
UI Design Process

Overview

- User Centered Design: Buzz-words, methodology, state of mind
- Important components in User Centered Design
- Development Process
 - Understanding Users: Scenarios, Functions, Prioritize, Usage Patterns
 - Design the UI: Identify/Design components, Distribute,
 Test
- In more detail in later lectures

Used Centered Design is a...

Buzz Word

Used Centered Design is a...

- Methodology
- Developed at...
- Basic flow:
 - User studies
 - Implementation
 - Usability studies
- Problems:
 - Time...
 - Changes...

Used Centered Design is a...

State of Mind

 Everyone involved with the project "wears the head and hands of a user."

UCD Components (1/2)

- Understand users' needs: "Build a product that meets real, observed needs rather than building something because it can be built."
- Design the UI first: "Design the UI first, and then design the architecture to support that UI."
- **Iterate**: "The best interaction designer in the world will produce only a decent sketch of a UI design on the first try. A great design requires iteration."

UCD Components (2/2)

- **Use it yourself**: "As you use it, observer all the ways your flow is broken when you do the tasks. You'll find obvious problems...that you can fix while it's still relatively cheap."
- Observe others using it: "It is absolutely critical to observe other people using your technology in as realistic a way as possible very early in the development cycle."

 From Designing from both sides of the screen, Isaacs & Walendowski, New Riders Publishing (2002)

Understand the User

Observe existing solutions
List scenarios
List functions required
by scenarios
Prioritize functions
List functions by freq. &
commonality

Design the UI

Identify and design comp. Design comp. distributions Test the design with users

Document the design

Design the Architecture

Identify classes and methods Walk through scenarios Develop a class diagram

Refine the Design

Refine requirements
Add new scenarios
Walk through new scenarios
Adjust user interface design
Adjust architecture

Enough

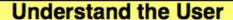
Choose a set of Scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass the tests

Refactor

Evaluate with Users


Understand: Observe Existing Solutions

http://javlaskitsystem.se/2012/02/whats-the-waiter-doing-with-the-computer-screen/

Understand: Scenarios

- are stories of people undertaking activities with technology
- are a natural way to think
 - easy to understand (for developers and users)
 - contain sequencing data
- must be refined/elaborated with appropriate detail
 - exactly what user does
 - how UI changes in response
- have pitfalls
 - typical crowds out the exceptional (exceptional uses and users)
 - often fail to catch "oughts"
 - cannot be formalized (also a strength)
- can have variations
- should be retained
 - written vs. memorized vs. generated on demand

Observe existing solutions
List scenarios
List functions required
by scenarios
Prioritize functions
List functions by freq. &
commonality

Design the UI

Identify and design comp. Design comp. distributions Test the design with users

Document the design

Design the Architecture

Identify classes and methods Walk through scenarios Develop a class diagram

Refine the Design

Refine requirements
Add new scenarios
Walk through new scenarios
Adjust user interface design
Adjust architecture

Good

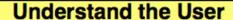
Enough

Choose a set of Scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass the tests

Refactor


Evaluate with Users

Understand: List Functions

- List functions required by the scenarios
 - Some functions will be required by several scenarios
- Prioritize Functions
 - Core: Needed by early users to do something useful
 - Important: Required before shipping the product
 - Nice to Have:

Understand: Usage Patterns

	By Many	By Few
	• •	Only some people will do this task, but they will do it frequently.
	Visible, few clicks	Suggested, few clicks
	• •	Only some people will do this task and only occasionally.
	Suggested, more clicks	Hidden, more clicks

Observe existing solutions
List scenarios
List functions required
by scenarios
Prioritize functions
List functions by freq. &
commonality

Design the UI

Identify and design comp. Design comp. distributions Test the design with users

Document the design

Design the Architecture

Identify classes and methods Walk through scenarios Develop a class diagram

Refine the Design

Refine requirements
Add new scenarios
Walk through new scenarios
Adjust user interface design
Adjust architecture

Enough

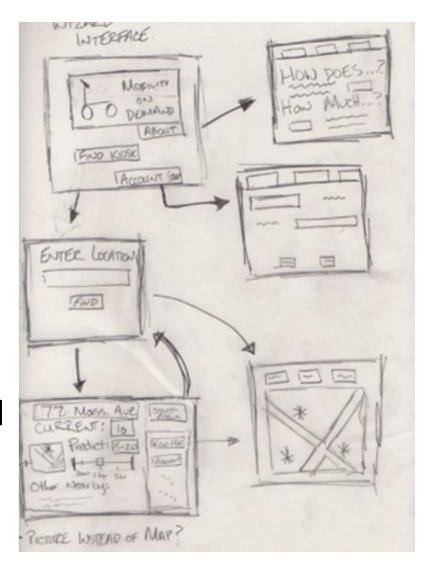
Choose a set of Scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass the tests

Refactor

Evaluate with Users


Design the UI

- Identify/design needed components and component types
 - eg: textfields, buttons, etc.
 - Balance functionality with well-understood component types
 - Assign attributes
 - State: what data does it need?

 - Affordances: what can you do with it?Presentation: how does it appear in the UI?
- Design component distribution: temporal and spacial
 - Screen flow
 - Screen layout
 - Many guidelines -- next lecture!
- Test the design with users
 - So important it gets its own lecture!

Design: Component Distribution

- Temporal distribution:
 - When components appear
 - Flow from one screen to another
- Spatial distribution:
 - Where components appear on an individual screen

CS 449 in brief: Contextual Design

- Explicit process that supports design of software

 - Do contextual inquiryDevelop models of work for people you study
 - Consolidate these models to produce a single picture of your user
- No computers Redesign how user will work with your system as a component
 - Define the overall structure of your system to work with user's new work process
 - Mock-up and test with customers
 - Implement

9 weeks

Design: Test with Users

Another lecture!