
Custom Widgets

1

2

Overview

• Why?

• User’s Perspective

• Developer’s Perspective

3

Why Design Custom Widgets?

• You design new widgets to

address a need (not

addressed by existing

widgets)

• Many examples of useless

things

– eg: the Segway

– Make sure you need a custom

control before you design one

4

Custom Widgets

• Custom widgets should:
– Address a specific, identified need

– Do one, well-defined task better than existing methods

– Be reusable, customizable across applications

• To meet these goals, we need to consider two
perspectives:
– User’s perspective

– Developer’s perspective

– Both are “users” of the widget

– Remember our interaction model...

5

Interaction Model; Gulfs

Gulf

Gulf Gulf

Gulf

6

User’s Perspective

• What problem is the user trying to solve?

• How does the user conceptualize the
problem?

• How is the user currently solving the
problem?

– What tools and/or information does s/he use?

• How do we find the answers to the above
questions?

7

Example: Cockpit Design

• As cockpits went

“digital,” analog

controls were replaced

with digital controls

• However, soon they

began to see problems

• Why?

8

Example: Cockpit Design

• Pilots don’t rely on speed
numbers

• They set “speed bugs” to
indicate minimum speeds
at different aircraft
weights

• They use spatial
relationships to assess the
situation

• Not possible with early
digital airspeed indicators

9

Example: Undo/Redo in Photoshop

• Users sometimes rapidly execute undo/redo

– But are not fixing a mistake

– Instead, they are assessing the result of their last
action

• Need to look beyond what is being done, and
ask why it is being done

– What purpose is the activity serving?

– User may not be able to tell you

• Why not?

10

Designing for Users

• Observations and interviews help us uncover

user’s real needs and motivations

• Theoretical models are useful...

– What are the gulfs that we need to attend to?

11

Designing for Users

• Physical models (prototypes of the widget) are useful...

– Do walk throughs with potential users

– What can the user do? How will they do it? Any other
actions that need support?

• Address problems with gulf of execution

– How does the control display changes in state? How will
users understand those changes?

• Address problems with gulf of evaluation

• Designing for users is a major focus of CS 489

• But designing for users is only 1/2 the story!

12

Developer’s Perspective

• Goal is to define a self-contained widget that
does one task well

• Developers should easily understand how to
incorporate it into their project
– Correct mental model of how it works

• Widget should be easy to to use

• Widget should be customizable

• Widget architecture should suggest its uses and
how it can be extended so other designers can
reuse it

13

Continuum of Complexity

• Developers primary concept of a widget’s is
based on its complexity

• Complexity is a function of both View and Model

– View – painting.

– Model – representing data.

• Custom widgets can range from the simple

– A new style of button, for example

• To the complex

– JTable

14

Simple Custom Widgets

• Recall behaviour of a typical button

– mouseDown on button?

– mouseUp on button?

• Demo simple custom Widget:

– OnPressButton

– TestButton

15

Some Notes

• Note that “addActionListener” methods are not
included in JComponent

– Create your own

• Need to understand the EventListenerList
listenerList attribute of JComponent

– In Java, a Vector with paired entries

– First the class of the listener, then the listener itself

• fireActionPerformed method also not present

– Implement so that it parses the listenerList firing all
actionListeners

16

Complex Widgets

• Separation of concerns

– MVC (within the widget!)

• Functionality that can change should be factored out,
delegated to separate classes

• Create loose coupling between widget and other parts of
interface

– Design patterns help partition responsibilities,
separate concerns

• Observer, command, strategy, factory

• Design patterns provide a common language to increase
understanding between developers

17

The View

• In Java, generally work within the javax.swing

package rather than java.awt

• Lightweight components just make more

sense

– You are implementing a lightweight component

• Would probably use a Canvas object if

implementing heavyweight custom

component

18

The View

• Typical strategy is to derive a class from JPanel or
JComponent
– Similar, but they imply different uses

• JComponent is a “thing”

• JPanel is a container, or a collection of “things”

• Override paintComponent(Graphics g) to do
display the custom view.
– Much of the task is similar to XWindows programming

– Graphics object, ability to paint and draw strings, etc.

– g is actually a (more capable) subclass of Graphics,
Graphics2D

19

The View

• Implement and attach listeners

– The “controller” part of MVC

– Coordinates the view and model given user input

• “Hide” interaction listeners from public
interface

– E.g. in OnPressButton, the MouseAdapter is an
interaction listener

– Just modifies view based on mousing events, no
interaction with model

20

The Model

• Reuse existing models if they make sense
– If you are creating a new renderer for a list, use the

ListModel rather than creating your own model

– Same with table or tree

– AbstractModels exist and can be incorporated easily by
users
• Remember users are UI builders

• If you need to construct a model, make it an
interface
– Allows UI builders to build an adapter for their data

model using your interface

21

The Model

• Provide a listener interface to notify others when
the model changes

– Reuse existing listener interfaces where appropriate

– PropertyChangeListener / PropertyChangeEvent is a
very flexible mechanism for this

• Consider granularity of listener updates

• Model should be completely independent from
any GUI code

– Should be able to test it by itself

• Examine Java models for inspiration

22

ListModel; TableModel

Four methods in ListModel

addListDataListener (ListDataListener l)

Listener added (notified each change to data
model.

removeListDataListener (ListDataListener l)
Removes listener

getElementAt(int index)
Returns the value at the specified index.

getSize()
Returns the length of the list.

Nine methods in TableModel
addTableModelListener
removeTableModelListener

Similar
getValueAt(int rowIndex, int
columnIndex)

Returns the value for the cell at
columnIndex and rowIndex.

getColumnCount()
getRownCount()

Similar again
getColumnName(int columnIndex)
getColumnClass(int columnIndex)
setValueAt(Object aValue, int rowIndex,
int columnIndex)
isCellEditable(int rowIndex, int
columnIndex)

23

Convenience Classes

• Good idea to add basic convenience classes

• Java’s DefaultListModel, DefaultTableModel,

DefaultTreeModel

– DefaultListModel is a wrapper for a Vector

– DefaultTableModel is a wrapper for a Vector of Vectors

– DefaultTreeModel creates a basic tree of TreeNodes

(another interface)

• But also includes a DefaultMutableTreeNode

• Convenience class to allow you to do basic implementation

easily

24

Integrating Model and View

• Provide methods to get and set model of the
custom component

• In setModel method:
– Unregister listeners from old model

– Register listeners with new model

– Repaint the view to present the new model

• Much of this is automatic with JTable and
DefaultTableModel
– Benefit of convenience classes.

• You may need to handle some of this with your
own models

25

Designing for Other Developers

• BE CONSISTENT

– It should be obvious that Java has a pattern for

widgets

– FOLLOW IT if you are building a widget in Java

26

Summary: Two Users and a Thing

• End User:
– Needs to understand what to do when faced with a widget

and what effect widget will have on data

– Has a mental model of how the widget should be used

• Developer:
– Needs to understand how the widget can be used and how

to integrate it with other UI elements

– Has a mental model of how the widget should be used

• Widget:

– Should afford experimentation

– Should be consistent with the rest of the UI and its widgets

