
1/22/2013

1

2D Graphics

1

2

Direct Manipulation

• GUIs often allow direct manipulation of on-
screen artifacts with the mouse

• Need to perform many inside tests to
implement DM

– Easy for rectangles

– Not so easy for
other shapes

– Need a general
strategy

for (Item item : displayList)

{ if (item.contains(mouse.x, mouse.y)) {

{ ...

}

}

1/22/2013

2

Assignment 2

4

Introduction

• What is Computer Graphics?
– Creation, storage, and manipulation of images and their

models

• Images: what we see on the display

• Model: a representation (often mathematical) of the
image
– 2D array of color values

– Lines making up a stick figure

– Points on the surface of an
object, arranged in a mesh

– A graph representing wires in
electrical circuit

http://www.secondpicture.com/tutorials/3d/3d_model_of_a_human_head.png

1/22/2013

3

5

Modeling versus Rendering

• Modeling: Representing the important properties of
an object (location, size, orientation, color, texture, etc)
in data structures

• Rendering: Using the properties of the model to create
an image to display on the screen

– For pixel-based graphics (photos, Photoshop or GIMP
output) the rendering is trivial

– Other models may involve very complex steps to render the
image (Illustrator, rendering movie scenes for Toy Story or
Transformers or ...)

• CS349: modeling and rendering in 2D; CS488: 3D

6

Modeling with a Scene Graph

• See A02
sample
code

• Each part
draws its
children

• Each part
specifies its
location,
size, and
orientation

1/22/2013

4

7

Modeling with a Scene Graph

• To specify the location, size, and orientation of

each part, we need several transformations on

geometric objects:

– translation (location)

– scaling (size)

– rotation (orientation)

8

Translation

• Translating a coordinate means adding a
vector to each of its components

1/22/2013

5

9

Scaling

• Scaling a coordinate means multiplying each of its
components by a scalar

• Uniform scaling means this scalar is the same for all
components:

10

• Non-uniform scaling: different scalars per
component:

Scaling

1/22/2013

6

11

2-D Rotation

Trig Identities...

Substitute...

12

2-D Rotation

lank
Sticky Note
r cos(phi)sin(theta) + r sin(phi)cos(theta)

1/22/2013

7

13

Combining 2D Transformations

• Rotate:

• Translate:

• Scale:

14

Combining 2D Transformations

• Rotate:

• Translate:

• Scale:

1/22/2013

8

15

Combining 2D Transformations

• Rotate:

• Translate:

• Scale:

16

Combining 2D Transformations

• Rotate:

• Translate:

• Scale:

Note: Order of operations is important.

What if you translate first?

1/22/2013

9

17

Matrix Representation

• Goal: Represent each 2D transformation with a
matrix

• Multiply matrix by column vector
⇔ apply transformation to point

18

Matrix Representation

• Why? Transformations can be combined by
multiplication

• We can multiply transformation matrices together

– This single matrix can then be used to transform many
points

– Can be downloaded to a GPU to speed the process

1/22/2013

10

19

2x2 Matrices

• What types of transformations can be

represented with a 2x2 matrix?

2D Scale around (0,0)?

20

2x2 Matrices

• What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

1/22/2013

11

21

2x2 Matrices

• What types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

22

2x2 Matrices

• What types of transformations can be

represented with a 2x2 matrix?

2D Translation?

No! Only linear 2D transformations

can be represented with a 2x2 matrix

1/22/2013

12

23

Homogeneous Coordinates

• Homogeneous coordinates

– represent coordinates in 2 dimensions with a 3-
vector

• Homogeneous coordinates simplify 2D
transformations

24

Homogeneous Coordinates

• Q: Can we represent translation as a 3x3

matrix?

1/22/2013

13

25

Homogeneous Coordinates

• Q: Can we represent translation as a 3x3

matrix?

26

Translation

• Example of translation

1/22/2013

14

27

Homogeneous Coordinates

• Add a 3rd coordinate to every 2D point

– (x, y, w) represents a point at location (x/w, y/w)

– assume w > 0

• Convenient coordinate system to represent many

useful transformations

(3, 2, 1) or

(6, 4, 2) or

(7.5, 5, 2.5) or

...

28

Vectors?

• Points: represent a position

• Vectors: represent direction and magnitude

• Operations:

– v + v = v

– v x s = v

– p - p = v

– p + v = p

1/22/2013

15

29

Representing Vectors

Add vectors Scalar Multiply

Subtract points Point + Vector

30

Translating Vectors

• A vector has no position, so translating it

shouldn’t change anything.

