
Exploiting Fast Hardware Floating Point inHigh Preision ComputationKeith O. GeddesWei Wei ZhengTehnial Report CS-2002-41Shool of Computer SieneUniversity of WaterlooDeember 2002

1

AbstratWe present an iterative re�nement method based on a linear Newton iter-ation for solving a partiular group of high preision omputation problems.Our method generates an initial solution at hardware oating point preisionusing a traditional method and then repeatedly re�nes this solution to higherpreision, exploiting hardware oating point omputation in eah iteration.This is in ontrast to diret solution of the high preision problem ompletelyin software oating point. Theoretial ost analysis, as well as experimentalevidene, shows a signi�ant redution in omputational ost is ahieved bythe iterative re�nement method on this group of problems.

1

Contents1 Introdution 12 Cost of a Floating Point Operation 22.1 Software versus hardware oating point 22.2 Growth of ost with inreasing preision 33 Nonsingular Linear Systems 63.1 The Iterative Algorithm . 63.2 Cost Analysis . 83.3 Experimental Data . 94 Overdetermined Systems: Least Squares 124.1 The Iterative Method . 124.2 Cost Analysis . 154.3 Experimental Data . 165 Singular Linear Systems: SVD 175.1 The Iterative Method . 175.2 Cost Analysis . 185.3 Experimental Data . 196 Nonlinear Equations: Polynomial Systems 206.1 The Iterative Method . 216.2 Cost Analysis . 226.3 Experimental Data . 246.4 Aside: Comparison with fsolve 247 Conlusion 25A Floating Point Cost Code 27A.1 Hardware oating point environment 27A.2 Software oating point environment 28B Nonsingular Linear Systems Code 29B.1 Proedure preLinearSolve . 29B.2 Problem setup . 29B.3 Iterative Method . 30i

B.4 Diret Method . 30B.5 Results . 30C E�et of Garbage Colletion 32C.1 Problem setup . 32C.2 Diret Method . 32C.3 Results . 33D Ill-onditioned Linear Systems Code 34D.1 Proedure preLinearSolve . 34D.2 Problem setup . 34D.3 Iterative Method . 35D.4 Diret Method . 36D.5 Results . 36E Least Squares Code 37E.1 Proedure preLeastSquares 37E.2 Problem setup . 38E.3 Iterative Method . 38E.4 Diret Method . 39E.5 Results . 39F Singular Linear Systems: SVD Code 40F.1 Proedure IteratedSVD . 40F.2 Problem setup . 41F.3 Iterative Method . 42F.4 Diret Method . 42F.5 Results . 43G Polynomial Systems Code 44G.1 Proedure DiretNonLinearSolve 44G.2 Proedure preNonLinearSolve 46G.3 Problem setup . 47G.4 Iterative Method . 49G.5 Diret Method . 50G.6 Results . 50ii

List of Tables1 Hardware and software oating point operation ost. 32 Software oating point with minimal garbage olletion. 43 Software oating point operation ost versus preision. 44 Nonsingular linear systems: size, ost and speedup. 105 E�et of garbage olletion on Diret Method. 116 Ill-onditioned linear systems. 127 Least squares problems: size, ost and speedup. 178 SVD problems: size, ost and speedup. 209 Polynomial systems: size, ost, speedup and errors. 2410 Diret method vs fsolve. 25

iii

iv

1 IntrodutionIn symboli and numeri omputation, a high preision solution is often de-sired. The traditional way to ompute high preision solutions is to diretlyarry out the omputation in a multipreision software oating point envi-ronment whih an be quite time onsuming. In ontrast, hardware oatingpoint omputation is muh faster than the software equivalent. Based on thisrealization, we onstrut a new method that exploits the hardware oatingpoint environment for most of the omputations.The iterative method presented here is based on Newton's iteration butin a linearly onverging variant rather than the quadrati Newton's iterationommonly used in traditional numerial omputation. As is well-known, thequadrati Newton's iteration beomes linear if the \derivative information"is held onstant. This is the basi form of our iterative method and it orre-sponds to the Hensel iteration [6℄ known in omputer algebra. As is the asein the algebrai Hensel setting, one �nds that a linearly onverging variant ofNewton's iteration an be advantageous when the omputations in the \basering" are muh more eÆient than the omputations whih would result ifthe update for eah iteration were omputed in a larger ring.For the iterative method of this paper, an initial solution at hardwareoating point preision is �rst generated using a traditional algorithm. Sub-sequent solutions at higher preision are omputed by repeatedly �ndingthe orretion term. The omputation is separated into omponents, themajority of whih are performed on the faster oating point hardware. Thismethod has been applied to problems with easily omputed residuals, and byperforming most of the time-onsuming omputations in hardware, ahievessigni�ant speedup ompared to traditional methods for these types of prob-lems.In this paper we apply the method to some linear algebra problems. Weorder the disussion aording to the ategories of linear systems. First weonsider the solution of nonsingular linear systems, followed by least squaressolutions of overdetermined linear systems, and �nally we onsider the sin-gular value deomposition for singular linear systems. In the last setion, weapply our method to a lass of nonlinear problems, namely, systems of poly-nomial equations. We �nd that the new method redues the omputationalost of omputing a high preision solution by a signi�ant fator for theseproblems.We implemented and tested our methods in Maple 8 on a 1 GHz Pentium 31

