2D Graphics

Direct Manipulation

- GUIs often allow direct manipulation of onscreen artifacts with the mouse
- Need to perform many inside tests to implement DM
- Easy for rectangles
- Not so easy for other shapes
- Need a general strategy

Assignment 2

Introduction

- What is Computer Graphics?
- Creation, storage, and manipulation of images and their models
- Images: what we see on the display
- Model: a representation (often mathematical) of the image
- 2D array of color values
- Lines making up a stick figure
- Points on the surface of an object, arranged in a mesh
- A graph representing wires in electrical circuit

Modeling versus Rendering

- Modeling: Representing the important properties of an object (location, size, orientation, color, texture, etc) in data structures
- Rendering: Using the properties of the model to create an image to display on the screen
- For pixel-based graphics (photos, Photoshop or GIMP output) the rendering is trivial
- Other models may involve very complex steps to render the image (Illustrator, rendering movie scenes for Toy Story or Transformers or ...)
- CS349: modeling and rendering in 2D; CS488: 3D

Modeling with a Scene Graph

- See A02 sample code
- Each part draws its children
- Each part specifies its location, size, and orientation

Modeling with a Scene Graph

- To specify the location, size, and orientation of each part, we need several transformations on geometric objects:
- translation (location)
- scaling (size)
- rotation (orientation)

Translation

- Translating a coordinate means adding a vector to each of its components

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

$$
x^{\prime}=x \times s_{\mathrm{x}}
$$

$$
y^{\prime}=y \times s_{y}
$$

2-D Rotation

$$
\begin{aligned}
& x=r \cos (\varphi) \\
& y=r \sin (\varphi) \\
& x^{\prime}=r \cos (\varphi+\theta) \\
& y^{\prime}=r \sin (\varphi+\theta)
\end{aligned}
$$

Trig Identities...
$x^{\prime}=r \cos (\varphi)^{\circ}{ }^{\mathbf{s}}(\theta)-r \sin (\varphi) \sin (\theta)$
$y^{\prime}=r \sin (\varphi / \sin (\theta)+r \cos (\varphi) \cos (\theta)$

Substitute...
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$

2-D Rotation

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

Combining 2D Transformations

- Rotate:
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$
- Translate:

$$
\begin{aligned}
& x^{\prime}=x+t_{\mathrm{x}} \\
& y^{\prime}=y+t_{\mathrm{y}}
\end{aligned}
$$

- Scale:
$x^{\prime}=x \times s_{\mathrm{x}}$
$y^{\prime}=y \times s_{\mathrm{y}}$

Combining 2D Transformations

- Rotate:
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$
- Translate:
$x^{\prime}=x+t_{\mathrm{x}}$
$y^{\prime}=y+t_{y}$
- Scale:
$x^{\prime}=x \times s_{\mathrm{x}}$
$y^{\prime}=y \times s_{y}$

$$
\begin{aligned}
& x_{1}=2 x \\
& y_{1}=2 y
\end{aligned}
$$

Combining 2D Transformations

- Rotate:

$$
\begin{aligned}
& x^{\prime}=x \cos (\theta)-y \sin (\theta) \\
& y^{\prime}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

- Translate:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Scale:
$x^{\prime}=x \times s_{\mathrm{x}}$
$x_{2}=2 x \cos (30)-2 y \sin (30)$
$y^{\prime}=y \times s_{y}$
$y_{2}=2 x \sin (30)-2 y \sin (30)$

Combining 2D Transformations

- Rotate:
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$
- Translate:
$x^{\prime}=$ Note: Order of operations is important.
$y^{\prime}=$ What if you translate first?
- Scale:
$x^{\prime}=x \times s_{x}$
$y^{\prime}=y \times s_{y}$

$$
x_{3}=2 x \cos (30)-2 y \sin (30)+8
$$

${ }_{6}$

$$
y_{3}=2 x \sin (30)-2 y \sin (30)+4
$$

Matrix Representation

- Goal: Represent each 2D transformation with a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Multiply matrix by column vector \Leftrightarrow apply transformation to point

$$
\left.\begin{array}{c}
x^{\prime}=a x+b y \\
y^{\prime}=c x+d y
\end{array}\right\} \Leftrightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrix Representation

- Why? Transformations can be combined by multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- We can multiply transformation matrices together $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a e i+b g i+a f k+b h k & a e j+b g j+a e l+b g l \\ c e i+d g i+c f k+d h k & c e j+d g j+c f l+d h l\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
- This single matrix can then be used to transform many points
- Can be downloaded to a GPU to speed the process

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Scale around (0,0)?

$$
\left.\begin{array}{l}
x^{\prime}=x \times s_{\mathrm{x}} \\
y^{\prime}=y \times s_{\mathrm{y}}
\end{array}\right\} \Leftrightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{\mathrm{x}} & 0 \\
0 & s_{\mathrm{y}}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Rotate around (0,0)?
$\left.\begin{array}{l}x^{\prime}=x \cos (\theta)-y \sin (\theta) \\ y^{\prime}=x \sin (\theta)+y \cos (\theta)\end{array}\right\} \Leftrightarrow\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\left.\begin{array}{c}
x^{\prime}=-x \\
y^{\prime}=y
\end{array}\right\} \Leftrightarrow\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Translation?

