
Long-Running Tasks

1

2

Long Tasks

• What should you do when a task will take
significant time?

– Fetching a large image or long list over a (slow)
internet connection

– Factoring a large number

– Reading a large file

– Searching a directory structure

– etc

• Demo of what not to do...

3

What is wrong?

protected void registerControllers() {
// Handle presses of the start button
this.startStop.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
model.calculatePrimes();

}
});

Find primes in [1, 250000]Find primes in [1, 250000]

Takes ~10 seconds to complete

4

What went wrong?

• Like your X program, Java
has a single dispatch thread.

• Almost all of the processing
happens in response to
events.

• As long as each piece takes
just a little time, this is OK.

• But… we clicked “Start” and
we started to find the
primes in the same thread
that handles the events.

A long task causes subsequent A long task causes subsequent

events to queue up behind it

and the interface becomes

unresponsive.

5

Handling Long Tasks

• Goal is to maintain a highly interactive

application

• Providing feedback, maintaining

responsiveness keeps users happy

– Even if it takes longer to complete the task

• In particular, it is usually a good idea to

provide users with affordances to pause or

cancel tasks, and to view progress

6

Strategies for Long Tasks

• Option 1. Run in the Event Dispatch Thread
– Break the task into smaller subtasks

– Periodically execute each subtask on the Event
Dispatch thread (between handling regular events)

• Option 2. Run in a Separate Thread
– Execute the long-running method on a separate thread

• BUT
– we would like to be able to pause/cancel the tasks and

report progress

– should periodically check for cancellation, and report
progress

7

Common Functionality

• Regardless of specific approach, should
provide methods to execute task, cancel task,
check whether task was completed
successfully, and query progress:

– run()

– cancel()

– isDone()

– wasCancelled()

– progress()

8

Option 1 - Subtasks on Event Thread

• Task object keeps track of current task progress

• Subtasks periodically called on Swing event
thread

– See SwingUtilities.invokeLater() for way to execute on
Swing thread

– Alternatively, see javax.swing.Timer
(there is also java.util.Timer; use the Swing version)

• Every time object told to “run,” it checks current
progress, executes subtask, updates progress,
yields

9

class FindPrimesMP extends AbstractPrimesModel {
private boolean cancelled = false;
private boolean running = false;
private int current = 0; // progress so far

public FindPrimesMP(int min, int max) { super(min, max); }

/* Calculate a some primes in the event thread. If necessary,
* schedule ourselves to calculate some more a little bit
* later. */
public void calculatePrimes() {

this.running = true;
SwingUtilities.invokeLater(new Runnable() {

public void run() {
calculateSomePrimes();
if (!cancelled && current <= max) {

calculatePrimes();
}

}
});

}

10

/** Calculate some prime numbers. Quit when we run out of
* time or we're cancelled or we've reached the maximum
* prime to look for. */
private void calculateSomePrimes() {

long start = System.currentTimeMillis();
while (true) {

if (this.current > this.max) {
this.running = false;
updateAllViews();
return;

} else if (System.currentTimeMillis() - start >= 100) {
updateAllViews();
return;

} else if (isPrime(this.current)) {
this.addPrime(current);

}
current += 1;

}
}

11

• Advantages:
– Can more naturally handle “pausing”

(stopping/restarting) task because it maintains
information on progress of overall task

– Can be run in Swing event thread or separate thread

– Useful in single-threaded platforms (e.g., iPhone, iPad,
etc.)

• Disadvantages:
– Tricky to predict length of time for subtasks

– Not all tasks can easily break down into subtasks
(e.g., Blocking I/O)

Option 1 - Subtasks on Event Thread

12

• Advantages:
– Can more naturally handle “pausing”

(stopping/restarting) task because it maintains
information on progress of overall task

– Can be run in Swing event thread or separate thread

– Useful in single-threaded platforms (e.g., iPhone, iPad,
etc.)

• Disadvantages:
– Tricky to predict length of time for subtasks

– Not all tasks can easily break down into subtasks
(e.g., Blocking I/O)

Option 1 - Subtasks on Event Thread

These are some nasty disadvantages!

It’s better to use threads (Method 2) when possible!

13

• Long method runs in a separate thread

– Typically implemented via Runnable object

• Method regularly checks if task should be

cancelled

• Demo…

Option 2 – Using a Separate Thread

14

class FindPrimesT extends AbstractPrimesModel {
...

public void calculatePrimes() {
new Thread() {

public void run() {
running = true;
long start = System.currentTimeMillis();
while (true) {
if (cancelled || current > max) {

running = false;
updateSwing();
return;

} else if (isPrime(current)) {
addPrime(current);

}
current += 1;
if (System.currentTimeMillis() - start >= 100) {

updateSwing();
start = System.currentTimeMillis();

}
}

}

15

private void updateSwing() {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
updateAllViews();

}
});

}
}.start();

}

16

• Advantages:

– Conceptually, the easiest to implement

– Takes advantage of multi-core architectures

• Disadvantages:

– Extra code required to be able to pause/restart
method

– All the usual Thread baggage

• Race conditions

• Deadlocks

• Etc.

Option 2 – Using a Separate Thread

17

• WARNING: Swing is not thread safe!

• Don’t call Swing methods or access Swing

components from outside the Event Dispatch

thread

• From task thread, use invokeLater to schedule

code to run in the Event Dispatch thread

• Use synchronized keyword to protect critical

sections

Option 2 – Using a Separate Thread

18

“synchronized” keyword

• Java’s strategy for handling concurrency is to use
the “Monitor” abstraction

– Conceptually higher level than semaphores and
mutexs

– Overall goal is the same: provide mutually exclusive
access to critical sections

• Methods marked with the “synchronized”
keyword can only be access by one thread a time.

– Synchronizing both run() and cancel() methods means
cancel() can’t execute until after run() has finished

19

“synchronized” keyword

public class ThreadSafeCounter {
private int c = 0;

public synchronized void increment() {
this.c++;

}

public synchronized void decrement() {
this.c--;

}

public synchronized int value() {
return this.c;

}
}

20

Long Tasks and MVC

• MVC strives to have a complete separation

between model and view

• What do you see happening as we break task

up?

21

Long Tasks and MVC

• Long tasks start to break clean separation of MVC

• Model’s methods need to be designed to allow
user to stop them, to maintain interactivity
– Needed to service event queue

– Needed to allow user to stop method

• May need methods to inquire about length of
task completion
– Not part of “model” – part of interaction

• Usability concerns are thus directly influencing
design of model to accommodate user interaction

Up Next: Design