with 512 Mb of memory. Our test ases use a \base preision" of 15 digitsorresponding to hardware oating point (double preision). All the timingresults have units in seonds.2 Cost of a Floating Point OperationLet us ompare the ost of one oating point operation in the software andhardware oating point environments. In order to have timings that aresuÆiently large to be measured with some degree of reliability, we use matrixmultipliation. By a \oating point operation" we refer to a single salarmultipliation (or addition) operation.When an n� n matrix is multiplied by itself using the standard method,the unit ost of a single operation may be estimated by dividing the matrixmultipliation time by the total number of operations, namely 2n3. In thetables below we reord the estimates of the unit ost for both hardwareand software oating point environments, based on matrix multipliation forinreasing matrix size n. See Appendix A for the Maple ode.2.1 Software versus hardware oating pointWe measure the time to multiply a random n� n matrix with itself in bothhardware (Thard) and software (Tsoft) oating point environments and gener-ate two sets of data in Table 1. We alulate Th = Thard=2n3, the per oper-ation ost using hardware oating point representation, and Ts = Tsoft=2n3,the per operation ost using software oating point representation.Note that the values hosen for the matrix size n are muh larger inthe hardware environment in order to ahieve measurable timings, whereasin the software environment hoosing suh large values of n would lead tounneessarily large matrix multipliation timings.In this experiment the oating-point preision is spei�ed in Maple tobe Digits:=15 for both ases, orresponding to the approximate preision,expressed in deimal digits, of the binary-based \double preision" hardwareoating point representation.We see that as the matrix size inreases, Th remains approximately on-stant at around 0:14� 10�8s. This is our estimate for the hardware oatingpoint operation ost on the partiular omputer used. The absolute timing is2

Hardware Cost Software Costn Thard Th n Tsoft Ts500 .460 .1840e-8 25 .161 .5152e-5750 1.250 .1481e-8 50 1.111 .4444e-51000 2.859 .1429e-8 75 4.079 .4834e-51500 9.691 .1436e-8 100 10.610 .5305e-52000 22.71 .1419e-8 125 22.700 .5811e-53000 76.08 .1409e-8 150 43.610 .6460e-54000 177.719 .1388e-8 175 78.740 .7346e-55000 347.210 .1388e-8 200 130.160 .8135e-5Table 1: Hardware and software oating point operation ost.only relevant as a means to determine the relative timing of software versushardware oating point operations.For the ase of software oats, we see that as the matrix size grows Ts in-reases. This is due to omputational overhead inluding the ost of garbageolletion. The smallest value of Ts is approximately 0:5� 10�5. Clearly, Tsis at least 1000 times larger than Th.To see more learly the e�et of garbage olletion in the software oatingpoint environment, we turn o� garbage olletion and report the results inTable 2. More spei�ally, we set the frequeny of garbage olletion inMaple to gfreq=10^8 in ontrast to the default setting of gfreq=10^6.The value reported for Maple's gtimes is 1 from the initial setting of thegfreq ag and then it is inremented with eah additional invoation ofgarbage olletion.From Table 2 we an see that by removing the e�et of garbage olletion,the value of Ts remains approximately onstant as the matrix size inreases,with a value of approximately 0:3 � 10�5s. The last three rows of the tableillustrate, one again, the e�et of garbage olletion overhead. In this paper,we will use the estimate Ts � 2� 103 Th : (1)2.2 Growth of ost with inreasing preisionThe software oating point operation ost Ts(d) is a funtion of the preisiond = m� p, where p denotes the base preision whih is 15 in our test ases,3

n Tsoft Ts gtimes25 0.079 0.2528e-5 150 0.670 0.2680e-5 175 2.170 0.2572e-5 1100 5.091 0.2546e-5 1125 10.180 0.2606e-5 1150 17.719 0.2625e-5 1175 28.390 0.2649e-5 1200 42.339 0.2646e-5 1250 136.85 0.4380e-5 2350 640.74 0.7472e-5 2500 4504.12 1.8016e-5 2Table 2: Software oating point with minimal garbage olletion.preision m� p Ts(m� p)1� 15 0.4444e-55� 15 0.6640e-510 � 15 1.598e-520 � 15 3.980e-530 � 15 6.288e-540 � 15 10.91e-550 � 15 14.07e-560 � 15 17.32e-570 � 15 30.93e-580 � 15 30.79e-590 � 15 35.18e-5100 � 15 48.48e-5Table 3: Software oating point operation ost versus preision.4

0

20

40

60

80

100

20 40 60 80 100
mFigure 1: Time Ratio TR(m): Polynomial �t to data.and m is the preision multiplier. To obtain experimental evidene for therate of growth of Ts(d), we �x the matrix size at 50�50 and let the preisionmultipler m grow. The timing results are presented in Table 3.We wish to model the time ratio TR(m) de�ned byTR(m) = Ts(m� p)Ts(1� p)whih is the ratio of the ost of one software oating point operation inpreision m � p to the ost of one software oating point operation in basepreision p. The denominator here is the onstant value Ts disussed above.We know that the ost of multiplying two d-digit oating point numbers isquadrati in d. It follows that the ratio TR(m) is quadrati in m.Applying a least squares �t by a polynomial of degree 2 to the data forTR(m) derived from Table 3, we obtain the following equation. See Figure 1whih shows that the least squares �t to the data by a quadrati polynomial5

