
1/10/2013

1

Basic Single-Window X

X: The Basics

1

2

Overview

• Basic X Architecture

• Drawing

• Events and the Event Loop

1/10/2013

2

3

Windowing Systems

• 1960’s: Doug Englebart used a mouse-driven cursor
with multiple (non-overlapping?) windows.

• 1973: Xerox PARC developed the Alto -- bit-mapped
graphics, desktop metaphor, GUI. Heavily influenced
PERQ, Apple Lisa/Mac, Sun workstations. Followed by
Xerox Star. Alto stacked windows; Star mostly tiled.

• 1984: Apple Macintosh released. First commercially
successful multi-window GUI.

• 1984: Work on X windowing system begins.

• 1985: Microsoft releases Windows 1.0; doesn’t really
take off until 1990 release of Windows 3.0.

4

Valuable X References

• CS349 web site, see Resources page

– The X Window System

• background, design goals, basic architecture

• PDF available online

– The Xlib manual: http://tronche.com/gui/x/xlib

• link and a PDF available on CS349 site

– Basic Graphics Programming With The Xlib Library

tutorial

– Sample code

1/10/2013

3

Notes on this lecture

• All examples were implemented and tested on VM

– Should be reasonably generic

– You may need to tweak some things if you want to
program on your own computer

– … But remember that assignments must run on VM

• Class examples use standard C programming
language

– No objects, no STL

– You can use c or c++

• TAs will be looking at your sourcecode …

XWindows System (1)

• Client-Server model of an application and
UI

– The client is the application that is running on a
computer

– The server is the display that is being drawn

1/10/2013

4

XWindows System (2)

• Goal was flexibility

– Many clients (perhaps
on multiple machines)

– One display

• Generalization of
model-view-controller
architecture

– Model = client
application

– View/Controller =
terminal device
running Xserver

XWindows and XLib

• To avoid implementing message passing every

time a new program written, created XLib

– Every client who “speaks” XLib could interact with

any XServer

– So what?

• VERY NOVEL in the ‘80s.

• Character terminals and proprietary drawing routines

• BUT

– No common look and feel

1/10/2013

5

Programming XWindows

• Concepts

– Display

– Screen

– Window

– Graphics Context

– Events

10

Displays, Screens & Windows

• A display may have multiple screens

• A display may have multiple windows

• A window may cross multiple screens

• For now, we will work with a single window.

1/10/2013

6

Structure of a Basic GUI Program

1. Perform initialization routines.

2. Connect to the X server.

3. Perform X-related initialization.

4. While not finished:
1. Receive the next event from the X server.

2. handle the event, possibly sending various drawing
requests to the X server.

3. If the event was a quit message, exit the loop.

4. Do any client-initiated work

5. Close down the connection to the X server.

6. Perform cleanup operations.

A basic program

• Line 1:
– Xlib header file

• Line 4:
– A variable to hold the display

• main function
– Try to open the display on this

computer
• Indicated by “:0”

– If display is NULL
• Print error message

– Else
• Connected to display

• Do rest of program stuff here

– Close display

• g++ –o ex1 ex1.cpp –L/usr/X11R6/lib

–lX11

#include <X11/Xlib.h>

#include <stdio.h>

#include <stdlib.h>

Display* display;

int main(){

display = XOpenDisplay(“:0");

if (display == NULL) {

printf("Cannot connect");

exit (-1);

}

else{

printf("Success!");

/* do program stuff here */

XCloseDisplay(display);

}

}

1/10/2013

7

Displaying a Window
#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

Display* display;

Window window;

int main(int argc, char *argv[]){

display = XOpenDisplay("");

if (display == NULL) exit (-1);

int screennum = DefaultScreen(display);

long background = WhitePixel(display, screennum);

long foreground = BlackPixel(display, screennum);

window = XCreateSimpleWindow(display, DefaultRootWindow(display),

10, 10, 800, 600, 2, foreground, background);

XSetStandardProperties(display, window, "x1_openWindow", "OW",

None, argv, argc, None);

XMapRaised(display, window);

XFlush(display);

sleep(15);

XCloseDisplay(display);

}

• Open display

• Get default
screen

• Get background

• Get foreground

• Create window

• Map onto
screen

• Flush XServer
buffer

• Pause for 15
seconds

• Move all code to
windowinit()
function

14

Code Review

• Review x1_openWindow.cpp on resources page

• Same Functions/Procedures:
– XOpenDisplay

– DefaultScreen

– XWhitePixel, XBlackPixel

– XCreateSimpleWindow

– XSetStandardProperties

– XMapRaised

– XFlush

• Difference is cleaner coding practice, but longer code as
well.

