
Human-Computer Dialogues

1

2

Overview

• Dialogues

– Human-Human

– Human-Computer

• Designing and Documenting dialogues

– Scenarios

– Finite State Machines

– Production Systems

3

Human-Human Dialogues

• Based on threads of conversation

– Single-threaded

– Turn-taking

– Conventions

4

Human-Computer Dialogues

• Conventions

– Needed for dialogues to work smoothly

– Conventions need to be low-level/subconscious

• Don’t want to think about them

• Easy to learn

• Easy to apply to new situations

• So low-level it’s hard to imagine any other way to do it

• Draw inspiration from Human-Human
dialogues, but not identical because...

–

5

Human-Computer Conventions

• Prompt
– “I’m ready to converse, if you want to.”

– Could be many prompts available.

• Echo
– “I’m receiving your input.”

• Accept Trigger
– “I understand that you’re done.”

• Acknowledge
– “I’m working on your request.”

– Often omitted if response is immediate.

• Respond
– “Here’s what I’ve done.”

– Normally followed by a new prompt.

6

Example: Button

Prompt

Echo

Accept Trigger

Acknowledge

Response

mouse up

+ ???

application specific

7

Example: Form

Prompt

Echo

Accept Trigger

Acknowledge

Response

8

Example: Keystroke

Prompt

Echo

Accept Trigger

Acknowledge

Response

9

Designing & Documenting Dialogues

• Important to get these dialogues “right”. Why?

• Computers are an integral part of society
– Spectrum: entertainment to life-critical systems

– Examples: air traffic control, power plants, nuclear
reactors, medical equipment, health records, factory
automation, banking, stock markets, business, …

• User interfaces provide the means to control
these systems

• What does it mean for an interface to be
“wrong”?

10

When an interface is “wrong”

• Core dumps

• “Incorrect” calculations

• Doesn’t provide necessary features for a given
task

• Doesn’t honor human’s cognitive capabilities;
limitations

• Doesn’t make the operator efficient enough

• Error prone

• Doesn’t satisfy user needs

• ...

11

Costs of being “wrong”

• Power management (Three Mile Island)

• Managing mutual funds

• E-commerce (Amazon)

• Voting systems

• Aviation

• Other examples?

12

Central Tension

• User: rich and varied
experiences; makes
intuitive leaps; learns;
uses metaphors; creative

• User Interface: needs to
mediate between these
two radically different
systems

• Model: follows a rigid
program; not creative;
only primitive learning (at
best)

13

Languages

• Users use informal, natural, “open” languages
– wonderfully extensible; can be used to write poetry and

describe the smell of fresh bread

– Ambiguous

• Computers use formal or “closed” languages
– precise terms (unlike English)

– precise rules for combining terms

– precise meanings for statements

– But… Only applies to a specific domain. Can’t use it in new
ways

Need a language for user interfaces

that mediates these two. Needs

characteristics of both.

14

Describing user input sequence

• Consider a button

• Click = activate

• What if

– User presses leftmouse down outside button and drags
over button, then releases on button

– User presses leftbutton down on button, then drags off

– User presses leftbutton down on button, drags off then
back on, then releases

• Tooltips add additional complexity

15

More complex interfaces

16

Criteria for UI “Languages”

• Understandable by users

• Easily converted into implementations

– A closed language?

• Precise enough to settle arguments

• Facilitate answering interesting questions

– Observability

– Controllability

– Pathologies

17

UI Language Options

• Natural language descriptions

– “When the user clicks the mouse inside the button,
fire the action event code.”

– But…

• Mouse Event Diagrams

• Finite State Machines

• Propositional Production Systems

• Code

– Problems?

18

Mouse event diagrams

• Not traditional behaviour

• However

– May occur

– Needs to be handled by
interface

• Also

– Issue of appearance

– On mouse-press, button
appears pressed

– If mouse moves off what
happens?

19

Scrollbars

• More complexity

– Down on slider

– Dragging

– During drag, slide off

channel

– Slide back on

channel (or not)

– Release

• At any distance?