is quite good.TR(m) = Ts(m� p)Ts(1 � p) � 0:008m2 + 0:264m+ 0:252� 1125m2 + 14m+ 14 :Inorporating the relationship Ts � 2 � 103 Th from equation (1), we getTs(m� p) = TR(m) � Ts� (1125m2 + 14m+ 14) Ts� (16m2 + 500m + 500) Th : (2)3 Nonsingular Linear SystemsSolving nonsingular linear systems in high preision is a natural startingpoint to demonstrate the strength of the iterative method. The onept ofour iterative method omes diretly from the well-known onept of iterativeimprovement for the solution of a linear system, as disussed in standardnumerial textbooks [5℄, [2℄. In the traditional setting, one is omputing ina �xed-preision oating point environment and the purpose of the iterativeimprovement step(s) is to re�ne the solution omputed by a diret methodinto a solution aurate to full preision.In the following disussion, we assume the base preision is p digits andthe desired preision is m� p digits.3.1 The Iterative AlgorithmConsider a linear system Ax = b, where A 2 Rn�n; b 2 Rn�1, and we wantto solve for x 2 Rn�1. Both the diret method and the iterative methodstart by applying LU deomposition to A and then use forward and baksubstitution to solve the system. In the diret method, the omputation isarried out entirely in the software oating point system at high preision,working with m� p digits throughout.In ontrast, the iterative method works in the hardware oating pointsystem �rst, to �nd an initial solution in the base preision p, and thenenters an iterative re�nement loop. In eah iteration, the method �rst uses6

software oating point operations to ompute the residual from the previoussolution in high preision, and then goes bak to the hardware oating pointenvironment to ompute the orretion term in base preision, and �nallyadds the orretion term to the previous solution in software oats. Theresulting sequene of solutions has monotonially inreasing preision. TheLU deomposition omputed in the initial step at base preision is re-usedin eah iterative step, thus making the iterative steps very ost eÆient.In summary, the iterative method an be expressed as Algorithm A.Algorithm A.1. [Traditional linear solve℄ SolveAx = b by a diret method in preision pyielding initial solution x(1); save the deomposition result A = P LU .2. [Compute x(i+1) = x(i) +�x(i) so that x(i+1) is orret to � (i+ 1)� pdigits℄For i = 1 :: M � 1:(a) Compute r(i) = A � x(i) � b in (i+ 1) � p digits.(b) Solve (P LU) ��x(i) = r(i) for �x(i) in p digits.() Compute x(i+1) = x(i) +�x(i) in (i+ 1)� p digits.In pratie, one an let the loop iterate until the size of the orretionterm, relative to the omputed solution, is small; for example, loop untilk�x(i)k � � kx(1)k where � is the unit roundo� error for the desired preisionof the �nal result. The loop has been spei�ed above in terms of a numberM for purposes of the ost analysis to be arried out. We need an estimatefor the number of iterations required.The number of iterative re�nement steps required is determined by howwell-onditioned (or ill-onditioned) is the matrix A. Let �(A) denote theondition number of the matrixA. If �(A) � 1, we expet the initial estimatex(1) to be orret to approximately p digits, and we expet to add approxi-mately p orret digits with eah iteration. In this very well-onditioned asewe would have M = m to ahieve a result aurate to mp digits.More generally, we need the following error estimate. Suppose that thelinear system Ay = b is solved in a p-digit oating-point environment by adiret method (Gaussian elimination with pivoting) yielding the omputed7

solution yapprox. An error analysis [4℄ yields the following estimate for therelative error, where y denotes the true solution:ky � yapproxkkyapproxk � �(A) � (3)where � = 101�p.Now suppose that �(A) � 10q. Equation (3) implies that the initialestimate x(1) omputed in step A1 will lose about q digits of auray; i.e., itwill be orret only to approximately p� q digits. Similarly, in eah iterativestep the orretion term �x(i) will only be orret to about p�q digits, so wewill expet to add approximately p�q orret digits with eah iteration. Theonlusion is that to ahieve the desired preision of mp digits, the numberM of iterations required (ounting step A1) an be estimated byM � mpp � q (4)where q = log10 (�(A)).It is lear from equation (4) that Algorithm A an only be expeted tosueed if q < p. Indeed, when the ondition number is large enough sothat one annot get at least one digit of auray in step A1 then it wouldbe neessary to abandon hardware oating point and use a high-preisionsoftware oating point environment for the entire omputation.3.2 Cost AnalysisThe ost to ompute the LU deomposition in step A1 is approximately 23 n3ops (oating point operations), and the ost of forward and bak substitu-tion is 2n2 ops. The total ost Citer for Algorithm A an be estimated asfollows, where we use equation (2) to express Ts(i� p) in terms of Th.Citer = Th � Cost(LUdeomp + for bak sub)+ MXi=2 [Ts(i� p) � Cost(A2:a+A2:) + Th � Cost(A2:b)℄� �23 n3 + 2n2� Th + MXi=2 h2 (n2 + n)Ts(i� p) + 2n2 Thi� �23 n3 + 2n2 + 2 (M � 1)n2� Th8

+ 2 (n2 + n) MXi=2 �16 i2 + 500 i + 500� Th� �23 n3 + 23 n2(16M3 + 774M2 + 2261M � 3048)� Th +O(M3 n):The ost for the diret method an be estimated as follows.Cdiret = Ts(m� p) �Cost(LUdeomp + for bak sub)� (23 n3 + 2n2)Ts(m� p)� (83 n3 + 8n2) (4m2 + 125m + 125)Th :We an now estimate the speedup ratioCdiretCiter � (83 n3 + 8n2) (4m2 + 125m + 125)23 n3 + 23 n2 (16M3 + 774M2 + 2261M � 3048) :Using equation (4) to express M in terms of the preision multiplier m, andrearranging to exhibit the asymptoti behaviour as n grows large, we de�nethe following Theoretial Speedup (TS) formula.TS �CdiretCiter � = (5)(16m2 + 500m + 500) + 1n (48m2 + 1500m + 1500)1 + 1n �16 � pp�q�3m3 + 774 � pp�q�2m2 + 2261 � pp�q�m� 3048� :Note that TS �CdiretCiter �! 16m2 + 500m + 500 as n!1 :3.3 Experimental DataFor our �rst set of experiments, we generate random nonsingular n� n ma-tries A and random n-vetors b, for various values of n. With base preisionp = 15, we ompute the solution x of the linear system Ax = b to preisionm� p = 120; i.e., the preision multiplier is m = 8.For the random nonsingular matries generated, we �nd that �(A) � 103in eah ase so we use the value q = 3 for alulating the Theoretial Speedup9

