics formats?

5

The Clipboard

• When data is placed on clipboard, application indicates
the formats in which it can provide the data
– Example: “I can provide it as a vector image, bitmap image,

or as text”

– Simplest case: immediately place each supported data
format on the clipboard, most preferred to least preferred

– Mac Human Interface Guidelines specify that all
applications must support either plaintext or an image;
should always be able to cut/paste something.

• Data is not always copied to clipboard immediately
– Why not?

– What are implications?

6

Placing Data on Clipboard

• Data may be available in many formats
– Wasteful to put all formats on clipboard at once

• Data may never be pasted
– Again, wasteful to commit memory to a copy unless it is needed

– Particularly after a “cut” operation, which can be used in place of
delete …

• If data is not immediately placed on clipboard:
– Must create a copy if user changes data locally

– Must put it on clipboard if application exits
• Or at least prompt user

• Clipboard a function of the underlying windowing system,
toolkit
– Java will do it differently from Cocoa from Windows…

7

Java Clipboards

• Relevant packages:

– java.awt.datatransfer (Clipboard, Drag and Drop)

• Relevant classes

– Clipboard

– DataFlavor

– Transferable

– Toolkit

8

Java Clipboards

• Local and system clipboards

• Local clipboards are named clipboards holding

data only accessible by the application

– new Clipboard(“My clipboard”);

• System clipboard is operating-system-wide

clipboard

– Toolkit.getDefaultToolkit().getSystemClipboard()

• System clipboard not available to applets

9

Copying Data to Clipboard

• Basic steps:

– Get clipboard

– To copy, create a Transferable object

• Defines methods for responding to queries about what data
formats (DataFlavors) are available

• Defines method for getting data of specified type

– Set clipboard contents to the new Transferable object

• Transferable object encapsulates all the data to
handle the copy operation later

– Similarities to what other object?

10

Transferable

• Encapsulates all data to copy in an object

• Similar in spirit to UndoableEdit

• Methods:

– DataFlavor[] getTransferDataFlavors()

– boolean isDataFlavorSupported(DataFlavor flavor)

– Object getTransferData(DataFlavor flavor)

11

Pasting Data from Clipboard

• Basic steps:

– Get clipboard

– See if it supports the desired data format

(DataFlavor)

– Get the data, casting it to the proper Java object

12

Code Review: Cut ‘n Paste

• DTPicture

– first half: setting, painting image, focus highlighting

• PicturePanel

– doCopy/doCut

– Related

• selectedPic

• PicFocusListener

– doPaste

• PictureTransferable

13

TransferHandler

• The TransferHandler class will be used for drag

‘n drop. It can also be used for supporting cut

‘n paste.

• The cut ‘n paste support:

– providing Action objects (actionListeners) for

cut/copy/paste

– exportToClipboard

• See Java Tutorial for more info

14

Drag and Drop

• Uses same Transferable, DataFlavor objects to

pass information around

• Need to specify drag and drop sources

15

Supporting Drag

• “Dragging” refers to copying something from
your control

• To support dragging:

– Set a transfer handler for each component that

supports D’nD

– In the source of the drag, define a mouse listener

that knows when a drag has started.

– When a drag has started, get the component’s

transfer handler and call its exportAsDrag function

16

Supporting Drop

• Drop support allows stuff to be dropped on

component

• TransferHandler:

– override importData

17

TransferHandler

• Methods:
– boolean importData(JComponent c, Transferable t)

– int getSourceActions(JComponent c)
• returns one of COPY, MOVE, or COPY_OR_MOVE

– Transferable createTransferable(JComponent c)

– void exportAsDrag(JComponent c, InputEvent e, int
action)
• action is one of COPY, MOVE, or COPY_OR_MOVE

– void exportDone(JComponent source, Transferable
data, int action)

18

Code Review: Drag ‘n Drop

• PicturePanel

– Set handler in constructor

• DTPicture

– DragGesture inner class

• PictureTransferHandler

– dropping (canImport, importData)

– dragging (getSourceActions, createTransferable,

exportDone)

19

Politics of Data Formats

• Data formats can be instruments of control

– The value of an application resides in its ability to

create, manipulate, manage, and reference data

– The more that an individual or company’s worth is

tied up in data, the more reliant they become on

the tools that allow them to access and manipulate

that data

– This creates a market disincentive to create open

data formats

20

Summary

• Make data available in a variety of data

formats, ordered by preference.

• Target choses the most applicable format to

use.

