2D Graphics

Direct Manipulation

e GUIs often allow direct manipulation of on-
screen artifacts with the mouse

* Need to perform many inside tests to

implement DM

— Easy for rectangles

— Not so easy for
other shapes

— Need a general
strategy

for (Item item : displayList)

{ if (item.contains(mouse.x, mouse.y)) {
{..
}

}

1/22/2013

Assignment 2

Pivot Points Electromagnet

Crane Arms Blocks

Introduction

e What is Computer Graphics?

— Creation, storage, and manipulation of images and their
models

* Images: what we see on the display

* Model: arepresentation (often mathematical) of the
image .
— 2D array of color values .
— Lines making up a stick figure
— Points on the surface of an
object, arranged in a mesh
— A graph representing wires in
electrical circuit

1/22/2013

1/22/2013

Modeling versus Rendering

* Modeling: Representing the important properties of
an object (location, size, orientation, color, texture, etc)
in data structures

* Rendering: Using the properties of the model to create
an image to display on the screen

— For pixel-based graphics (photos, Photoshop or GIMP
output) the rendering is trivial

— Other models may involve very complex steps to render the
image (lllustrator, rendering movie scenes for Toy Story or
Transformers or ...)

e (CS349: modeling and rendering in 2D; CS488: 3D

Modeling with a Scene Graph
See A02
sample [Torso]
code O —
Each part
drgws its YT
children
Each part
specifies its R Lower Leg
location, |
size, and
orientation

1/22/2013

Modeling with a Scene Graph

e To specify the location, size, and orientation of
each part, we need several transformations on
geometric objects:

— translation (location)
— scaling (size)
— rotation (orientation)

Translation

e Translating a coordinate means adding a
vector to each of its components

A

Translate ﬁ
E +(2, 4)

' =z+i,
8 y':y+ty

\ 4
Y

Sca

ling

e Scaling a coordinate means multiplying each of its

components by a scalar

e Uniform scaling means this scalar is the same for all

components:

A

Scale

n

Sca

ling

* Non-uniform scaling: different scalars per

component:
A A
Scale
E! Xx2,Yx05
' =1z Xs,
10 y' = y X Sy

1/22/2013

2-D Rotation

z=rcos(@)
y =rsin(p)

X', v 2 =rcos(@p+8)
y' =rsin(@+0)

Trig Identities...

X, V) 7' =rc.os((ﬂlgs(ﬁ)—rsin(go)sin(@)
0 y' = rsin(@ysm(8)+rcos(g)cos(6)

Substitute...

7' =zcos(8)—ysin(H)
" y' =zsin(8)+ycos(H)

A\

2-D Rotation

z' =zcos(f)—ysin(@)
y' = zsin(8)+ycos(6)

A\ J

1/22/2013

lank
Sticky Note
r cos(phi)sin(theta) + r sin(phi)cos(theta)

13

Combining 2D Transformations

Rotate:
z' =zcos(f)—ysin(H)
y' = zsin(d)+ycos()

Translate:
' =x+t,

Yy =y+i,
Scale:

' =1 X s,
Yy =yXs,

A

B

14

Combining 2D Transformations

Rotate:
7' = zcos(8)—ysin(4)
y' = zsin(8)+ycos(0)

Translate:
' =z+t,

Y=yt
Scale:

' =z X s
Yy =yXsy

A

1= 22

Y1 =2y

1/22/2013

15

Combining 2D Transformations

Rotate:
z' =zcos(d)—ysin(4)

y' =zsin(0)+ycos(8)

Translate:
' =z+t,

y' =yt
Scale:

' =1 X s
Y =yXs,

4

2, = 2zcos(30) — 2ysin(30)
¥, = 22sin(30) — 2ysin(30)

16

Combining 2D Transformations

Rotate:
2 =zcos(d)—ysin(8)
y' =2zsin(8)+ycos(0)

Translate:

T3 = 2xC0S

4

30)— 2ysin(30)+ 8

ys = 22sin(30) — 2ysin(30) + 4

1/22/2013

Matrix Representation

Goal: Represent each 2D transformation with a

matrix [a, b
c d

Multiply matrix by column vector
< apply transformation to point

:(:'=a,x+by} a b
y'=cxr+dy c d

.'L"

<:>y‘

o

Matrix Representation

Why? Transformations can be combined by
multiplication

' abeqrjx
Y c dilg hllk [y
* We can multiply transformation matrices together

x'| _|aet+bgi + afk + bhk aej + bgy + ael + byl
v [C@i +dgi + cfk + dhk cej +dgj + cfl + dhl

— This single matrix can then be used to transform many
points

— Can be downloaded to a GPU to speed the process

!