Matrix size Time Speedupn Titer Tdiret TdiretTiter TS(CdiretCiter)50 0.49 2.80 5.71 2.5975 1.78 14.45 8.12 3.81100 5.83 48.93 8.39 5.03125 13.00 619.01 47.62 6.25150 36.11 321.12 8.89 7.47175 84.14 799.35 9.50 8.69200 154.41 8219.59 53.23 9.91225 286.76 16853.00 58.77 11.1Table 4: Nonsingular linear systems: size, ost and speedup.TS. Note that the expeted number of iterations required for solving this setof linear systems is M � p=(p � q)�m = 1:25m; i.e., M � 10.Equation (5) beomesTS �CdiretCiter � = 5524 + 16572n1 + 112962n :Table 4 presents timing results for the iterative method and the diretmethod for solving this set of random linear systems. The atual ratio of thetimings is presented as well as the Theoretial Speedup predited by our ostanalysis. See Appendix B for the program.We see that the Theoretial Speedup formula predits the speedup fa-tor reasonably well exept for various \spikes" in the timings for the diretmethod. In fat, the iterative method proves to be even more advantageousthan predited sine it essentially avoids any serious memory issues.The \spikes" appearing in Table 4 in the timings for the diret methodare due to Maple's garbage olletion algorithm as well as possibly someother memory organization issues. To test the e�et of garbage olletion,we present in Table 5 the results of \turning o�" garbage olletion (morepreisely, we set gfreq=10^8). Note that this is not a pratial idea beauseit leads to a large inrease in memory usage, but it serves to verify thatgarbage olletion is the primary ause of the timing \spikes" noted in Table4. See Appendix C for the program.We see in Table 5 that when garbage olletion is \turned o�", the om-puting times for the diret method inrease monotonially as the matrix size10

Matrix size default: gfreq = 106 g \o�": gfreq = 108n g Tdiret spae(Mb) g Tdiret spae(Mb)50 4 2.39 7.9 1 1.35 40.475 8 13.60 11.2 1 4.68 127.2100 13 51.83 12.6 1 12.94 287.0125 20 1340.07 12.7 2 43.67 473.7150 27 511.67 16.9 2 113.72 505.4175 36 1267.52 20.5 2 243.31 546.2200 47 12097.02 23.1 2 478.04 591.3225 58 4826.99 31.5 2 1013.19 641.2Table 5: E�et of garbage olletion on Diret Method.inreases, avoiding the timing \spikes" seen in Table 4. As a tradeo�, therequired memory spae alloation beomes more than 20 times larger thanfor the default g setting. For later experiments, we revert to the defaultgarbage olletion setting.Table 4 showed that the iterative re�nement method is signi�antly fasterthan the diret method for a set of random matries whih were reasonablywell-onditioned. In Table 6 we present the results for the ase of matrieswhih have a higher ondition number. The program in Appendix D reates\ill-onditioned" matries by reating a random matrix A and then formingATA as the new oeÆient matrix.In Table 6 we report the ondition number �(A) of the matrix, the relativeerror in the solution by eah method, and the number of iterations atuallyrequired by the iterative method to reah the desired high preision solution.As before, we use base preision p = 15 and we ompute the solution ofthe linear system to preision m � p = 120; i.e., m = 8. As an be seenin Table 6, �(A) � 106 for this set of matries. Therefore we have usedthe value q = 6 for alulating the Theoretial Speedup TS. Note that theexpeted number of iterations required for solving this \ill-onditioned" setof linear systems isM � p=(p�q)�m � 1:67m; i.e.,M � 13:3. We see thatthis is a reasonable estimate for the number of iterations atually requiredas reported in Table 6.In this ase, equation (5) beomesTS �CdiretCiter � = 5524 + 16572n1 + 202624:6n :11

�(A) # Relative Error Time Speedupn �106 it: REiter REdiret Titer Tdiret TdiretTiter TS50 0.30 11 0.16e-119 0.22e-115 1.14 4.51 3.97 1.4575 0.15 11 0.12e-119 0.44e-116 2.93 33.00 11.28 2.13100 1.30 12 0.35e-119 0.17e-114 8.77 175.25 19.98 2.81125 0.09 11 0.11e-119 0.34e-115 16.53 1254.08 75.85 3.49150 0.63 12 0.19e-119 0.96e-114 36.59 2320.82 63.43 4.17175 0.13 14 0.56e-120 0.55e-112 105.94 3415.27 32.24 4.85200 0.43 13 0.10e-119 0.17e-113 178.84 13282.48 74.27 5.53225 1.90 12 0.41e-119 0.10e-113 210.72 13807.22 65.52 6.21Table 6: Ill-onditioned linear systems.From Table 6 we observe that the iterative method not only is faster thanthe diret method, but also it returns fully aurate solutions. As expeted,the solutions omputed by the diret method lose approximately 6 digits ofauray due to the ondition number of the matries. See Appendix D forthe program.4 Overdetermined Systems: Least SquaresConsider the ase of an overdetermined linear system for whih we wish toompute the least squares solution. Just as in the ase of solving a nonsin-gular linear system, we an exploit an iterative method to ompute a highpreision least squares solution more eÆiently than using a diret method.In the following disussion, we assume the base preision is p digits, and thedesired preision is m� p digits.4.1 The Iterative MethodLet k > n, A 2 Rk�n; b 2 Rk�1 and we wish to solve Ax � b in theleast squares sense. This is an overdetermined system of linear equations.The desired solution is a vetor x 2 Rn�1 whih minimizes kb�Axk2. Thissolution an be omputed by �nding x and r suh that (see [2℄)r = b�Ax; ATr = 0 :12

