
2/6/2013

1

Event Dispatch

1

2

Review: Events

• Event: noun: a thing that happens, especially one of
importance. Example: the media focused on events in
Egypt

• Event: a structure used to notify an application of an
event’s occurrence

• Examples:
– Keyboard (key press, key release)

– Pointer Events (button press, button release, motion)

– Window crossing (mouse enters, leaves)

– Input focus (gained, lost)

– Window events (exposure, destroy, minimize)

– Timer events

2/6/2013

2

3

Review: Why do we need them?

• Users have lots of options in a modern

interface

• Need a uniform, well-structured, way to

handle them

• Need to be able to handle any event, including

those that aren’t appropriate given the

current state of the app

– eg: clicking on a button that is currently disabled

4

Review: Role of the BWS

• Collect event information

• Put in a known structure

• Order the events by time

• Decide to which application/window the

event should be dispatched.

• Deliver the event.

2/6/2013

3

5

Review: BWS: Collecting Events

• Some events come from the user via the

underlying hardware; some from the window

manager.

6

Review: Known structure : X

• X uses a C union
– typedef union {

– int type;

– XKeyEvent xkey;

– XButtonEvent xbutton;

– XMotionEvent xmotion;

– // etc.

– }

• Each structure contains at least the following

• typedef struct {
– int type;

– unsigned long serial; // sequential #

– Bool send_end; // from SendEvent request?

– Display* display;

– Window window;

– } X___Event

2/6/2013

4

7

Review: Known Structure: Java

• Java uses an inheritance hierarchy

• Each subclass contains additional information,

as required (not shown)

8

Review: Event Loop

XEvent event;

while(true) {
XNextEvent(display, &event);
switch(event.type) {

case ButtonPress:
if (event.xany.window == xInfo1.window)

cout << "Got button press in window 1!\n";
else if (event.xany.window == xInfo2.window)

cout << "Got button press in window 2!\n";
break;

case KeyPress:
if (event.xany.window == xInfo1.window)

cout << "Got key press in window 1!\n";
else if (event.xany.window == xInfo2.window)

cout << "Got key press in window 2!\n";
break;

case Expose:
if (event.xany.window == xInfo1.window)

repaintWindow1(xInfo1);
else if (event.xany.window == xInfo2.window)

repaintWindow2(xInfo2);
break;

}
}

2/6/2013

5

9

Event Dispatch

• Event Dispatch: How do we get the correct

code to execute in response to an event?

• Questions:

– Which widget?

• Positional dispatch

– Bottom-up dispatch

– Top-down dispatch

• Focus dispatch

– How do we invoke the code?

10

Dispatch: Positional

• Basic strategy: Send input to the component

the mouse is over.

• Primary issue: Components can overlap, so

which one should receive the event?

– Bottom-up

– Top-down

2/6/2013

6

11

Positional: Bottom-up

• Leaf node (that contains the mouse) in the interactor
tree receives the event
– Can process the event itself

– Send the event to its parent (who
can process it or send to its parent...)

• Why send to its parent?
– Example: A palette of colour swatches may implement the

colours as buttons. But palette as a whole needs to track
the currently selected colour. Easiest if the palette deals
with the events.

• Strategy is applicable to architectures where the BWS
knows everything about each component (eg heavy-
weight toolkits).

12

Positional: Top-down

• Highest level node in the interactor tree (that
contains the mouse) receives the event.

– Can process the event itself.

– Can pass it on to a child component.

• In bottom-up dispatch, the BWS does this to
determine which of the leaf nodes to deliver
the event to.

• Most applicable for light-weight widget
toolkits

2/6/2013

7

13

Top-down vs. Bottom-up

• When do these behave the same way?

• Advantages of top-down?

14

Positional Dispatch Limits

• Positional dispatch is sometimes inappropriate.

– Send keystrokes to scrollbar if mouse over the
scrollbar?

– Mouse starts in a scrollbar, but then moves outside the
scrollbar. Send the events to the adjacent component?

– Mouse button press event in in one button component
but release is in another. Each button gets one of the
events?

• Conclusion: Sometimes we need to give one
control the “focus”.

2/6/2013

8

15

Dispatch: Focus

• When a control has the focus
– Events go to that control, regardless of mouse position.

• Need to pay attention to focus for both keyboard and
mouse events:
– Mouse down on a button, move off, release (mouse focus)

– Click on a text field, move mouse off, start typing (keyboard
focus)

• Only one widget should have control at a time

• Need to gain and lose focus at appropriate times
– Transfer focus on a user click

– Transfer focus on a tab

16

Dispatch: Focus

• Even though a component has focus, it should

not necessarily receive every event:

– Must be able to click on another control to change

focus

– Paint/damage events not necessarily associated

with the component that has focus

• Example: moving a slider has an effect on some other

component which is repainted

2/6/2013

9

17

Dispatch: Focus

• Conclusions:

– Mouse-down events: direct to component under

cursor

– Input events go to the component with focus;

other events may go elsewhere.

