
Android Tutorials

• RCH 207 @ 1:30 (120)

• MC 4060 @ 3:30 (66)

• Note: Good advice is to try the RCH session,

as the MC 4060 room is small …

Undo

2

Most Basic Undo

• Manual undo without programmer

• Consider a video game
– You kill a monster

– You save the game

– You try to kill the next monster

– You die

– You reload the saved game

– You try to kill the next monster

– You kill the monster

– You save the game

• Based around checkpoint/rollback
– User manually specified a point from which to resume

4

Why Do We Need Anything More?

• Why offer undo?

• What does it offer us?

• How is it used by people in practice?

5

Use: Correcting Errors

• Fix “mistakes” in input

– A safety net for input techniques

– Allows faster input

– Allows for less planning

• Two types of errors:

– User input error (human side)

– Interpretation error (computer side)

6

Use: Supporting Exploration

• “One of the key claims of direct manipulation is
that users would learn primarily by trying
manipulations of visual objects rather than by
reading extensive manuals.” [Olsen, p. 327]

• Exploratory learning
– Try things you don’t know the consequences of

– Well-implemented undo can allow users to try without
commitment

• Exploring alternative problem solutions
– Again, try something without commitment

• Requirement: perceived safety

7

Use: Evaluation

• Fast do-undo-redo cycles

– previous and current version are flashed in quick

succession

– provides in-place evaluation across time

• Examples:

–
–

Implementing Program Level Undo

• Choices

– Granularity

– Implementation

– Context

– Actions/Events

– State restoration

9

Choices: Granularity

• What defines one undoable “operation”?

• Typing in MS Word
– Apparently separated by a non-typing operation eg: bolding

or switching to another app

• Typing in TextMate
– A character

• Typing in TextPad
– A line of text (always)

– Probably because it is often used for programming where a
line has a more specific meaning than in a word processor.

• Key question: What are appropriate undo “chunks”?

10

Choices: Granularity

• Example: drawing a free-hand line
– User presses mouse button to begin drawing

– User drags mouse with button pressed to define the
line’s path

– User releases the mouse button at the end of the path

• Mouse down + Mouse drag + Mouse up
– one conceptual unit

– “undo” should probably undo the entire line, not just a
small delta in the mouse position

– mouse up defines “closure” of the conceptual unit or
“operation”

11

Choices: Granularity

• Rules of thumb:

– Do not record actions while actively interacting
with a control.

• Example:

– Chunk all changes made in one user interface
event into a single undo action.

• Example:

– Break input up based on discrete breaks in the
input

• Example:

12

Choices: Implementation

• Need to keep a history of operations

• Undo:

– Remove the most recent operation from the
history

– Restore the state to before the most recent
operation

• Redo:

– Reapply the most recently “undone” operation

– Not available if there is no undone operation

Choices: Implementation

• Could imagine using either memento or
command design patterns

– Memento = save state

– Command = analyze how to execute and un-execute
commands

• Java uses command pattern, as it’s slightly more
memory efficient.

– Can get debatable whether command or memento,
though: think geometric transformations …

– Assuming command pattern …

14

Choices: Implementation

15

Choices: Implementation

• Two approaches to updating the model after

an undo or redo:

– Baseline and forward undo

• rebuild the model from a known (saved) state by

reapplying each operation in a forward direction

– Command Objects and backup undo

• for each operation, remember how to do it and how to

undo it

• Example:

16

Choices: Context

• Based on the previous illustration, we need two

stacks. Where should they be kept?

– System level?

– Application level?

– Document level?

– Control level?

• Example: A form in Firefox vs. a form in

Safari/Chome/any WebKit-based browser

• Choices impact your underlying implementation.

17

Choices: Context

• Option 1: associate an undo stack with each
self-contained component of the interface.

– Example: Firefox’s handling of individual text
fields.

• Option 2: associate an undo stack with each
document’s model in the MVC architecture.

– Implications for multi-document applications?

– Simplified conceptual model for the user: Edits are
associated with an overall document rather than
specific controls in the user interface.

18

Choices: Undoable Actions

• Some things can’t be undone:
– Printing, Saving

– Quitting program with unsaved data

– Emptying trash
• Ask for confirmation before doing a destructive, undoable,

operation

• Some things you may choose to omit from undo,
e.g.
– Changes to selections?

– Window resizing?

– Scrollbar positioning?

19

Choices: Undoable Actions

• Rules of Thumb:

– Any and all changes to a document’s content, i.e.

the model, should be undoable.

– Changes to a document’s interface state or view

should be undoable if they are extremely tedious

or require significant effort.

20

Choices: State Restoration

• What user interface state is restored after an undo or
redo?
– Answer: It depends on application

– OmniGraffle versus TextPad

• Rules of Thumb:
– User interface state should be meaningful after undo/redo

action is performed.

– Change selection to object(s) changed as a result of
undo/redo. Scroll to show selection, if necessary.

– Give focus to the control that is hosting the changed state.

• These actions help users understand the result of the
undo/redo operation.

21

Summary: Available Choices

• Granularity: how much should be undone at a time?

• Implementation: how do you do it?

• Context: what is the scope of an undo operation?