Note that sine our iterative method will ompute suessive approximationsfor both x and r, we will ompute in eah iteration a residual not only withrespet to x but also with respet to r.In this setion, we assume that the olumns of A are linearly independentand therefore the system has a unique least squares solution set x, r. Thelinearly dependent ase will be handled by the SVD method in setion 5.The original least squares problem an be rewritten as the following non-singular linear system (see [2℄): A Ik0 At !| {z }C xr !| {z }y = b0 !| {z }d : (6)AlgorithmA from setion 3 may be applied to the (k+n)�(k+n) nonsingularlinear system C y = d de�ned by (6) yielding the following algorithm.1. Solve for y(1) in base preision by a diret method.2. Compute y(i+1) = y(i) +�y(i), i = 1::M � 1, where �y(i) is de�ned byC�y(i) = s(i) and s(i) = d� C y(i).In the above algorithm, the preision for eah step of the omputation wouldbe as de�ned in Algorithm A. Also as before, M = � pp�q�m whereq = log10 (�(C)) :The large size of the matrix C in the above formulation of the leastsquares problem makes this approah ineÆient as stated. However, onean separate the large square system (6) into into smaller bloks to takeadvantage of the fat that there are identity and zero submatries in thematrix C. QR deomposition is then applied to solve the problem.We have C = A Ik0 At ! ; �y(i) = �x(i)�r(i) ! ;s(i) = d� Cy(i) = s(i)1s(i)2 ! = b�Ax(i) � r(i)�ATr(i) ! :Solving C�y(i) = s(i) for �y(i) is thus equivalent to solving the followingsystem for �x(i) and �r(i):(A�x(i) +�r(i) = b�Ax(i) � r(i)AT �r(i) = �AT r(i) :13

The iterative method for the least squares problem an be expressed asAlgorithm B.Algorithm B.1. [Traditional QR method℄ In preision p, deompose A = QR, solveRx(1) = QT b for x(1) and ompute r(1) = b�Ax(1).2. [Compute x(i+1) = x(i)+�x(i); r(i+1) = r(i)+�r(i) so that x(i+1); r(i+1)are orret to � (i+ 1)� p digits℄For i = 1 :: M � 1:(a) In (i+ 1)� p digits, ompute the right hand side vetors:s(i)1 = b�Ax(i) � r(i)s(i)2 = �AT r(i) :(b) In p digits, solve AT �r(i) = s(i)2 for �r(i); i.e.,RT QT �r(i) = s(i)2 ;i.e., solve RT z = s(i)2 for z = QT �r(i), then �r(i) = Qz :() In p digits, solve A�x(i) = s(i)1 ��r(i) for �x(i); i.e.,QR�x(i) = s(i)1 ��r(i)) R�x(i) = QT (s(i)1 ��r(i))) R�x(i) = QT s(i)1 � z :(d) In (i+ 1)� p digits, x(i+1) = x(i) +�x(i); r(i+1) = r(i) +�r(i) :The diret method uses QR deomposition and bak substitution to solvethe least squares problem, with all omputations performed in high preisionin the software oating point environment.14

4.2 Cost AnalysisThe ost to ompute the QR deomposition in step B1 is approximately2 k n2 ops. The ost to ompute QT b and then solve for x(1) is 2 k n + n2ops and the ost to ompute Ax(1) and then r(1) is 2 k n + k ops. Thetotal ost Citer for Algorithm B an be estimated as follows, where we useequation (2) to express Ts(i� p) in terms of Th.Citer = Th � Cost(B1) +MXi=2[Ts(i� p)� Cost(B2:a+B2:d) + Th � Cost(B2:b+B2:)℄� (2 k n2 + 4 k n+ n2)Th+ MXi=2 h(4 k n+ 3 k + n)Ts(i� p) + (4 k2 + 2n2 + k)Thi� h(2 k n2 + 4 k n+ n2) + (4 k2 + 2n2) (M � 1)i Th+ 4 k n MXi=2(16 i2 + 500 i + 500)Th + O(M3 k)� �2 k n2 + 4 (M � 1) k2 + 43 k n (16M3 + 774M2 + 2258M � 3045)+ (2M � 1)n2i Th + O(M3 k) :The ost for the diret method an be estimated as follows.Cdiret = Ts(m� p)� Cost(QR deomp + solve for x and r)� (2 k n2 + 4 k n+ n2 +O(k))Ts(m� p)� (8 k n2 + 16 k n+ 4n2) (4m2 + 125m + 125)Th +O(m2 k) :For our experiments we hoose to set k = 2n, so using this relationship theestimate for the speedup ratio isCdiretCiter � (16n3 + 36n2) (4m2 + 125m + 125)4n3 + 13 n2 (128M3 + 6192M2 + 18118M � 24411) :Using equation (4) to express M in terms of the preision multiplier m, andrearranging to exhibit the asymptoti behaviour as n grows large, we de�nethe following Theoretial Speedup (TS) formula.15