"

1/22/2013

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Scale around (0,0)?

s. O
0 s,

X

:r:'Z:chx}
(]

y'=yXs,

:Cl
o8-

2x2 Matrices

e What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

.,LJ

yt

T = z:cos(ﬁ)—ysin(@)} n
y' = zsin(8)+ycos(8)

20

cos(f) —sin(8)
sin(8) cos(8)

x
Y

1/22/2013

10

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

—10
0 1

;

21

2x2 Matrices

e What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

x' :$+tx}
~
y =yt

!

a b
c d

x
Y

!

;

No! Only linear 2D transformations
can be represented with a 2x2 matrix

1/22/2013

11

Homogeneous Coordinates

* Homogeneous coordinates
— represent coordinates in 2 dimensions with a 3-

vector T
[x
)

Y
1

* Homogeneous coordinates simplify 2D

transformations

<~

Homogeneous Coordinates
e Q: Can we represent translation as a 3x3
matrix?

A B Clz] [z+t] Arx+By+C=x+i
D FE Fly|l=|ytt|eDrt+Ey+F=y+li,
G H 1Tl1 1 Gr+Hy+I=1

24

1/22/2013

12

Homogeneous Coordinates

* Q: Can we represent translation as a 3x3
matrix?

z 1 0 &z T+t

y'|=(0 1 tffy[=|yt+¢,

1 00 1 1
Translation

e Example of translation

Translate ﬁ
E! +(2, 4) >

> >

L IS

x 1 0 2]z rz+2
¥ =10 1 4|ly|=|yt+4
2 1 00 111 1

1/22/2013

13

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point
— (x, y, w) represents a point at location (x/w, y/w)
—assumew >0

Convenient coordinate system to represent many
useful transformations

4
3 (3,2,1) or
2 O (6,4,2)or
(7.5,5, 2.5) or
1 .
% 123 475
Vectors?

28

Points: represent a position

Vectors: represent direction and magnitude
Operations:

—VvV+vVv=y

—VXS=V

—p-p=v

—ptv=p

1/22/2013

14

Representing Vectors

Vs Wy Vx + Wy Vx U X S
v+w=|v, |+ |wy|=|v,tws| vXs= vy | Xs=|v,Xs
0 0 0 0 0
Add vectors Scalar Multiply
Px g Px— Qx P Vx Px T Uk
P—q=|py| 7|0 = Py PTO=|pe| |0y |= |0y T
1 1 0 1 0 1
Subtract points Point + Vector

29

Translating Vectors

e A vector has no position, so translating it
shouldn’t change anything.

' 1 0 &z T

y'1=10 1 tfly|=|y
ol 1o o 1llol lo

30

1/22/2013

15

Rotation Matrix

* \ectors:
z cos(@) —sin(@) al[z] [zcos(8)—ysin(8)
y'[=sin(@) cos(@) blly|=|zsin(8)+ycos(8)
0 c d ell0 0
* Points
z'| [cos(8) —sin(8) alz| |xcos(8)—ysin(8)
y'|=1sin(8) cos(8) blly|=|zsin(@)+ycos(d)
1 c d el l 1
Scaling Matrix
* Vectors:
T s 0 O]z T Sy
Y'[=10 sy Ofly =y sy
0 0O O 110 0
e Points [Z'] [s: O Offz] [z-s:
y'[=10 sy Ofly|=|y-sy
1 0 0 1.1 1

1/22/2013

16

Matrix Composition

e Transformations can be combined by matrix
multiplication

p'=T(tt,) R(O) S(sys,) p

t[cos(8) —sin(8) O][s. 0 O]z
t,||sin(8) cos(@d) 0|0 s, Oy

z' 10
y'|1=10 1
1 00 0 0 110 0 1)1

Matrix Composition

e Review: Properties of Matrix Multiplication
— Associative: A(BC) = (AB)C
— Not Commutative: AB #zBA
* Order of transformations matters!

p=T-R-Sp
“Global” p'= (T - (R - (S . p))) “Local”
P Z(T-R-S)-p

34

1/22/2013

17

Matrix Composition

* What if we want to rotate and translate?

— Ex: Rotate line segment by 45 degrees about
endpoint a

J AT

35

» Beginning situation)

Multiplication Order — Wrong Way

» Rotate 45 degrees, R(45) ___.,.