20

Critiquing Mouse Event Diagrams

• What are the advantages and disadvantages

of MEDs?

21

Drawbacks of Mouse Event Diagrams

• Any widget can support many events

• Scrollbar

– Clicking on arrows, off slider, etc.

– Behaviour for arrows

• Similar to button?

– Behaviour for channel off slider

• Similar to button?

22

Mouse Event Diagrams -- Drawbacks

23

Characteristics of Formal Languages

• Finite alphabet

• Set of well-defined formation rules

• Examples: Finite State Machines, Context Free
Grammars, Programming Languages

• Characteristics
– Precise

– Provides an unambiguous description of part of the
system

– Limited in their expressivity; “Closed”

24

Benefits of Formal Languages

• Formalized descriptions clarify intentions:

– Provide unambiguous description of a part of the world

– Focus the design process

– Define terms, concepts

– Uncover holes in the understandings

– Eliminate “hand waving”

– Concrete product that others can critique and improve

– Can suggest ways to test the system

• Descriptions provide a source of training for users:

– Teach users how to use an interface

– Common to write the manual before the software

25

Formal Languages in UIs

• What is it about an interface design that must be
defined?
– Key challenge is to define the interaction

– How does the state of the system change as a function
of user input?

• Other systems:
– Input, process, output

– Each part is fairly heavy-weight

• UI:
– Input, react, input, react, input, react, …

26

Finite State Machines

• One possible UI formalism

• Consider a button:

– What are the relevant states?

– What are the transitions?

– What are the actions taken on each transition?

27

Derived from JButtonDerived from JButton

28

Definitions: Events

Event Meaning

down User presses the mouse button while
component has focus.

up User releases the mouse button while the
component has focus.

enter Mouse enters the component.

exit Mouse exits the component.

enable/disable When in the disabled state, the user can’t
interact with the button at all. It’s enabled and
disabled programmatically.

29

Definitions: Actions

Action Meaning

showIdle Button interior turns light gray.

showArmed Button interior turns dark gray.

showFocused Button border turns blue; interior turns light
gray.

fireEvent Fire the listener(s) associated with this button.

30

FSMs and UIs

• A well-known and understood method for

formally describing interaction

• Programmers, designers, and users (with

training) can understand the diagrams

• Provides an unambiguous description for a

small part of the world

• Easily translated to code

31

FSMs and UIs (cont)

• Needs to be complemented by non-formal
language to be useful

– “When in the disabled state, the user can’t interact
with the button at all. It’s enabled and disabled
programmatically.”

– Definitions could include language like
“Change the appearance of the button in the
disabled state to a softer, lighter, less ‘present’
appearance.”

• Result is a semi-formal description

Consider

33

Problems with FSMs

• Scale: Interesting UIs too complex to draw and
understand
– Don’t fit on a single sheet of paper; May be non-planar

• Inadequate expressive power
– Too much need for duplication; can’t represent parallelism

• Example: need to enter eight pieces of information, in any order,
but each one only once

– Anything interesting will have exceptions, leading to many
states

– Eg: hard to handle time

• Still useful for interfaces that must be bullet-proof;
fragments of user interfaces

34

Desirable Properties

• User Interfaces…

– have lots of affordances (hopefully relatively
modeless)

– have lots of factorable (decomposable) state

– change in small (observable) increments

• If we had a generalization of state machines…

– that allows many state machines at once

– that all work in parrallel

– that have small effects on one another

35

Propositional Production Systems

• A general computational system

• Emil Post proved equivalent to a Turing Machine
in 1930’s

• Can be used to specify interactive behavior

• Used to describe the human brain, then used in
AI

• Benefits:
–
–

36

PPSs: Definitions & Productions

• Definitions: formal symbols with natural language (non-formal)
descriptions

• Defines the things that can appear in a production:
– State variables

– Input Events

– Event Modifiers

– Queries

– Actions

• Productions: formal sets of conditions and actions

• <condiNons> → <acNons>
– Events, Event modifiers, and Queries appear on the left side

– Actions appear on the right

– State variables on either side: Left => query state, right => set state to X.