• Undoable actions: what can’t/isn’t undone?

• State restoration: what UI state is restored?

• If in doubt:

– test the implementation with real users.

– See if they find the choices made in undo semantics
intuitive in the context of their work.

22

Implementation in Detail

• Saving and restoring state

• Model responsibility vs. UI responsibility

• Demo Code

23

Impl: Saving & Restoring State

• For each operation (“chunk” of input from the

user), place an object on the undo/redo stack.

• To undo the operation, pop it off the stack and

execute it.

• What’s the name of this Design Pattern?

• Example:

– someOperation.undo();
– someOperation.redo();

24

Impl: Saving & Restoring State

• The operation/command object restores a
previous state in one of two ways:

– Save changes to the state

– Save the state itself

• Save changes to the state: typical in many cases

– Word Processor

– Vector drawing program

– When doesn’t this work?

25

Impl: Saving State

• Consider a bitmap painting program
– Do red stroke

– Do black stroke

– Undo

• If all we do is save the command to
create/remove the black stroke, what
is the result?

• Need to save at least part of the
image that existed before the stroke
was made.
– Might require a lot of memory!

– MS Paint limits the number of
operations you can undo => BAD

26

Impl: Saving & Restoring State

• If you can forward-correct an action (that is,
perfectly restore from a previous state through
actions alone), then just save the operations.

– Exception: Operations that take a lot of time but don’t
take a lot of memory to save the change in state.

• If you cannot forward-correct an action (eg:
cropping an image, paint-style drawing), you
must save state so you can restore the previous
state.

– Options: store the entire state, or just the differences

27

Impl: Java

• Interfaces

– StateEditable: implemented by models that can save/restore
their state. Key methods: storeState, restoreState

– UndoableEdit: implemented by command objects. Key
methods: undo, redo.

• Classes

– AbstractUndoableEdit: convenience class for UndoableEdit

– StateEdit: convenience class for StateEditable; extends
AbstractUndoableEdit. Key methods: init, end, undo, redo

– UndoManager: container for UndoableEdit objects (command
pattern). Key methods: addEdit, canUndo, canRedo, undo, ...

– CompoundEdit: “A concrete subclass of AbstractUndoable-Edit,
used to assemble little UndoableEdits into great big ones.”

28

public class TriangleBaseUndoableEdit extends AbstractUndoableEdit {
private TriangleModel model;

protected double oldBase;
protected double newBase;

private TriangleBaseUndoableEdit(TriangleModel model,
double oldBase, double newBase) {

this.model = model;
this.oldBase = oldBase;
this.newBase = newBase;

}
public void undo() {

this.model.setBase(this.oldBase);
}

public void execute() {
this.model.setBase(this.newBase);

}

public void redo() {
this.execute();

}
}

29

public class MenuView extends JMenuBar {
private TriangleModel model;
private UndoMgr undo; // UndoManager extended to handle observers
private JMenu file = new JMenu("File");
private JMenu edit = new JMenu("Edit");

// Actions can be interpreted by menus, toolbars, etc.
private AbstractAction newAction = new AbstractAction("New") {

public void actionPerformed(ActionEvent e) {
Application.getInstance().newDocument();

}
};

private AbstractAction undoAction = new AbstractAction("Undo"){
public void actionPerformed(ActionEvent e) {

MenuView.this.undo.undo();
}

};

30

...
// Undo manager should inform observers when a command is
// added or it performs an undo or redo. We then update
// menus.
this.undo.addObserver(new IObserve() {

public void update(Object subject, Object detail) {
undoAction.setEnabled(MenuView.this.undo.canUndo());
redoAction.setEnabled(MenuView.this.undo.canRedo());

}
});

...
// Set accelerator keys for the menu items.
this.undoAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke(KeyEvent.VK_Z,
ActionEvent.META_MASK));

this.redoAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke(KeyEvent.VK_Z,

ActionEvent.META_MASK |
ActionEvent.SHIFT_MASK));

}

Demo 2

Undoable Widgets

Differences

• Option 1

– Create a model observer to handle the
enable/disable of Undo

– Clean MVC architecture.

– Works well if undo only associated with model

• Option 2

– Integrate undo/redo into controls you activate.

– When ActionListener is fired, state is bundled and
saved in undo manager

33

Ideas for Improving Undo

• Branching Histories

– Fully record every state that is visited

– Issues

• User may not want every state saved

• No real elegant interfaces for browsing the histories

• Editable Histories

– Directly edit past state; changes propagate down

– Issue: changes made earlier in history may result

in incompatible states later in the history.

34

Scripting

• The command objects in the undo/redo stacks

can form the basis for scripting the application.

• Need methods to:

– parse text input (eg from a file) into appropriate

command objects

– hard part is figuring out how to refer to specific parts

of the model

• More about scripting using interpreters in a

future lecture

35

Summary

• Undo-Redo is critical for:

– Correcting errors easily

– Exploratory learning

– Evaluation

• There are a bunch of choices to make: granularity,
implementation approach, context of each undo/redo
stack, what constitutes an undoable action, and
whether to undo/redo changes to interface state.

• Implementation: Command objects, where for each
action we create an object that knows how to do it and
to undo it, is the most common approach.