TS �CdiretCiter � = (7)(16m2 + 500m + 500) + 9n (4m2 + 125m + 125)1 + 112n �128 � pp�q�3m3 + 6192 � pp�q�2m2 + 18118 � pp�q�m� 24411� :Note that TS �CdiretCiter �! 16m2 + 500m + 500 as n!1 :4.3 Experimental DataWe generate random k � n matries A and random k-vetors b, for variousvalues of n and with k = 2n. Using base preision p = 15, we ompute theleast squares solution to preision m� p = 120; i.e., the preision multiplieris m = 8. The timing results are presented in Table 7. See Appendix E forthe program.As was the ase in Table 4 (nonsingular linear systems), we �nd thatq = 3 is an appropriate estimate for the random matries generated, for thepurpose of alulating the Theoretial Speedup TS. Note that the expetednumber of iterations required for solving this set of problems isM � p=(p � q)�m = 1:25mi.e., M � 10. Experimental observations on�rm that this is a reasonableestimate.Equation (7) beomesTS �CdiretCiter � = 5524 + 12429n1 + 75330:75n :From the data in Table 7, we see that the iterative method has an eÆienyadvantage over the diret method by a fator that is signi�antly larger thanpredited by our ost analysis. As the investigation in setion 3 illustrated(see Table 5), memory management overhead inluding garbage olletionan add very signi�antly to the ost of solving large problems using a high-preision software oating point environment.16

Matrix size Time Speedupk � n Titer Tdiret TdiretTiter TS(CdiretCiter)50 � 25 1.08 4.22 3.91 2.0080 � 40 3.24 33.76 10.42 3.10100 � 50 5.28 100.72 19.08 3.83120 � 60 9.34 278.20 29.78 4.56150 � 75 24.36 652.57 26.79 5.66160 � 80 31.95 3144.05 98.41 6.03200 � 100 84.92 9376.09 110.41 7.49250 � 125 262.92 33128.67 126.00 9.32Table 7: Least squares problems: size, ost and speedup.5 Singular Linear Systems: SVDIn this setion, we apply an iterative method based on the singular value de-omposition (SVD) for omputing high preision solutions for singular linearsystems. In the following disussion, we assume the base preision is p digitsand the desired preision is m� p digits.5.1 The Iterative MethodLet k � n, A 2 Rk�n; b 2 Rk�1 and furthermore assume that the matrixis rank de�ient: �(A) < n. We investigate the iterative approah proposedby Corless and Shiho [1℄ for omputing a solution of Ax � b based onapplying the Moore-Penrose pseudo-inverse of the singular matrix A.First we outline the diret method for this problem. The following stepswould be applied in the desired preision m� p.1. Compute the singular value deomposition A = U �V T .2. Deide the numerial rank r of A by examining the singular values�1 � �2 � : : : � �r � �r+1 � 0 � : : : � �n .3. Compute the Moore-Penrose pseudo-inverse Ay = V �y UT where�y = diag(1�1 ; 1�2 ; : : : ; 1�r ; 0; : : : ; 0) :4. Compute the solution x = Ay b .17

The determination of the numerial rank in step 2 above (and in step C1of Algorithm C) requires that a tolerane � has been hosen suh that allsingular values satisfying �i � � are onsidered to be equivalent to zero.In the iterative method for this problem, we �rst apply in base preisionp the diret method outlined above. Then we apply the iteration presentedin Algorithm C. Note that the approximate pseudo-inverse Ay omputed instep C1 is used repeatedly in eah iteration [1℄.Algorithm C.1. [Moore-Penrose method℄ In base preision p, deompose A = U �V T ,then ompute the approximate pseudo-inverse Ay = V �y UT and theinitial solution x(1) = Ay b .2. [Compute x(i+1) = x(i) +�x(i) so that x(i+1) is orret to � (i+ 1)� pdigits℄For i = 1 :: M � 1:(a) In (i+ 1)� p digits, ompute r(i) = Ax(i) � b .(b) In p digits, ompute �x(i) = Ay r(i) .() In (i+ 1)� p digits, ompute x(i+1) = x(i) +�x(i) .5.2 Cost AnalysisConsider the ase k = 2n. The ost of the singular value deomposition is12n3 + O(n2) ops. Computing the pseudo inverse osts 4n3 + O(n2) opsand omputing the initial solution x(1) osts 2n2 ops [3℄.The ost of the diret method an be estimated as follows where, as usual,we use equation (2) to express Ts(m� p) in terms of Th .Cdiret = Ts(m� p)� Cost(SV D + pseudo inverse+ ompute x)� [12n3 + 4n3 +O(n2)℄Ts(m� p)� 16n3 (16m2 + 500m + 500) Th +O(m2 n2) :The iterative method of Algorithm C has total ost estimated as follows.18

Citer = Th � Cost(C1) +MXi=2[Ts(i� p) � Cost(C2:a+ C2:) + Th � Cost(C2:b)℄� 16n3 Th + MXi=2[2n2 Ts(i� p) + 2n2 Th℄ + O(n2)� �16n3 + 23 n2 (16M3 + 774M2)� Th + O(M n2) :We have not done an analysis to determine how to estimateM , the num-ber of iterations required. For the experimental results presented here, wesimply note that for our set of tests the number of iterations never exeededM = 32 m, so we use this estimate below. In any ase, we �nd that the atualspeedup ahieved by the iterative method is muh larger than predited byour theoretial analysis.The estimate for the speedup ratio isCdiretCiter � 16n3 (16m2 + 500m + 500)16n3 + 23 n2 (16M3 + 774M2) � 16n3 (16m2 + 500m + 500)16n3 + 9n2 (4m3 + 129m2) :Therefore we de�ne the Theoretial Speedup (TS) formula:TS �CdiretCiter � = 16m2 + 500m + 500)1 + 916n (4m3 + 129m2) : (8)Note that TS �CdiretCiter �! 16m2 + 500m + 500 as n!1 :5.3 Experimental DataWe set k = 2n and generate matries A of size k � n having de�ient rank:�(A) < n . The k-vetors b are hosen to ensure that the singular systemhas a solution. Using base preision p = 15, we solve the problem in thesense desribed above to preision m� p = 120; i.e., the preision multiplieris m = 8. The timing results are presented in Table 8. See Appendix F forthe program. 19