+ Affects both endpoints

+ Oops /

» Could try translating both J S .

endpoints to return a to its
original position

+ But by how much? /i

36

1/22/2013

18

Multiplication Order

e Scaling and
rotation are
both about
the origin

* Process:

— Translate
shape to the
origin

— rotate

— translate
back to
where you
want it

p'=1Ip

p' =T p

P'=RusT(20 D

P'=TeonRusT (20 P

37

SN

package affineRotateline;

import javax.swing.*;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.BasicStroke;

public class RotateLine extends JComponent {

public static void main(String[] args) {

Rotateline canvas = new Rotateline();
JFrame f = new JFrame("Rotate Line");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(400, 400);
f.setContentPane(canvas);
f.setVisible(true);

1/22/2013

19

public void paintComponent(Graphics g) {

Graphics2D g2 = (Graphics2D) g;
g2.translate(20, 240);

g2.setStroke(new BasicStroke(3));
g2.drawlLine(0, 0, 0, -200); // vertical axis
g2.drawline(0, 0, 200, 0); // horizontal axis
g2.setStroke(new BasicStroke(5)); // line
g2.setColor(Color.RED);
g2.drawline(40, 0, 120, 0);
g2.drawOval(40-4, -4, 8, 8);
g2.drawOval(120-4, -4, 8, 8);

// Copy last 4 lines. Change color to GREEN.
// What transformations to include to have it rotate
// 45 degrees about the left-most endpoint?

1}

Java2D Intro

* Check out the Graphics class and Graphics2D,
a subclass

— paint methods specify a Graphics object (to be
backward compatible)

— The object passed is actually a Graphics2D object;
castit

e Graphics2D contains an affine transform that
is applied to shapes before they are drawn

1/22/2013

20

41

Useful Graphics2D methods

AffineTransform getTransform(),
void setTransform(AffineTransform Tx)

e Returns/sets a copy of the current Transform in the Graphics2D context.
void rotate(double theta),
void rotate(double theta, double x, double y)

¢ Concatenates the current Graphics2D Transform with a rotation transform.

¢ Second variant translates origin to (x,y), rotates, and translates origin (-x, -y).
void scale(double sx, double sy)

¢ Concatenates the current Graphics2D Transform with a scaling transformation.
Subsequent rendering is resized according to the specified scaling factors relative
to the previous scaling.

void translate(double tx, double ty)
¢ Concatenates the current Graphics2D Transform with a translation transform.

Java2D AffineTransform Class

AffineTransform handles all matrix manipulations
— A bit more control than Graphics2D

Static Methods

— static AffineTransform getRotatelnstance(double theta)
— static AffineTransform getRotatelnstance(double theta,

double anchorx, double anchory)

— static AffineTransform getScalelnstance(

double sx, double sy)

— static AffineTransform getTranslatelnstance(

double tx, double ty)

1/22/2013

21

43

Java2D AffineTransform Class

Concatenation methods

— void rotate(double theta),
void rotate(double theta, double anchorx, double
anchory)

— void scale(double sx, double sy)
— void translate(double tx, double ty)
— void concatenate(AffineTransform Tx)

Other Methods
— AffineTransform createlnverse()

— void transform(Point2D[] ptSrc, int srcOff,
Point2D[] ptDst, int dstOff, int numPts)

44

Class Exercise

Develop the transformations to animate a

triangle (drawn at the origin) in a circle in two

different ways:
i

1/22/2013

22

Scene Graphs

* Each part has

a transform O -
matrix v

. EaCh part R Hand
draws its e
children
relative to
itself

L Upper Leg

Benefits of Geometrical Manipulations

* Allow reuse of objects in scenes

— Can create multiple instances by translating model
of object and re-rendering

* Allows specification of object in its own
coordinate system

— Don’t need to define object in terms of its screen
location or orientation

e Simplifies remapping of models after a change
— E.g. animation

46

1/22/2013

23

1/22/2013

* Mouse and
model must
use the same
coordinate
system

* Two options:

— Transform
mouse

— Transform
shapes

47

Inside Tests

*Y

&

Transform Mouse

* Onlyone
transformation

* Within 3 pixels of
aline in screen
coordinates is
how far in model
coordinates?

¢ Uniform scaling...

e Maintaining the
inverse

48

<

—
)
o p—
|

\
Y

e e

24

Transform Model

* Many
transformations

(e.g. dragging)
must be
transformed back
into model v
coordinates +y

* Manipulations s T
. :
i
|
i
i

1/22/2013

25