– Often helpful to have an explicit focus manager in

a container component to manage which

component has the focus.

18

Dispatch: Accelerator Keys

• Accelerator Keys provide two ways to invoke the same
functionality:
– Via the keyboard: Seems natural to send them to the

component with keyboard focus

– Via the menu: Click on the menu and it gets the focus. So
now who gets the command?

• Have two places in code that do the same thing?

• Alternative:
– Menus register keyboard accelerators with specific menu

items.

– The GUI toolkit intercepts accelerators and forward to the
appropriate menu to be handled

2/6/2013

10

19

Event Delivery

• An event happens…

• The toolkit decides which component it should be
dispatched to.

• Now, how do we actually deliver it? How do we
structure our GUI architecture to deliver the event
information to the code that should handle it?

• Lots of approaches -- X and a case statement is just
one.

• Criteria to judge alternatives:
– Easy to bind event to code

– Clean, easy to understand what happened and why

– Good performance

20

BWS: Delivery Options (1/3)

• Nested Case Statements (X, Original Mac)
– Usually used nested case statements (as above). The outer

case statement to select the window and the inner case to
select the code to handle the event.

• Event Tables (GIGO from Sun)
– Each window has an event table, consisting of addresses of

C procedures that should be called for a specific event.
Index the table based on event type and call the procedure
found there. Fill tables with default values.

• Callbacks (Xtk, Motif)
– Similar to event tables, but distributed to individual

components.

2/6/2013

11

21

BWS: Delivery Options (2/3)

• WindowProc: MS Windows

– Each window has just one callback, called a
WindowProc. The WindowProc uses a case statement
to identify each event that it needs to handle. There
are over 100 standard events. Rather than handling all
of them, it can delegate to another WindowProc.

• Subclassing: Java 1.0

– BWS directs events to the component in which it
occurs. That component inherits from an abstract
class, overriding any methods it needs to modify to
handle the event.

22

BWS: Delivery Options (3/3)

• Listeners: Java 1.1 and later

– Register objects implementing a specific interface

with the component. Appropriate method in each

object is called when event occurs.

• Delegates: .NET

– Only one of the methods in a listener’s interface is

called. Why not provide just a method?

2/6/2013

12

23

Inheritance Doesn’t Scale Well

• Reserve subclassing for extending class’s
functionality.

• Muddies separation between application model
and GUI because app code is integrated directly
into subclassed component.

• All event types are processed through the same
methods: complex, error-prone.

• No filtering of events.

• If the same subclass is used for multiple widgets,
they are often distinguished with button labels:
hard to localize.

24

Delivery: Listeners

• Use the Strategy design pattern to factor out the
behaviour unique to a particular UI component.

• Provide the component with one or more objects
implementing a particular interface (set of
methods). When the event occurs, the relevant
method in the listener objects are called.

• Reference for Java event/listener architecture
(and critique of inheritance-based architecture):

– http://java.sun.com/j2se/1.3/docs/guide/awt/designsp
ec/events.html

2/6/2013

13

25

Inheritance vs. Listeners 1

• Delivering events by overriding methods (inheritance)
leads to a huge class tree or convoluted code

– Every button must be subclassed to respond to clicks

– Everything else about the button remains the same

– Alternative: overridden methods include a switch to
distinguish code for many different button instances

• Inheritance does not lend itself to maintaining a clean
separation between the application model and the
GUI.

• No filtering of events; every event is delivered,
resulting in performance issues

26

Inheritance vs. Listeners 2

• Listener approach factors out the behaviour

that is unique to each application

– Application provides an object implementing the

particular listener interface and the code needed

for a particular button

• This is a common approach in UI toolkits:

– Delegate customizable, application-specific

functionality to configurable run-time objects.

– Next step?

2/6/2013

14

27

Listeners: Adapter pattern

• Many listener interfaces have only a single method;
others have more.
– WindowListener has 7, including

• windowActivated(WindowEvent e)

• windowClosed(WindowEvent e)

• windowClosing(WindowEvent e)

• Typically interested in only a few of these methods.
Leads to lots of “boilerplate” code.

• Each listener with multiple methods has an adapter
with null implementations of each method. Simply
extend the adapter, overriding only the methods of
interest.

28

Adapter

JFrame f = new JFrame();

f.addWindowListener(new WindowListener() {

public void windowClosed(…) {}

public void windowClosing(…) {

System.exit(0);

}

public void windowActivated(…) {}

public void windowDeactivated(…) {}

// and 6 others

});

// Compare to:

f.addWindowListener(new WindowAdapter() {

// Just override the method

// we’re interested in

public void windowClosing(…) {

System.exit(0);

}

});

2/6/2013

15

29

BWS: Delivery: Delegates & .NET

• .NET designed by Microsoft

• Allegedly intended to be cross-platform, but
architecture, conventions clearly rooted in Windows

– Example: Very easy to use native libraries compared to Java
(using P/Invoke), but mechanisms not designed with cross-
platform use in mind (no generic method of loading
dynamic libraries)

• But, still a number of significant improvements in basic
architecture of the VM, core system, and C# language

– Many improvements noteworthy for building GUIs

30

C# and .NET

• C# and .NET architecture very, very Java-esque,
but with more syntactic sugar

– And more liberal use of Capital Letters!

