
Scripting

1

2

Application Value

• Applications specialize in producing,

manipulating specific data types

• An application’s value can thus be seen in two

lights

– The data it produces/manages

– The functionality it provides

3

Application Value

• But…

– No one application do everything

– No one application can include support for every
possible use

– Our data may not always be in the application’s native
format

– The application’s data may not be in the final format
we require

• How can we increase the chance the application
can bend to unforeseen, real-world needs?

4

Planning for Flexibility

• An application gains value if it can:

– Import/export data

– Be internally scripted

– Be externally controlled/scripted

• Gains further value if the source code is freely

available…

• These facilities extend the range of

possibilities beyond the delivered capabilities

5

Scripting Options

• Recording Events

• Incorporating Scripting Engine

– Several Java options

• External scripting / control

6

Recording Events

• Sometimes done by the app itself
– Most basic level of scripting possible

• Can also be done by another application
– Keystroke/mouse logger which re-injects events

– Slightly more complex to code, but easily do-able

• Uses:
– Preparing a demo

– Testing a user interface

– When more robust scripting isn’t available

– Keyboard logging (for good or ill)

7

Recording Events

// Event stream for recording events
private Vector<Serializable> eventStream = null;
private void handleMousePress(java.awt.event.MouseEvent e) {

... recordEvent(e); ... }

private void recordEvent(MouseEvent event) {
if (interactionMode.equals(InteractionMode.RECORDING)) {

long thisTime = System.currentTimeMillis();
eventStream.add(thisTime - lastTime);
eventStream.add(event);
lastTime = thisTime;

}
}

8

Playback Events

// Create and start a thread to play back the events
Thread playbackThread = new Thread(new Runnable() {

public void run() {
Iterator<Serializable> iter = playbackStream.iterator();
while (iter.hasNext() &&
interactionMode.equals(InteractionMode.PLAYBACK)) {

Long waitTime = (Long) iter.next();
MouseEvent event = (MouseEvent) iter.next();
Thread.sleep(waitTime);
switch (event.getID()) {
case MouseEvent.MOUSE_PRESSED:

handleMousePress(event); break;
case MouseEvent.MOUSE_DRAGGED:

handleMouseDragged(event); break;
case MouseEvent.MOUSE_RELEASED:

handleMouseReleased(event); break;
}}}});

playbackThread.start();

9

Scripting Requirements

• External “language”

• Internal support

10

Scripting Engine Option 1

• Build on the undo/redo command objects

• Recall:

– Each action in the interface corresponds to a command
object implementing “undo” and “redo” (and perhaps “do”
for clarity).

• void insertText(doc, “I have a dream”);

• void moveSelection(doc, Direction.RIGHT, 1, Unit.PARAGRAPH);

• void extendSelection(doc, Direction.RIGHT, 1, Unit.SENTENCE);

• void boldSelection(doc);

• Design a language interpreter that calls these methods

11

public class TriangleBaseUndoableEdit extends AbstractUndoableEdit {
private TriangleModel model;

protected double oldBase;
protected double newBase;

private TriangleBaseUndoableEdit(TriangleModel model,
double oldBase, double newBase) {

this.model = model;
this.oldBase = oldBase;
this.newBase = newBase;

}
public void undo() {

this.model.setBase(this.oldBase);
}
public void execute() {

this.model.setBase(this.newBase);
}
public void redo() {

this.execute();
}

}

12

Issues

• Consider the following scripting commands:

• void insertText(doc, “I have a dream”);

• void moveSelection(doc, Direction.RIGHT, 1, Unit.PARAGRAPH);

• void extendSelection(doc, Direction.RIGHT, 1, Unit.SENTENCE);

• void boldSelection(doc);

• Additional capabilities needed?

• Exposure of appropriate data structures?

– Need to understand data types … or crash program.

13

Scripting Engine Option 2

• Include a full interpreter library

• Uses reflection to give access to public

members of program’s data structures

– Implies that you need a language supporting

reflection

– Otherwise need to include some kind of adapter

library

• Options...

14

Interpreter Options

• Java
– Jython

• www.jython.org/

• Python implemented as a Java library

• provides dead-simple scripting engine for Java

– BeanShell
• www.beanshell.org/

• Very Java-like syntax

– Groovy
• groovy.codehaus.org/

• Python, Ruby, Smalltalk influences

– Rhino
• www.mozilla.org/rhino/)

• Java-based JavaScript

– JRuby
• jruby.sourceforge.net/

• Ruby implemented in Java

• .NET languages
– IronPython (by same guy who did Jython)

– Probably others...

15

Jython Demo: Scripting Triangles

import time
for i in range(10, 101, 5):
model.setValues(i, i)
time.sleep(0.25)

model.setBase(30)
model.setBase(40)

Demo 1: Demo 2:

16

// Import the python interpreter
import org.python.util.PythonInterpreter;
…

public class ScriptingView extends JPanel {
…

private JTextArea script;
private JButton executeButton;
private PythonInterpreter pyInterp = null;

...

private void initInterpreter() {
pyInterp = new PythonInterpreter();

// Make the these objects available to scripts
pyInterp.set("model", ScriptingView.this.model);
pyInterp.set("app", Application.getInstance());
pyInterp.set("frame", Application.getInstance()

.getActiveFrame());
}

Jython Example (1/2)

17

Jython Example (2/2)

private void registerListeners() {
this.executeButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (pyInterp == null) {

ScriptingView.this.initInterpreter();
}
// Get the script we are to run.
final String s = ScriptingView.this.script.getText();
new Thread() {

// Execute the script
public void run() { pyInterp.exec(s); }

}.start();
}

});
}

18

public void newDocument() {
final model.TriangleModel model = new …

...
if (new File("tri.ini").canRead()) {

PythonInterpreter pyInterp = new PythonInterpreter();
pyInterp.set("app", Application.getInstance());
pyInterp.set("model", model);

pyInterp.set("frame", frame);
pyInterp.execfile("tri.ini");

}
}

...

Initialization Scripting

19

print "Initializing triangle model..."
model.base = 60
model.height = 80

frame.setBounds(30*app.currentDocumentIndex(),
30*app.currentDocumentIndex(),
750, 500)

Sample .ini file

20

External Scripting / Control

• More complex than internal scripting

• Why?

21

External Scripting / Control

• Must expose scriptable portions of application

in a standardized way to “outside world”

• How can such functionality be exposed?

22

Approaches to Exposing Functionality

• Initialization via command-line switches; reading from
pipes
– Run once

– Not suitable for scripting a running, interactive application

• Stream-based protocol
– Develop a protocol for communicating to application

– Develop data formats

– Create a network server/client paradigm

– Named pipes

• Other possibilities
– Shared memory, blackboards

Specific Implementations

• Various scripting options, depending on OS

and exposed functionality:

– Shell scripts on linux systems

– Applescript for OSX

– Powershell for Windows 7/8

– Etc.

24

Summary

• Scripting significantly enhances the value of an
application...

– ... to those who know how to use scripting

– ... and have more advanced needs

• Options include:

– recording and playing back events

– writing an interpreter that creates the command
objects used by undo/redo

– integrating a full-fledged interpreter using reflection

– supporting an existing external scripting system

