
2/4/2013

1

Model-View-Controller

1

2

Applications with Multiple Views

• Two (or more!) views
is normal. Examples:

• MS Word
– outline view, normal

view, map

– often at the same time

• Excel
– table, chart

• Windows Explorer
– folder view, file view,

address

2/4/2013

2

3

Design Considerations

• When one view changes, the other(s) should
change as well.

• The user interface probably changes more and
faster than the underlying application
– Many of the changes to the most recent version of

Office were to the UI

– Excel’s underlying functions and data structures are
probably very similar to Visicalc, the original
spreadsheet

• How do we design software to support these
observations?

4

Possible Design

• Issues with bundling
everything together:
– What if we want to

display data from a
different type of source
(eg: a database)?

– What if we want to add
new ways to view the
data?

• Primary Issue: Data
and its presentation
are tightly coupled

2/4/2013

3

5

Solution: Model-View-Controller

• Interface architecture decomposed into

three parts:

– Model: manages

the data and its

manipulation

– View: manages

the presentation

of the data

– Controller: manages

user interaction

6

MVC background

• History

– Developed in Smalltalk-80 in 1979 by Trygve

Reenskaug

– Now the standard design pattern for graphical user

interfaces.

• Used at many levels

– Overall application design

– Individual components

• eg: JTable

2/4/2013

4

7

• MVC in Theory
– View and Controller

both refer to Model
directly

– Model uses the
observer design pattern
to inform view of
changes

• MVC in Practice
– Model is very loosely

coupled with UI using
the observer pattern

– The View and
Controller are tightly
coupled

– Why?

8

MVC as UML (Java Version)

Note that MyView does not need

to implement IView. It could

provide an anonymous inner class

to MyModel instead.

2/4/2013

5

9

Observer Design Pattern

• MVC is an instance of the Observer design
pattern

• Provides a well-defined mechanism that allows
objects to communicate without knowing each
others’ specific types
– Promotes loose coupling

• AKA “listener” and “publish-subscribe”
– Delegates in C#

• Examples in Java
– ActionListener, PropertyChangeListener,

WindowListener…

10

Observer Design Pattern

2/4/2013

6

11

Sample Code: Triangles

• Demo the program

– Requirements: Vary the
base and height of a right
triangle. Display the
hypotenuse.

• Examine the model

• Examine
SimpleTextView; discuss
its deficiencies

• Examine TextView

12

Multiple Views

2/4/2013

7

13

A Graphical View

• Click the right side to
select

• Once selected:
– show “handles” for

dragging

– drag the right side to
change the base

– drag the apex to change
both the base and the
height

– adjust cursor when over
the right side or the apex

• Similar to A02

14

Process

• Set up the infrastructure

– Write three classes:

• the model

• one or more view/controller classes (extends JComponent or
JPanel)

• a class containing the main method

– In the main method:

• create an instance of the model

• create instances of the views/controllers, adding to them the
model

• display the view(s) in a frame

2/4/2013

8

15

Process (cont.)

• Build and test the model

– Design, implement, and test the model

• add commands used by controllers to change the model

• add queries used by the view to update the display

– Call updateAllViews just before exiting any public method
that changes the model’s data

• Build the Views and Controllers

– Design the UI as one or more views. For each view:

• Construct components

• Lay the components out in the view

• Write and register appropriate controllers for each component

• Write updateView to get and display info from the model; register it
with the model.

16

MVC Rationale 1: Multiple Views

• Separation of concerns enables multiple, simultaneous
views of the data.

• Given the same set of data, we may want to render it in
multiple ways:
– a table of numbers
– a pie chart
– a line graph
– an audio stream
– ...

• A separate model makes it easier for different UI
components to use the same data
– Each view is unencumbered by the details of the other views

– Reduces dependencies on the GUI that could change

2/4/2013

9

17

Example: PowerPoint

12

3

18

MVC Rationale 2: Alt. Interactions

• Separation of concerns enables alternative forms

of interactions with the same underlying data.

• Data and how it is manipulated (the model) will

remain fairly constant over time.

– Consider a stable application like…

• How we present and manipulate that data (view

and controller) via the user interface will likely

change more often than the underlying model.

2/4/2013

10

19

MVC Rationale 3: Code Reuse

• Separation of concerns enables programmers

to more easily use a stock set of controls to

manipulate their unique application data.

• Example: JTable

– Because the model is separated out, it can be used

to manipulate many kinds of data stored in many

different ways.

– More time and attention can be given to JTable

itself to make it more robust and versatile.

20

MVC Rationale 4: Testing

• Separation of concerns enables one to more

easily develop and test data-specific

manipulations that are independent of the

user interface

2/4/2013

11

21

MVC and Java

• Observers: Java’s Listeners are a more complex
version of the Observer pattern
– Used on a smaller model: a component

– Multiple “update” methods

– “Update” methods have parameters

• Controllers:
– Implemented in Java using inner classes

– Generally an instance of a Listener

• MVC can occur at multiple granularities
– And does in Java!

22

Simple Widgets

• Modern widget toolkits use MVC throughout

• Simple widgets usually contain a default model
within themselves

• Examples: buttons, checkboxes, scrollbars, ...

2/4/2013

12

23

Complex Widgets

• More complex widgets expect the application to
implement model interface or extend an abstract
class

• Examples: table and tree widgets

24

Table Model
public interface TableModel {

int getColumnCount();

String getColumnName(int columnIndex);

Class<?> getColumnClass(int columnIndex);

int getRowCount();

Object getValueAt(int rowIndex, int columnIndex);

void setValueAt(Object aValue, int rowIndex, int columnIndex);

boolean isCellEditable(int rowIndex, int columnIndex);

void addTableModelListener(TableModelListener l);

void removeTableModelListener(TableModelListener l);

}

2/4/2013

13

25

Table Model Listener
public interface TableModelListener {

void tableChanged(TableModelEvent e);

}

public class TableModelEvent {

TableModelEvent(TableModel source) { ... }

TableModelEvent(TableModel source, int row) { ... }

TableModelEvent(TableModel source, int firstRow, int lastRow) { ... }

TableModelEvent(TableModel source, int firstRow, int lastRow, int column) { ... }

TableModelEvent(TableModel source, int firstRow, int lastRow,

int column, int type) { ... }

int getColumn() { ... }

int getFirstRow() { ... }

int getLastRow() { ... }

int getType() { ... } // one of INSERT, UPDATE, DELETE

}

26

Customizing JTable

• JTable has a TableColumnModel with information about each column

in the table.

• The TableColumnModel has methods like:

– void addColumn(TableColumn aColumn)

– TableColumn getColumn(int columnIndex)

– int getColumnCount()

– int[] getSelectedColumns()

– void moveColumn(int columnIndex, int newIndex)

• TableColumnModel is actually an interface; there is a

DefaultTableColumnModel that implements the standard column-

handler. It chooses appropriate TableColumn instances based on the

type of data returned by getColumnClass() in the TableModel.

2/4/2013

14

27

Customizing JTable

• The TableColumn has information about a single
column.

• It has methods like:

– void setCellRenderer(TableCellRenderer cellRenderer)

– void setCellEditor(TableCellEditor cellEditor)

– void setPreferredWidth(int preferredWidth)

– void setMinWidth(int minWidth)

– void setResizable(boolean isResizable)

– void setHeaderRenderer(TableCellRenderer
headerRenderer)

