
1/26/2013

1

Multiple Windows

1

2

X Design Criteria 1

• The X Window System by Robert W. Scheifler and Gim
Gettys in ACM Transactions on Graphics, Vol. 5, No. 2, April
1986, defines the following design goals for X. See the full
paper on the course web site.

1. “implementable on a variety of displays”

2. “applications must be device independent”

3. “system must be network transparent”

4. “must support multiple applications displaying
concurrently”

5. “support many different application and management
interfaces”

1/26/2013

2

3

X Design Criteria 2

6. “must support overlapping windows, including
output to partially obscured windows”

7. “support a hierarchy of resizable windows, and an
application should be able to use many windows
at once.”

8. “provide high-performance, high-quality support
for text, 2-D synthetic graphics, and imaging”

9. “system should be extensible”

• How to support multiple windows?

4

Multiple Windows

1/26/2013

3

5

Base Window System

6

Base Window System
• Lowest level abstraction for

windowing system

• Provides routines for
creating, destroying,
managing windows

• Routes input to correct
window

• Ensures only one application
changing frame buffer (video
memory) at a time

– Is one reason why you see
only single-threaded / non-
thread-safe GUI architectures

1/26/2013

4

7

Base Window System

• Creates canvas abstraction for applications
– Applications shielded from details of frame buffer,

visibility of window, other application windows

• Each window has its own coordinate system
– BWS transforms between

coordinate systems

– Each window does not
need to worry where it is
on screen, always assumes
its top-left is (0,0)

• Provides basic graphics routines
for drawing

8

Window Manager

• Window Manager provides conceptually

different functionality

– Layered on top of Base Window System

– Provides interactive components for windows

(menus, close box, resize capabilities)

– Creates the “look and feel” of each window

1/26/2013

5

9

Window Manager

• Frame vs. content area (actual canvas)

10

BWS vs. Window Managers

• X separates Base Window System from Window
Manager
– Enables many alternative “look and feels” for

windowing system (e.g., KDE, GNOME, fvwm…)

– One of the keys to its lasting power: Can continue to
grow by changing the Window Manager layer

• Each a separate process

1/26/2013

6

http://en.wikipedia.org/wiki/KWin

http://en.wikipedia.org/wiki/File:Dwm-screenshot.png

Types of window managers:
•Stacking
•Tiling
•Compositing

12

BWS vs. Window Managers

• Macintosh, Windows bundle Base Window

System and Window Manager together

– Very difficult for 3rd party to achieve alternative

look and feel

• Trade-offs in approaches?

– Look and feel…

– Window management possibilities…

– Input possibilities…

1/26/2013

7

13

Multiple Windows in X

• Modified x3_events.cpp to produce
x7_multiwindow.cpp:
– initX: some one-time initialization moved to the main

program. Added parameters for the root window, and
location/size.

– repaint: replaced with repaintWindow1 and
repaintWindow2, each with slightly different code

– main: declared xInfo1 and xInfo2. Called initX twice to
initialize them.

– modifications to the event loop (forthcoming)

• Result on next slide

14

1/26/2013

8

15

Event Loop

XEvent event;

while(true) {
XNextEvent(display, &event);
switch(event.type) {

case ButtonPress:
if (event.xany.window == xInfo1.window)

cout << "Got button press in window 1!\n";
else if (event.xany.window == xInfo2.window)

cout << "Got button press in window 2!\n";
break;

case KeyPress:
if (event.xany.window == xInfo1.window)

cout << "Got key press in window 1!\n";
else if (event.xany.window == xInfo2.window)

cout << "Got key press in window 2!\n";
break;

case Expose:
if (event.xany.window == xInfo1.window)

repaintWindow1(xInfo1);
else if (event.xany.window == xInfo2.window)

repaintWindow2(xInfo2);
break;

}
}

16

Nested Windows

xInfo1.display = display;
xInfo1.screen = screen;
initX(argc, argv, xInfo1, DefaultRootWindow(display),

100, 100, 800, 600);

xInfo2.display = display;
xInfo2.screen = screen;
initX(argc, argv, xInfo2, DefaultRootWindow(display),

50, 50, 300, 200);

xInfo1.display = display;
xInfo1.screen = screen;
initX(argc, argv, xInfo1, DefaultRootWindow(display),

100, 100, 800, 600);

xInfo2.display = display;
xInfo2.screen = screen;
initX(argc, argv, xInfo2, xInfo1.window, // Change “root” window

50, 50, 300, 200);

1/26/2013

9

17

18

Widgets

• Nested windows are the beginnings of
widgets...

– “Widgets” is a generic name for parts of an
interface that have their own behavior: buttons,
progress bars, sliders, drop-down menus, spinners,
file dialog boxes, ...

– Can have their own appearance

– Receive and interpret their own events

– Put into libraries (toolkits) for reuse

– ...