$$
\left.\begin{array}{l}
x^{\prime}=x+t_{\mathrm{x}} \\
y^{\prime}=y+t_{\mathrm{y}}
\end{array}\right\} \Leftrightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

No! Only linear 2D transformations can be represented with a 2×2 matrix

Homogeneous Coordinates

- Homogeneous coordinates
- represent coordinates in 2 dimensions with a 3vector

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Homogeneous coordinates simplify 2D transformations

Homogeneous Coordinates

- Q: Can we represent translation as a $3 x 3$ matrix?
$\left[\begin{array}{ccc}A & B & C \\ D & E & F \\ G & H & I\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+t_{\mathrm{x}} \\ y+t_{\mathrm{y}} \\ 1\end{array}\right] \Leftrightarrow \begin{gathered}A x+B y+C=x+t_{\mathrm{x}} \\ D x+E y+F=y+t_{\mathrm{y}} \\ G x+H y+I=1\end{gathered}$

Homogeneous Coordinates

- Q: Can we represent translation as a 3×3 matrix?

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{\mathrm{x}} \\
0 & 1 & t_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{\mathrm{x}} \\
y+t_{\mathrm{y}} \\
1
\end{array}\right]
$$

Translation

- Example of translation

$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x+2 \\ y+4 \\ 1\end{array}\right]$

Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point $-(x, y, w)$ represents a point at location ($x / w, y / w$)
- assume w > 0
- Convenient coordinate system to represent many useful transformations

$(3,2,1)$ or
$(6,4,2)$ or
$(7.5,5,2.5)$ or

Vectors?

- Points: represent a position
- Vectors: represent direction and magnitude
- Operations:
$-\mathrm{v}+\mathrm{v}=\mathrm{v}$
$-v x s=v$
$-p-p=v$
$-p+v=p$

Representing Vectors

$$
\begin{gathered}
\vec{v}+\vec{w}=\left[\begin{array}{c}
v_{\mathrm{x}} \\
v_{\mathrm{y}} \\
0
\end{array}\right]+\left[\begin{array}{c}
w_{\mathrm{x}} \\
w_{\mathrm{y}} \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{\mathrm{x}}+w_{\mathrm{x}} \\
v_{\mathrm{y}}+w_{\mathrm{x}} \\
0
\end{array}\right] \vec{v} \times s=\left[\begin{array}{c}
v_{\mathrm{x}} \\
v_{\mathrm{y}} \\
0
\end{array}\right] \times s=\left[\begin{array}{c}
v_{\mathrm{x}} \times s \\
v_{\mathrm{y}} \times s \\
0
\end{array}\right] \\
\text { Add vectors } \\
\text { Scalar Multiply } \\
p-q=\left[\begin{array}{c}
p_{\mathrm{x}} \\
p_{\mathrm{y}} \\
1
\end{array}\right]-\left[\begin{array}{c}
q_{\mathrm{x}} \\
q_{\mathrm{y}} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{\mathrm{x}}-q_{\mathrm{x}} \\
p_{\mathrm{y}}-q_{\mathrm{x}} \\
0
\end{array}\right] \quad p+\vec{v}=\left[\begin{array}{c}
p_{\mathrm{x}} \\
p_{\mathrm{y}} \\
1
\end{array}\right]+\left[\begin{array}{c}
v_{\mathrm{x}} \\
v_{\mathrm{y}} \\
0
\end{array}\right]=\left[\begin{array}{c}
p_{\mathrm{x}}+v_{\mathrm{x}} \\
p_{\mathrm{y}}+v_{\mathrm{x}} \\
1
\end{array}\right] \\
\text { Subtract points Point + Vector }
\end{gathered}
$$

Translating Vectors

- A vector has no position, so translating it shouldn't change anything.

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{\mathrm{x}} \\
0 & 1 & t_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]
$$

Rotation Matrix

- Vectors:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 0\end{array}\right]=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & a \\ \sin (\theta) & \cos (\theta) & b \\ c & d & e\end{array}\right]\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]=\left[\begin{array}{c}x \cos (\theta)-y \sin (\theta) \\ x \sin (\theta)+y \cos (\theta) \\ 0\end{array}\right]$
- Points
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & a \\ \sin (\theta) & \cos (\theta) & b \\ c & d & e\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x \cos (\theta)-y \sin (\theta) \\ x \sin (\theta)+y \cos (\theta) \\ 1\end{array}\right]$

Scaling Matrix

- Vectors:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
s_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x \cdot s_{\mathrm{x}} \\
y \cdot s_{\mathrm{y}} \\
0
\end{array}\right]
$$

- Points $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}s_{\mathrm{x}} & 0 & 0 \\ 0 & s_{\mathrm{y}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x \cdot s_{\mathrm{x}} \\ y \cdot s_{\mathrm{y}} \\ 1\end{array}\right]$