Matrix size Time Speedupk � n Titer Tdiret TdiretTiter TS(CdiretCiter)30 � 15 0.29 7.74 26.69 14.350 � 25 0.61 52.19 85.56 23.780 � 40 1.11 213.74 192.56 37.9100 � 50 1.47 786.75 535.20 47.3120 � 60 2.00 3700.11 1850.01 56.6150 � 75 2.94 17907.16 6090.87 70.6Table 8: SVD problems: size, ost and speedup.Equation (8) beomesTS �CdiretCiter � = 55241 + 5796n :From the data in Table 8, we see that the iterative method has an eÆienyadvantage over the diret method by a fator that is signi�antly larger thanpredited by our ost analysis. As the investigation in setion 3 illustrated(see Table 5), memory management overhead inluding garbage olletionan add very signi�antly to the ost of solving large problems using a high-preision software oating point environment.6 Nonlinear Equations: Polynomial SystemsThe problem of omputing numerial solutions for a system of nonlinearequations is typially solved by a suessive approximation method. Indeed,Newton's iteration is one ommon hoie of method. Starting from a suÆ-iently aurate initial approximation x(0) one omputes a sequene of iteratesx(1); x(2); x(3); ::: whih onverge to a solution.The point of onsidering systems of nonlinear equations in this paper isto note that, just as in the preeding setions, it an be advantageous whenomputing high-preision solutions to employ a linearly onverging Newtoniteration rather than the ommonly-used quadrati iteration. The idea is tobuild up the high preision solution in bloks of \base preision" digits andthus exploit the speed of the hardware oating point environment.In this setion, we onsider systems of multivariate polynomial equationsand demonstrate the strength of our partiular \iterative method" for om-20

puting high preision solutions. As before, the base preision is p digits andwe wish to ompute solutions aurate to preision m� p digits.6.1 The Iterative MethodWe are given a system of nonlinear equationsfi (x1; x2; :::; xn) = 0; i = 1; 2; :::; n (9)to be solved for xi; i = 1; 2; :::; n. In this paper, we will assume that we aregiven a suÆiently aurate initial approximation x(0) .Newton's iteration in matrix-vetor formulation takes the following formwhere Jf(x) denotes the n� n Jaobian matrix for system (9) evaluated ata point (vetor) x: x(k+1) = x(k) � [Jf(x(k))℄�1 � f(x(k)) :Denote J (k) = Jf (x(k)); �x(k) = x(k+1) � x(k); f (k) = f(x(k)) :The so-alled \diret method" (i.e., the traditional quadrati Newtoniteration method) updates the Jaobian matrix J (k) and the residual f (k)in eah iteration, and solves the linear system J (k)�x(k) = f (k) by a diretlinear solver. Most of the alulations are performed in the high preisionsoftware oating point environment, noting that the preision is allowed togrow appropriately with eah iteration. (See the program in Appendix G.)Our \iterative method", in ontrast, performs as muh of the omputationas possible in the hardware oating point environment. We ompute the �rstiterate x(1) by applying the \diret" Newton's method at base preision. (Inall ases, we are assuming that a suÆiently aurate initial approximate x(0)has been given to us.) We then evaluate the Jaobian matrix J (1) at basepreision and ompute the LU deomposition of J (1). The result J (1) = P LUof the LU deomposition is kept and repeatedly used in later iterations.The residual is omputed at higher preision in the software oating pointenvironment, and the orretion term is alulated at base preision in thehardware oating point environment.We present our algorithm as Algorithm D.Algorithm D.1. Compute x(1) in preision p via a standard (\diret") Newton's methodstarting with the given initial guess x(0).21

2. In preision p, ompute the Jaobian matrix J (1) = Jf(x(1)) and applyLU deomposition yielding J (1) = P LU :3. [Compute x(i+1) = x(i) +�x(i) so that x(i+1) is orret to � (i+ 1)� pdigits℄Set � = 0:5 � 101�(m�p) :For i = 1; 2; :::(a) Compute r(i) = f(x(i)) in (i+ 1) � p digits.(b) Solve (P LU) ��x(i) = r(i) for �x(i) in p digits.() Compute x(i+1) = x(i) ��x(i) in (i+ 1) � p digits.until Norm(�x(i)) � � :6.2 Cost AnalysisSuppose the ost of evaluating funtion fi at a point (x1; x2; :::; xn) is Cfiops. This ost will depend on the partiular funtion fi. For a system ofsparse multivariate polynomials, we may assume that Cfi � O(n). We willuse the estimate Cfi � n in the following ost analysis.In the \diret method", eah iteration performs n funtion evaluations toompute the residual f (k), n2 funtion evaluations to evaluate the Jaobianmatrix J (k), and solves one n�n linear system. Sine the solution onvergesquadratially, only a few iterations are required and we may estimate thetotal ost by the ost of the last iteration whih is performed at the highestpreision. Therefore the ost estimate for the \diret method" is:Cdiret � h(n2 + n)Cfi + Cost(linear solve)iTs(m� p)� �(n2 + n)n + 23n3 + 2n2� (16m2 + 500m + 500)Th� ��53 n3 + 3n2� (16m2 + 500m + 500)� Th :At base preision p, our \ iterative method" omputes the initial solutionx(1) using the \diret method", evaluates the Jaobian matrix J (1), and de-omposes J (1) = P LU . At higher preision, it omputes the residual. As22