• g++ -o x1_openWindow x1_openWindow.cpp \
-L/usr/X11R6/lib -lX11 -lstdc++

1/10/2013

8

15

Drawing

• Draw on a canvas

• Most basic primitive is

writePixel(x, y, colour)

• But need higher level routines; need

a model

16

• Three different models for creating images:

Drawing to a pixelated display

Pixel
SetPixel(x, y, color)

DrawImage(x, y, w, h, img)

Stroke
DrawLine(x1, y1, x2, y2)

DrawRect(x, y, w, h)

Region
DrawLine(x1, y1, x2, y2)

DrawRect(x, y, w, h)

1/10/2013

9

17

Drawing

• Issues with lines:
– Where are the end points?

How should the ends overlap?
What shape do the endpoints
have? Is the line dashed or
solid?

• How to communicate all the
options?

• Observation: most choices
are the same for multiple
calls to drawLine.

18

Graphics Context

• Gather all this information into a single structure
that’s passed to the drawing routines

– X: GC structure

– Java: Graphics object

• All graphics environments choose some variety of
this approach.

• X: Graphics Context is stored on server

– Use multiple contexts to reduce network traffic

– But limited memory on server

– Global to the application: need a policy

1/10/2013

10

19

typedef struct {

int function; // how the source and destination are combined

unsigned long plane_mask; // plane mask

unsigned long foreground; // foreground pixel

unsigned long background; // background pixel

...

int line_width; // line width (in pixels)

int line_style; // LineSolid, LineDoubleDash, LineOnOffDash

int cap_style; // CapButt, CapRound, CapProjecting

int join_style; // JoinMiter, JoinRound, JoinBevel

int fill_style; // FillSolid, FillTiled, FillStippled,

FillOpaqueStippled

int fill_rule; // EvenOddRule, WindingRule

int arc_mode; // ArcChord, ArcPieSlice

...

Font font; // default font

...

} XGCValues;

Create and Use Graphics Context

GC gc = XCreateGC(display, window, 0, 0);

XSetForeground(display, gc, BlackPixel(display, screen));

XSetBackground(display, gc, WhitePixel(display, screen));

XSetFillStyle(display, gc, FillSolid);

XSetLineAttributes(display, gc, 1, LineSolid, CapButt, JoinRound);

…

XDrawLine(display, window, gc, x, y-30, x, y+200);

XFillRectangle(display, window, gc, x+60, y+50, 50, 60);

1/10/2013

11

21

Code Review

• x2_simpleDrawing.cpp

– initX initializes three graphics contexts

– main changed to call several procedures to draw

– drawPointsInCorners

• get window attributes (eg width and height)

• use of XDrawPoint

– drawStuff

• parameters say which GC and where to draw

• use of XDrawLine, XDrawArc, XDrawRectangle,
XFillRectangle

22

Painter’s Algorithm

• The basic graphics primitives are... primitive.

• To draw more complex shapes...

– Draw back-to-front, layering the image

– Called “Painter’s Algorithm”

1/10/2013

12

23

Display List

/* * An abstract class representing displayable things. */

class Displayable{

public: virtual void paint(XInfo &xinfo) = 0;

};

24

/* * Display some text where the user clicked the mouse. */

class Text : public Displayable{

public:

virtual void paint(XInfo &xinfo)

{

XDrawImageString(xinfo.display, xinfo.window, xinfo.gc,

this->x, this->y, this->s.c_str(), this->s.length());

}

// constructor

Text(int x, int y, string s):x(x), y(y), s(s) {}

private:

int x;

int y;

string s;

};

1/10/2013

13

25

list<Displayable *> dList; // list of Displayables

/* * Function to repaint a display list */

void repaint(list<Displayable *> dList, XInfo &xinfo) {

list<Displayable *>::const_iterator begin = dList.begin();

list<Displayable *>::const_iterator end = dList.end();

XClearWindow(xinfo.display, xinfo.window);

while(begin != end) {

Displayable *d = *begin;

d->paint(xinfo);

begin++;

}

XFlush(xinfo.display);

}

26

Painting Advice

• Keep it simple

– Clear the window and redraw everything

– Get fancier (eg clipping, double buffering) only if

you really need to for performance reasons

• Repaint when necessary -- but no oftener.

• Flush the buffer often enough -- but no

oftener.

– Unless you’re debugging!

1/10/2013

14

27

Events Defined

• Event: noun: a thing that happens, especially one of
importance. Example: the media focused on events in
Egypt

• Event: a structure used to notify an application of an
event’s occurrence

• Examples:
– Keyboard (key press, key release)

– Pointer Events (button press, button release, motion)

– Window crossing (mouse enters, leaves)

– Input focus (gained, lost)

– Window events (exposure, destroy, minimize)

– Timer events

28

Events: Why do we need them?

• Users have lots of options in a modern

interface

• Need a uniform, well-structured, way to

handle them

• Need to be able to handle any event, including

those that aren’t appropriate given the

current state of the app

– eg: clicking on a button that is currently disabled

1/10/2013

15

29

Role of the X Server

• Collect event information

• Put relevant information in a known structure

• Order the events by time

• Decide to which application/window the

event should be dispatched

• Deliver the event.