Matrix Composition

- Transformations can be combined by matrix multiplication

$$
\begin{gathered}
p^{\prime}=T\left(t_{\mathrm{x}}, t_{\mathrm{y}}\right) \cdot R(\theta) \cdot S\left(s_{\mathrm{x}}, s_{\mathrm{y}}\right) \cdot p \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{\mathrm{x}} \\
0 & 1 & t_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Matrix Composition

- Review: Properties of Matrix Multiplication
- Associative: $A(B C)=(A B) C$
- Not Commutative: $A B \neq B A$
- Order of transformations matters!

$$
p^{\prime}=T \cdot R \cdot S \cdot p
$$

"Global"

$$
\begin{aligned}
p^{\prime} & =(T \cdot(R \cdot(S \cdot p))) \text { "Local" }^{\prime} \\
p^{\prime} & =(T \cdot R \cdot S) \cdot p
\end{aligned}
$$

Matrix Composition

- What if we want to rotate and translate? - Ex: Rotate line segment by 45 degrees about endpoint a

Multiplication Order - Wrong Way

- Beginning situation
- Rotate 45 degrees, $\mathrm{R}(45)$

- Affects both endpoints
- Oops
- Could try translating both endpoints to return a to its original position
- But by how much?

Multiplication Order

- Scaling and rotation are both about the origin
- Process:
- Translate shape to the origin
- rotate
- translate back to where you want it

37
package affineRotateLine;
import javax.swing.*;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.BasicStroke;
public class RotateLine extends JComponent \{
public static void main(String[] args) \{
RotateLine canvas = new RotateLine();
JFrame $\mathrm{f}=$ new JFrame("Rotate Line");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(400, 400);
f.setContentPane(canvas);
f.setVisible(true);
\}
public void paintComponent(Graphics g) \{
Graphics2D g2 = (Graphics2D) g;
g2.translate(20, 240);
g2.setStroke(new BasicStroke(3));
g2.drawLine(0, 0, 0, -200); // vertical axis
g2.drawLine(0, 0, 200, 0); // horizontal axis
g2.setStroke(new BasicStroke(5)); // line
g2.setColor(Color.RED);
g2.drawLine(40, 0, 120, 0);
g2.drawOval(40-4, -4, 8, 8);
g2.drawOval(120-4, -4, 8, 8);
// Copy last 4 lines. Change color to GREEN.
// What transformations to include to have it rotate
// 45 degrees about the left-most endpoint?
\}\}

Java2D Intro

- Check out the Graphics class and Graphics2D, a subclass
- paint methods specify a Graphics object (to be backward compatible)
- The object passed is actually a Graphics2D object; cast it
- Graphics2D contains an affine transform that is applied to shapes before they are drawn

Useful Graphics2D methods

- AffineTransform getTransform(), void setTransform(AffineTransform Tx)
- Returns/sets a copy of the current Transform in the Graphics2D context.
- void rotate(double theta),
void rotate(double theta, double x, double y)
- Concatenates the current Graphics2D Transform with a rotation transform.
- Second variant translates origin to (x, y), rotates, and translates origin $(-\mathrm{x},-\mathrm{y})$.
- void scale(double sx, double sy)
- Concatenates the current Graphics2D Transform with a scaling transformation. Subsequent rendering is resized according to the specified scaling factors relative to the previous scaling.
- void translate(double tx, double ty)
- Concatenates the current Graphics2D Transform with a translation transform.

Java2D AffineTransform Class

- AffineTransform handles all matrix manipulations
- A bit more control than Graphics2D
- Static Methods
- static AffineTransform getRotateInstance(double theta)
- static AffineTransform getRotateInstance(double theta, double anchorx, double anchory)
- static AffineTransform getScaleInstance(double sx, double sy)
- static AffineTransform getTranslateInstance(double tx, double ty)

Java2D AffineTransform Class

- Concatenation methods
- void rotate(double theta), void rotate(double theta, double anchorx, double anchory)
- void scale(double sx, double sy)
- void translate(double tx, double ty)
- void concatenate(AffineTransform Tx)
- Other Methods
- AffineTransform createInverse()
- void transform(Point2D[] ptSrc, int srcOff, Point2D[] ptDst, int dstOff, int numPts)

Class Exercise

- Develop the transformations to animate a triangle (drawn at the origin) in a circle in two different ways:

Scene Graphs

- Each part has
a transform matrix
- Each part draws its children relative to itself

Benefits of Geometrical Manipulations

- Allow reuse of objects in scenes
- Can create multiple instances by translating model of object and re-rendering
- Allows specification of object in its own coordinate system
- Don't need to define object in terms of its screen location or orientation
- Simplifies remapping of models after a change
- E.g. animation

Inside Tests

- Mouse and model must use the same coordinate system
- Two options:
- Transform mouse

- Transform shapes

Transform Mouse

- Only one transformation
- Within 3 pixels of a line in screen coordinates is how far in model coordinates?
- Uniform scaling...
- Maintaining the inverse

Transform Model

- Many transformations
- Manipulations (e.g. dragging) must be transformed back into model coordinates

