
1/26/2013

1

Widget Toolkits

1

2

Overview

• Widget toolkits overview

• Design goals

– Common widget types

• Lightweight vs heavyweight widgets

• Swing Demo

1/26/2013

2

3

Widget toolkits

• Also called widget libraries or GUI toolkits

• Software bundled with a window manager, operating
system, or application platform

• Defines a set of GUI components that can be used by
programmers

– Examples: buttons, drop-down menus, sliders, progress
bars, lists, scrollbars, tab panes, file selection dialogs, etc.

• Programmers access these GUI components via an
application programming interface (API)

• Users use these components to control an application

4

Event-driven programming

• Widget toolkits typically support event-driven
programming model

• Reactive systems
– User ac4on → program response

– Most of the time the program sits around doing
nothing

• Widget toolkit supports a mechanism for
mapping user action on widget to appropriate
application code to handle that action
– In X:

– In Java:

1/26/2013

3

5

Design Goals

• GUI toolkit should be:

– Complete

• GUI designers have everything they need

– Consistent

• Behaviour is consistent across components

– Customizable

• Developer can reasonably extend functionality to meet
particular needs of application

• Meeting these requirements encourages
reuse.

6

Completeness

• Component types
– Canvases

• For drawing

– Informational
• Non-interactive presentation (e.g. label, tooltip, progress bar, ...)

– Selectors/Changers
• For choosing among items (e.g. list, menu, checkbox, button, …)

• For modifying a value (e.g. sliders, scrollbars, ...)

– Containers
• For containing/grouping other components (e.g. frames, internal

frames, panels, ...)

– Text input
• For text entry (e.g. single line input, text area, rich text editor, ...)

1/26/2013

4

7

Completeness

• The “Macintosh 7” (Dix, Finlay, Abowd, Beale, 1998)

– Button

– Slider

– Pulldown menu

– Check box

– Radio button

– Text entry / edit fields

– File open / save

• To see the rich spectrum of controls available in Java Swing,
check out SwingSet2 in demo/jfc folder of jdk installation
(/usr/jdk…/demo/jfc/SwingSet2). Or download from
java.sun.com/products/jfc/jws/SwingSet2.jnlp

8

Consistency

• Facilitate learning by:

– Employing common visual and/or auditory

presentation

– Sharing look and feel

• What is meant by “look and feel”?

1/26/2013

5

9

Consistency

• Look and Feel

– Look: The visual appearance of objects on the

display

– Feel: The behaviour of the program in response to

user actions

• Widget toolkits support look and feel

– Given only display (excluding window frames):

• Would you recognize a Java application?

• A Windows or Mac app?

10

1/26/2013

6

11

Customizable

• Component should provide suitable hooks for extension and
customization for particular applications

• Common strategies

– Flags/variables that can be directly set

• Examples:

– Component colour

– Component text

– Component size

– Factor out behaviour that can change

• Examples:

– Responding to an action: ActionListener

– Swing’s UIManager look and feel

– JTable as a rich example…

12

Customizable: JTable

• JTable factors out much of its functionality

– The actual data (TableModel) (part of MVC pattern)

– Selection of items (ListSelectionModel)

– Rendering of cells (TableCellRenderer)

– Editing of cells (TableCellEditor)

• Developer has lots of flexibility in the data that

can be represented, how it can be selected, its

method of presentation, and its method of

editing

1/26/2013

7

13

Implementation Choices

• Heavyweight Widgets

– Provided by the OS

– Examples: nested XWindows, Java’s AWT

• Lightweight Widgets

– OS provides a canvas; toolkit draws widgets on it

and interprets events delivered to the canvas

– Example: Java Swing

14

Heavyweight Widgets

• Operating system typically includes built-in
widget toolkit
– OS widgets are called heavyweight widgets

• Benefits
– Events generated by user action is passed by OS

directly to components

– Preserves OS look and feel

• Disadvantages
– EITHER OS specific programming, OR Widgets are a

greatest common subset of those available on different
platforms

1/26/2013

8

15

Lightweight widget toolkits

• Application built with widget toolkit gets one

heavyweight component

– An application window

• OS delivers all user generated events to that

window

• Widget toolkit draws its own widgets and is

responsible for mapping events to their

corresponding widgets

16

Java

• Java has two primary widget toolkits

– AWT

– Swing

• AWT is a heavyweight toolkit

– Components in AWT are OS components, mapped onto
the Java language

• Objects like Button, Canvas, Choice, Frame, Label, List,
MenuBar, Panel, PopupMenu, Scrollbar, TextArea, Window.

– OS is aware of these components and can map events
onto them

1/26/2013

9

17

AWT Toolkit

• AWT is minimal toolkit

– No Spinner, no combo box, no progress bar

• Idea is to try to identify components that are
supported on most platforms and map the
Java language to these

• Means that programmers need to re-create
unsupported widgets, or find a library that
creates these unsupported widgets

• AWT itself is “least-common denominator”

18

Swing Toolkit

• Originally a separate download

• Toolkit is a collection of widgets implemented in Java

• Basic mapping is:

– Java gets a Canvas object inside a window from the OS

– Canvas object also has graphics object
– Java code is used with the graphics object to draw swing

components onto Canvas.

• Mixing Swing and AWT in the same application gave
problems with visibility

– Two different rending pipelines with the OS pipeline being
unaware of the Swing pipeline.

– Result: Swing was all-or-nothing

1/26/2013

10

19

Eclipse’s SWT

• Standard Widget Toolkit

• OS components written in Java but rendered
using native OS routines

• SWT and Swing are different tools that were built
with different goals in mind.
– SWT: provide a common API for accessing native

widgets across a spectrum of platforms. The primary
design goals are high performance, native look and
feel, and deep platform integration.

– Swing: designed to allow for a highly customizable
look and feel that is common across all platforms

20

SWT Pros & Cons

• Swing

• Components written in Java and rendered in Java

– Consistency across platforms

– More extensive

• Platform feel issues

– Often doesn’t match platform’s look and feel

• SWT

• Java wrapper for native libraries, with special purpose components added
in Java

– Deeper integration with OS to preserve look and feel

– Simpler without extraneous functionality

• Portability issues

– Good integration with Win32, but problems on other platforms

• Very difficult to port

1/26/2013

11

21

Swing Demo

• Creating a new project

• “Hello, World!”

• JFrame; exit-on-close

• Add a button

• Set layout manager

• Make the button do something

• Add a table