• Once you know Java and Swing, C# is easily
learned

• Example:

– Java: System.out.println(“CS is the best program
ever!”);

– .NET: System.Console.WriteLine(“No, SE is the best
ever!”);

2/6/2013

16

31

.NET + Mono

• Mono an open source implementation of C#

and .NET by Novell and recently taken over by

Xamarin

– GPL, LGPL, and MIT licenses

• Mono 2.0.1 includes WinForms compatibility

(basic GUI system in .NET)

– Most basic .NET GUIs will work in Mono

• Now at version 2.10

32

Responding to Events in .NET

• Rather than listeners, C#/.NET uses delegates

• Delegates an elegant form of

broadcasting/subscribing to events

2/6/2013

17

33

Delegates

• Three components:
– Definition of a delegate type

– Declaration of a delegate instance

– One or more methods assigned to the delegate

• Definition of delegate type defines a method
signature

• Delegate instance maintains a list of references to
methods with that method signature

• Delegate instance can then be invoked to call
those methods

34

Delegates Example

using System;

using System.IO;

public delegate void Logger(string s);

public class DelegateDemo

{ static StreamWriter LogFile;

public static void FileLogger(string s){

LogFile.WriteLine("Error: " + s);

}

public static void StdErrLogger(string s){

System.Console.Error.WriteLine

("Error: " + s);

}

public static void Main() {

LogFile = new

FileInfo("Log.txt").AppendText();

Logger log = null;

log += FileLogger;

log += StdErrLogger;

log += (s) => System.Console.WriteLine

("Error: " + s);

log("Oops!");

log("Oh, no!");

LogFile.Close();

}

}

2/6/2013

18

35

Delegates Example

• (s) => System.Console.WriteLine(s); is a
lambda expression

• log will refer to FileLogger, StdErrLogger, and
the lambda expression

• Will invoke all of the methods when called

• The result (if there is one) returned is the
result of the last method added to the
delegate

• Methods can be removed using the -= syntax

36

Events in .NET

• Events in .NET are an extension of delegates

• Declare an “event” instance instead of a
“delegate” instance:

• public event Logger d;

• “event” keyword allows enclosing class to use
delegate as normal, but outside code can only
use the -= and += features of the delegate
– Gives enclosing class exclusive control over the

delegate

– Outside code can’t wipe out delegate list
(e.g., “myObject.d = null”)

2/6/2013

19

37

• using System;

• public delegate void Logger(string s);

• public class MyClass {

• // add/remove "event" to prove the point

• public event Logger log = null;

• }

• public class OtherClass

• {

• public static void StdErrLogger(string s)

• { System.Console.Error.WriteLine("Err:"+s); }

• public static void Main() {

• MyClass c = new MyClass();

• c.log += StdErrLogger; // allowed

• c.log = StdErrLogger; // not allowed

• c.log("Oops!"); // not allowed

• }

• }

38

Example
• using System;

• using System.Windows.Forms;

• public class HelloWorld : Form

• {

• private void HandleClick(object source, EventArgs args)

• { System.Console.WriteLine("Got button click.");

• }

• public HelloWorld()

• { Button b = new Button();

• b.Text = "Click Me!";

• b.Click += HandleClick;

• this.Controls.Add(b);

• }

• public static void Main()

• { Application.Run(new HelloWorld());

• }

• }

2/6/2013

20

39

Event Queues Revisited

• Java uses listeners to inform components

– Does it still have an event loop?

40

Java Event Queue

• Available from java.awt.Toolkit:

– Toolkit.getDefaultToolkit().getSystemEventQueue()

• java.awt.EventQueue

– Methods for:

• Getting current event, next event

• Peeking at an event

• Replacing an event (push())

• Checking whether current thread is dispatch thread

• Placing an event on the queue for later invocation

2/6/2013

21

41

Awareness Systems

• Latching into event queue allows applications

which are more “aware”: Can change

behaviour based on degree of activity in the

interface

• Provides more nuanced types of interaction

• Some examples of this?

42

Awareness Systems

• IM clients, screensavers can make use of raw

event queue by monitoring “activity”

• When activity drops, can do something

– IM client: Set state to “away”

– Screensaver: Start screensaver

• Issue: Windows allows any application access

to global event queue through windows hooks

– Implications with this?

2/6/2013

22

43

Security

• Open access to global event queue is an

enormous security risk

• Enables keyboard loggers, without user’s

awareness

– Trivial to implement

44

Event Queues and New Input

• Event queue best suited for discrete, low

frequency events

– Breaks down for rich sensor input of high

frequency or high bandwidth

– Example: Pen input

2/6/2013

23

45

Recap

• How events get delivered to application

• How application delivers events to

components

• How components receive and act on events

• Next up:

– Design Process/Custom Controls

