
1/26/2013

1

Layout

1

2

Interface Layout

• Layout of components can be thought of as

two processes:

– Determining an optimal visual layout (ie, applying

principles of good graphic design)

– Applying algorithms that maintain that desired

visual layout through resizes of window

• This lecture focuses on the latter

1/26/2013

2

3

4

Dynamic Layout

• Windows are dynamic, can be resized

• Through any resize, we wish to:

– Maintain consistency in interface’s presentation

– Preserve affordances communicated through

interface’s layout

• Need to dynamically modify allocation of

space, locations of objects in interface

1/26/2013

3

5

Dynamic Layout

• Dynamic layout a process of:

– Specifying components

– Specifying desired constraints for the components

and their relationships with respect to one another

– Attempting to satisfy those constraints

• Dynamic layout has applications in:

– User interface design

– Document layout (eg, TeX)

6

Layout Design Patterns

• Layout in Java makes heavy use of two design

patterns:

– Strategy Pattern

– Composite Pattern

1/26/2013

4

7

Strategy Design Pattern

• Factors out an algorithm into separate object, allowing
a client to dynamically switch algorithms

• Really simple example:
– quicksort’s compare function for sorting any data set

• Other examples?

• A container has a LayoutManager: an object that
factors out the algorithm to size & position the
container’s components
– eg: container.setLayout(new GridLayout(2, 3));

– Can vary the LayoutManager independently of container
and components

8

Strategy Design Pattern

1/26/2013

5

9

Composite Design Pattern

• Containers maintain a collection of

components

– A container is a component

– So some of the components a container maintains

may be containers. And some of their components

may be containers. And some of their components

may be ...

10

Java Layout Demo

• LayoutDemo.java

• Available on CS349 Resources page.

• Think about: How would you use these tools

to layout

1/26/2013

6

11

General Layout Strategies

• Fixed layout

• Intrinsic size

• Variable intrinsic size

• Struts and springs

• Constraints

12

Fixed Layout

• Components are of a fixed size, position

• In Java, achieved by setting LayoutManager to

null

• Where/when is this practical?

• How can it break down even when windows

aren’t resized?

1/26/2013

7

13

Intrinsic Size Layout

• Query each item for its preferred size

• Grow the component to perfectly contain

each item

• A bottom-up approach where top-level

component’s size completely dependent on its

contained components

• Example LayoutManagers in Java that use this

strategy

– BoxLayout, FlowLayout

• Examples of use in interface design?

14

Variable Intrinsic Size Layout

• Layout determined in bottom-up and top-

down phases

• Example LayoutManagers in Java

– GridBagLayout

– BorderLayout
public void doLayout(Rectangle bounds) {
foreach child widget C {

get preferred size of C
}
decide where each child widget should go
foreach child widget C {

C.doLayout(new bounds for C);
}
}

1/26/2013

8

15

Struts and Springs Layout

• Layout specified by marking aspects of

components that are fixed vs. those that can

“stretch”

• Strut defines a fixed length (width/height)

– Specifies invariant relationships in a layout

• Spring defines a space that “pushes” on

nearby edges

– Specifies variable relationships

– Called “Glue” in Java

• Example LayoutManagers in Java

16

Struts and Springs Uses

• One of the most common strategies,

especially in user interface builders

• Provides easily accessible metaphors for

people performing layout

• Difficult to layout by hand

1/26/2013

9

17

Constraints-based Layout

• Specify the mathematical relationships

between components of the interface.

– All of the layout managers have constraints to

some degree.

– This is meant to be more general.

• Prefuse takes it to a new level

– Demo

• AggregateDemo

• GraphView

• Fisheye Menu

• TreeView

18

Java Tips and Strategies

• javax.swing.Box has number of useful items

that can be used in any layout manager

– “Glue”

• Box.createHorizontalGlue()

• Box.createVerticalGlue()

• Similar to notion of “springs”: Expands to fill space

– Struts

• Box.createHorizontalStrut(...)

• Box.createVerticalStrut(...)

– Rigid areas

• Box.createRigidArea(...)

1/26/2013

10

19

• Break up

the UI

recursively

with panels

that

contain

panels.

• Cluster

component

s into

panels

Tips and Strategies

20

Tips and Strategies

• Define your own layout manager if necessary

– See FormLayout.java in the Model-View-Controller

sample code.
public interface LayoutManager
{ void addLayoutComponent(String name, Component
comp);

void removeLayoutComponent(Component comp);
Dimension preferredLayoutSize(Container parent);
Dimension minimumLayoutSize(Container parent);
void layoutContainer(Container parent);

}
// LayoutManager2 has methods for specifying constraints