– All rules are evaluated on each event

– All rules where all of the conditions are true have their actions evaluated in
parallel

37

PPS Elements

• 5 different field types
– Input Events

• *mouseDown, *mouseUp, *mouseMoved

– Input Modifiers
• leftMseDown*, leftMseUp*, ctrlDown*, ctrlUp*

– State Information
• sliderActive, sliderInactive

– Query Fields
• ?validPasswd, ?stepUp, ?slider

– Actions
• !drawButtonUp, !dragStart

38

PPS Elements (2)

• Always one input event field

– Input events are processed one-by-one so only one
possible input event at a time

• Input Modifiers

– One per modifier you will check

– E.g. if you check shift, ctrl, and mouse button, you need 3
input modifier fields

– Within a field mutually exclusive, but can combine input
modifiers simultaneously

• Each modifier independent

39

PPS Elements (3)

• State fields

– Handle control issues

– Encode current status of dialog (e.g. buttonDown, slider)

– Typically one state field (one response to on-going user
action)

• Query fields

– Allow testing of conditions

• Action fields

– Basically the things we want code to do

– Should only appear on RHS.

40

Productions

• Productions are statements with 2

components

– LHS = antecedant

– RHS = consequent

• If LHS is all true, then production fires

– If multiple LHS true, all fire in parallel (for

theoretical convenience)

41

Production (2)

• Example:

• Meaning (1)

– On mouseUp event, with shift down, in selectClick mode,
then

– Add to selections, switch to selectModeIdle

• Meaning (2)

– On mouseUp event, with shift up, in selectClick mode,
then

– Unselect old and create a new selection, switch to
selectModeIdle

mouseUp, shiftDown, selectClick -> !addSelect, selectModeIdle

mouseUp, shiftUp, selectClick -> !newSelect, selectModeIdle

42

Productions (2.5)

• Note

– Input events, input modifiers, query conditions can only
occur on LHS

• These are things user does and information about those actions

• Program has no control over these things

– Actions can only occur on RHS

• These are things that the program should do if LHS holds

• Program does these things in response to characteristics of user
input

• These represent changes to model (or view)

43

Productions (3)

• Consider these two rules

• mouseDown productions

• Basically
– On mouseDown, check to see if there’s an object there.

– If so, then on mouseUp add to selections

– If not, then on mouseUp …

mouseUp, shiftDown, selectClick -> !addSelect, selectModeIdle

mouseUp, shiftUp, selectClick -> !newSelect, selectModeIdle

*mouseDown, ?onObject, selectModeIdle -> selectClick

*mouseDown, ~?onObject, selectModeIdle -> clearSelect

*mouseDown, drawModeIdle -> !newStroke, drawingGesture

44

Scrollbar Example

• Input
– {*mouseDown, *mouseMove, *mouseUp, *mouseExit }

• State
– { idle, steppingLeft, steppingRight, pagingLeft, pagingRight, dragging }

• EssentialGeometry
– { ?leftArrow, ?rightArrow, ?leftBody, ?rightBody, ?slider }

• Model
– { !stepLeft, !stepRight, !pageLeft, !pageRight, !dragStart, !dragEnd, !dragScroll }

• Feedback
– { !sliderActive, !leftArrowActive, !rightArrowActive, !bodyActive, !allPassive }

–

45

Basic Productions

• Basic stepping behaviour

– *mouseDown, idle, ?leftArrow -> steppingLeft, !leftArrowActive

– *mouseUp, steppingLeft -> idle, !allPassive, !stepLeft

– *mouseDown, idle, ?rightArrow -> steppingRight, !rightArrowActive

– *mouseUp, steppingRight -> idle, !allPassive, !stepRight

– *mouseDown, idle, ?leftBody -> pagingLeft, !bodyActive

– *mouseUp, pagingLeft -> idle, !allPassive, !pageLeft

– *mouseDown, idle, ?rightBody -> pagingRight, !bodyActive

– *mouseUp, pagingRight -> !allPassive, !pageRight

• Mouse sliding off control, e.g. stepper arrows

– *mouseMove, steppingLeft, ~?leftArrow -> !allPassive, idle

– *mouseMove, steppingRight, ~?rightArrow -> !allPassive, idle

– *mouseMove, pagingLeft, ~?leftBody -> !allPassive, idle

– *mouseMove, pagingRight, ~?rightBody -> !allPassive, idle

– *mouseExit ~idle -> !allPassive idle

Problems?