30

Collecting Events

• Some events come from the user via the

underlying hardware; some from the window

manager.

1/10/2013

16

31

Collecting Events

• Key events:

– Key press: put char on screen

– Key release: usually ignored except to tell if key is
being held for auto-repeat purposes

– Scan codes

• Mouse button events:

– press and release are differentiated

• Mouse motion events:

– mouse moved

– mouse dragged

32

Collecting Events

• Damage Events

– May be a long sequence of damage events

– Responding to them all can bog the system down

– X includes a field indicating a minimum number

that are yet to come. Ignore damage event unless

that field is 0.

• Or perhaps until a timeout

1/10/2013

17

33

Collecting Events

• Don’t always need all of the events. (Why?)

• XSelectInput(display, window,
ButtonPressMask
| KeyPressMask
| ExposureMask)

• Defined masks: NoEventMask, KeyPressMask,
KeyReleaseMask, ButtonPressMask, ButtonReleaseMask,
EnterWindowMask, LeaveWindowMask,
PointerMotionMask, PointerMotionHintMask,
Button1MotionMask, Button2MotionMask, ...,
ButtonMotionMask, KeymapStateMask, ExposureMask,
VisibilityChangeMask, ...

34

Known structure : X

• X uses a C union
– typedef union {

– int type;

– XKeyEvent xkey;

– XButtonEvent xbutton;

– XMotionEvent xmotion;

– // etc.

– }

• Each structure contains at least the following

• typedef struct {
– int type;

– unsigned long serial; // sequential #

– Bool send_end; // from SendEvent request?

– Display* display;

– Window window;

– } X___Event

1/10/2013

18

35

Known Structure: Java

• Java uses an inheritance hierarchy

• Each subclass contains additional information,

as required (not shown)

36

Order by Time

• Use an Event Queue to maintain a list in order.

• In X, applications get the next event with

– XNextEvent(Display* display, XEvent* evt)

• Gets and removes the next event in the queue.

• If empty, it blocks until another event arrives.

– XPending(Display* display)

• How many events are pending in the event queue?

• Never blocks.

1/10/2013

19

37

Responding to Events

• Take the first event

off the event queue

• Handle it

• Repeat

XEvent event;

while (true)
{ XNextEvent(xinfo.display, &event);

switch (event.type)
{ case Expose:

if (event.xexpose.count == 0)…
break;

case ButtonPress:
// handle event
break;

case ...:
}
repaint(…);

}

38

Code Review

• Review x3_events.cpp

– XSelectInput

– eventLoop

– handleKeyPress

1/10/2013

20

39

Animation

• Goals:

– Move things around on the screen

– Repaint 30-60 times per second

– Make sure events are handled on a timely basis

– Don’t use more CPU than necessary

40

XEvent event;
unsigned long lastRepaint = 0;
while(true) {

if (XPending(xinfo.display) > 0) {
XNextEvent(xinfo.display, &event);
switch(event.type) {
case MotionNotify:

handleMotion(xinfo, event);
break;
...

}
}
unsigned long end = now();
if (end - lastRepaint > 1000000/FPS) {

handleAnimation(xinfo);
repaint(xinfo);
lastRepaint = now();

}
if (XPending(xinfo.display) == 0) {

usleep(1000000/FPS - (end - lastRepaint));
}

}

1/10/2013

21

41

Demo Code

• x4_animate.cpp

– Event loop conforms to previous slide

– New events used

42

Double Buffering

• Flickering: when an
intermediate image
is on the display
– e.g.: Clear, then

redraw strategies

• Solution:
– Create an offscreen

image buffer

– Draw to the buffer

– Copy the buffer to the
screen as quickly as
possible

1/10/2013

22

43

Double Buffering Logistics

• Creating the off-screen buffer:
int depth = DefaultDepth(display, DefaultScreen(display));
pixmap = XCreatePixmap(display, window,

width, height, depth);

• Drawing on the buffer:
XFillRectangle(display, pixmap, gc, x, y, width, height);

• Copying from buffer to window:
XCopyArea(display, pixmap, window, gc,

0, 0, width, height, // region of pixmap to copy
0, 0); // top left corner of destination

• Freeing an unused off-screen buffer:
XFreePixmap(display, pixmap);

44

Double Buffering Issues

• Window size changes

– ResizeRedirectMask doesn’t do what you think

• Memory; location

• Smaller-than-window uses

1/10/2013

23

45

Clipping

46

Code Demo

• x6_clip.cpp

– XSetClipRectangle

1/10/2013

24

47

Summary

• Basic X architecture (client, server, network)

• Windows: opening, disposing

• Drawing
– Models (pixel, stroke, region)

– graphics contexts

– Painter’s Algorithm; Display lists

• Events (structure, selecting, event loop, etc)

• Animation

• Double Buffering

• Clipping