1/22/2013

16

31

Rotation Matrix

• Vectors:

• Points

32

Scaling Matrix

• Vectors:

• Points

1/22/2013

17

33

Matrix Composition

• Transformations can be combined by matrix

multiplication

34

Matrix Composition

• Review: Properties of Matrix Multiplication

– Associative: A(BC) = (AB)C

– Not CommutaLve: AB ≠BA

• Order of transformations matters!

“Global” “Local”

1/22/2013

18

35

Matrix Composition

• What if we want to rotate and translate?

– Ex: Rotate line segment by 45 degrees about

endpoint a

36

Multiplication Order – Wrong Way

‣ Beginning situation

‣ Rotate 45 degrees, R(45)

✦ Affects both endpoints

‣ Could try translating both

endpoints to return a to its

original position

✦ But by how much?

✦ Oops

1/22/2013

19

37

Multiplication Order

• Scaling and
rotation are
both about
the origin

• Process:
– Translate

shape to the
origin

– rotate

– translate
back to
where you
want it

package affineRotateLine;

import javax.swing.*;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.BasicStroke;

public class RotateLine extends JComponent {

public static void main(String[] args) {

RotateLine canvas = new RotateLine();

JFrame f = new JFrame("Rotate Line");

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.setSize(400, 400);

f.setContentPane(canvas);

f.setVisible(true);

}

1/22/2013

20

public void paintComponent(Graphics g) {

Graphics2D g2 = (Graphics2D) g;

g2.translate(20, 240);

g2.setStroke(new BasicStroke(3));

g2.drawLine(0, 0, 0, -200); // vertical axis

g2.drawLine(0, 0, 200, 0); // horizontal axis

g2.setStroke(new BasicStroke(5)); // line

g2.setColor(Color.RED);

g2.drawLine(40, 0, 120, 0);

g2.drawOval(40-4, -4, 8, 8);

g2.drawOval(120-4, -4, 8, 8);

// Copy last 4 lines. Change color to GREEN.

// What transformations to include to have it rotate

// 45 degrees about the left-most endpoint?

}}

40

Java2D Intro

• Check out the Graphics class and Graphics2D,

a subclass

– paint methods specify a Graphics object (to be

backward compatible)

– The object passed is actually a Graphics2D object;

cast it

• Graphics2D contains an affine transform that

is applied to shapes before they are drawn

1/22/2013

21

41

Useful Graphics2D methods

– AffineTransform getTransform(),

void setTransform(AffineTransform Tx)

• Returns/sets a copy of the current Transform in the Graphics2D context.

– void rotate(double theta),

void rotate(double theta, double x, double y)

• Concatenates the current Graphics2D Transform with a rotation transform.

• Second variant translates origin to (x,y), rotates, and translates origin (-x, -y).

– void scale(double sx, double sy)

• Concatenates the current Graphics2D Transform with a scaling transformation.

Subsequent rendering is resized according to the specified scaling factors relative

to the previous scaling.

– void translate(double tx, double ty)

• Concatenates the current Graphics2D Transform with a translation transform.

42

Java2D AffineTransform Class

• AffineTransform handles all matrix manipulations

– A bit more control than Graphics2D

• Static Methods

– static AffineTransform getRotateInstance(double theta)

– static AffineTransform getRotateInstance(double theta,
double anchorx, double anchory)

– static AffineTransform getScaleInstance(
double sx, double sy)

– static AffineTransform getTranslateInstance(
double tx, double ty)

1/22/2013

22

43

Java2D AffineTransform Class

• Concatenation methods
– void rotate(double theta),

void rotate(double theta, double anchorx, double
anchory)

– void scale(double sx, double sy)

– void translate(double tx, double ty)

– void concatenate(AffineTransform Tx)

• Other Methods
– AffineTransform createInverse()

– void transform(Point2D[] ptSrc, int srcOff,
Point2D[] ptDst, int dstOff, int numPts)

44

Class Exercise

• Develop the transformations to animate a

triangle (drawn at the origin) in a circle in two

different ways:

1/22/2013

23

Scene Graphs

• Each part has

a transform

matrix

• Each part

draws its

children

relative to

itself

46

Benefits of Geometrical Manipulations

• Allow reuse of objects in scenes

– Can create multiple instances by translating model
of object and re-rendering

• Allows specification of object in its own
coordinate system

– Don’t need to define object in terms of its screen
location or orientation

• Simplifies remapping of models after a change

– E.g. animation

1/22/2013

24

47

Inside Tests

• Mouse and

model must

use the same

coordinate

system

• Two options:

– Transform

mouse

– Transform

shapes

48

Transform Mouse

• Only one

transformation

• Within 3 pixels of

a line in screen

coordinates is

how far in model

coordinates?

• Uniform scaling…

• Maintaining the

inverse

1/22/2013

25

Transform Model

• Many

transformations

• Manipulations

(e.g. dragging)

must be

transformed back

into model

coordinates