• Repeated behaviors

– Only one !stepLeft event when *mouseDown on

left arrow for example

• Add new productions to continue stepping

47

Basic Productions
• Basic stepping behaviour

– *mouseDown, idle, ?leftArrow -> steppingLeft, !stepLeft

– steppingLeft, *mouseDown -> steppingLeft, !stepLeft

– *mouseUp, steppingLeft -> idle, !allPassive,

– *mouseDown, idle, ?rightArrow -> steppingRight, !stepRight

– steppingRight, *mouseDown-> steppingRight, !stepRight

– *mouseUp, steppingRight -> idle, !allPassive,

– *mouseDown, idle, ?leftBody -> pagingLeft, !pageLeft

– pagingLeft, *mouseDown -> !pageLeft

– *mouseUp, pagingLeft -> idle, !allPassive

– *mouseDown, idle, ?rightBody -> pagingRight, !pageRight

– pagingRight, *mouseDown -> !pageRight

– *mouseUp, pagingRight -> idle, !allPassive

• Mouse sliding off control, e.g. stepper arrows

– *mouseMove, steppingLeft, ~?leftArrow -> !allPassive, idle

– *mouseMove, steppingRight, ~?rightArrow -> !allPassive, idle

– *mouseMove, pagingLeft, ~?leftBody -> !allPassive, idle

– *mouseMove, pagingRight, ~?rightBody -> !allPassive, idle

– *mouseExit ~idle -> !allPassive idle

48

Special productions

• What if mouse slides off control while dragging slider

– Adds a getFocus and releaseFocus action in a Focus action
field

• Focus {!getMouseFocus, !releaseMouseFocus }

– Also new productions to handle this

• *mouseDown, idle, ?slider -> !sliderActive, dragging,
!dragStart(mousePoint), !getMouseFocus

• *mouseMove, dragging -> !dragScroll(mousePoint)

• *mouseUp, dragging -> !dragEnd(mousePoint), idle,
!releaseMouseFocus

49

Propositional Productions Summary

• Encode state space in a set of fields

• Fields serve five purposes
– Input events, input modifiers, state information, query fields and

action fields

• After we have behaviour specified, realize in code
– Coding can be long, but productions guide process

– Each input event should be mapped to modification of state
information and/or actions based on

• Input event, state information, input modifiers, and query fields

• Best use
– Custom control design, ensuring everyone is on same page with

behavior

• Used in practice?

50

Advantages of PPSs

• No drawing! Do it all with a simple text editor.
Compact.

• Fits UI needs well:
– Formalize the model
– Informal descriptions of interaction with the real world
– Semi-formal descriptions of view and controller

• How does the complexity of a production system
compare to the complexity of the actual code?

• How does this complexity compare to the alternatives?
– Natural langage?

– Scenarios/Mouse Event Diagrams?

– FSMs?

51

Translating PPS into Code

• Order the conditions of each rule:
– events, state variables (most used to least used),

queries

• Sort the rules

• Group rules into applicable event listeners

• Translate the conditions

• If more than one rule has the same conditions, it
probably means an error in the specification.

• (Textbook has more detail.)

52

Summary

• We use widgets to carry on a “dialogue” with the computer.

• We can use observations about human-human dialogues to
help design human-computer dialogues.

• Typical human-computer dialogues have five parts (from
the computer’s perspective): prompt, echo, accept trigger,
acknowledge, respond

• Documenting these dialogues requires a semi-formal
language because we are trying to bridge the gap between
“open” users and “closed” computers.

• Scenarios, Finite State Machines, and especially
Propositional Production Systems are useful tools for
documenting human-computer dialogues.