in the previous setions, this method saves the LU deomposition of J (1) forlater use. The total ost Citer for Algorithm D an be estimated as follows.Citer = Th � Cost �ompute x(1) + ompute J (1) + LUdeomp�+ MXi=2 [Ts(i� p) �Cost(D3:a +D3:) + Th � Cost(D3:b)℄� �53n3 + 3n2 + n2Cfi + 23n3� Th+ MXi=2 h(nCfi + n)Ts(i� p) + 2n2Thi� �103 n3 + 3n2 + 2(M � 1)n2� Th+ (n2 + n) MXi=2(16 i2 + 500 i + 500)Th� �103 n3 + 13n2 �16M3 + 774M2 + 2264M � 3045��Th +O(M3n) :The numberM of iterations required will depend on �(J (1)), the onditionnumber of the Jaobian matrix, beause the orretion term for eah iterationis omputed in step D3.b by solving a linear system with oeÆient matrixJ (1). For our ost estimates, we will assume q = log(�(J (1))) � 6 and theexpeted number of iterations is M � � pp�q�m � 53m.Using this relationship forM in terms ofm and rearranging to exhibit theasymptoti behaviour as n grows large, we de�ne the following TheoretialSpeedup (TS) formula.TS(CdiretCiter) = (8m2 + 250m + 250) + 185n(4m2 + 125m+ 125)1 + 154n(400m3 + 11610m2 + 20376m � 16443) : (10)Note that TS �CdiretCiter �! 8m2 + 250m + 250; as n!1 :23

Size Time Speedup Norm of Errorsn Titer Tdiret TdiretTiter TS NEiter NEdiret25 0.91 1.88 2.07 3.65 0.459e-119 0.465e-11950 1.83 9.12 4.98 7.04 0.483e-119 0.483e-11975 2.92 33.59 11.50 10.4 0.604e-119 0.483e-119100 5.41 82.00 15.16 13.8 0.457e-119 0.483e-119125 7.91 568.98 72.00 17.2 0.483e-119 0.483e-119150 12.03 1425.43 118.49 20.5 0.483e-119 0.483e-119225 37.86 9423.69 248.91 30.6 0.333e-118 0.333e-118250 54.241 18162.47 334.85 33.9 0.338e-118 0.333e-118Table 9: Polynomial systems: size, ost, speedup and errors.6.3 Experimental DataIn our experiments, the base preision is p = 15 and we ompute results topreision m� p = 120; i:e:; m = 8. Equation (10) beomesTS �CdiretCiter � = 2762 + 248585n1 + 109440554n :Some timing results for randomly generated polynomial systems are pre-sented in Table 9. The size of the error in the omputed solution for eahmethod is also presented in the table. See Appendix G for the program.We see that eah of the methods omputes solutions that are aurate upto the last two digits. As in previous setions, the eÆieny advantage of ourproposed iterative method is even greater than antiipated, mainly beausethe traditional method operating in a high-preision software oating pointenvironment inurs expensive garbage olletion osts.6.4 Aside: Comparison with fsolveIn this experiment, we ompare the \diret method" with Maple's built-infuntion fsolve. We �nd that the \diret method" has better performanethan fsolve on systems of polynomial equations. As Table 9 shows, our newiterative method o�ers even greater performane.Maple's fsolve needs a hint (i:e: an initial guess) for solving a largesystem of equations, as do our methods. We start with a hint aurate24

Size Time Digits of Hint Norm of Errorsn Tfsolve Tdiret fsolve diret NEfsolve NEdiret25 4.91 1.88 3 3 0.220e-115 0.465e-11950 42.02 9.12 3 3 0.110e-112 0.483e-11975 132.35 33.59 3 3 0.310e-114 0.483e-119100 433.56 82.00 3 3 0.110e-113 0.483e-119125 fail 568.98 - 3 - 0.483e-119150 fail 1425.43 - 3 - 0.483e-119225 fail 9423.69 - 3 - 0.333e-118250 fail 18162.47 - 3 - 0.333e-118Table 10: Diret method vs fsolve.to the �rst 3 digits. The \diret method" works properly for the entireinput set, while fsolve fails when the system size is greater than 100. Also,when fsolve sueeds it gives a less aurate solution, as shown in Table10. Where \Digits of Hint" for fsolve in Table 10 is indiated by a dash,we tried suessively more aurate hints (up to 20 digits) and fsolve stillfailed.7 ConlusionThe iterative re�nement method based on a linear Newton iteration, exploit-ing the speed of hardware oating point while onstruting a high preisionsolution, is found to be signi�antly faster than traditional diret methods.The methods were ompared on some linear algebra problems and also onsystems of nonlinear equations.In the iterative re�nement method, the main omputation whih mustbe performed in the high-preision software oating point environment isthe omputation of the residual in eah iteration. Problems for whih theresidual is easy to ompute are suitable for the proposed method.Computing eigenvalues to high preision ould be a possible extension toour urrent work if a fast method of omputing determinants (for the residualalulations) an be found. 25

Referenes[1℄ Corless, R. and Shiho, J. Iterated improvement using the SVD forsingular linear systems. Tehnial Report TR-00-09, Ontario ResearhCentre for Computer Algebra, London, ON, Canada, 2000.[2℄ Dahlquist, G. and Bjoerk, A. Numerial Methods. Prentie-Hall, En-glewood Cli�s, NJ, 1974.[3℄ Demmel, J. Applied Numerial Linear Algebra. SIAM, 1997.[4℄ Forsythe, G., Malolm, M. and Moler, C. Computer Methods for Math-ematial Computations. Prentie-Hall, Englewood Cli�s, NJ, 1974.[5℄ Forsythe, G. and Moler, C. Computer Solution of Linear Algebrai Sys-tems. Prentie-Hall, Englewood Cli�s, NJ, 1967.[6℄ Geddes, K., Czapor, S. and Labahn, G. Algorithms for Computer Alge-bra. Kluwer Aademi Publishers, Norwell, MA, 1992.[7℄ Golub, G. and Van Loan, C. Matrix Computations. The Johns HopkinsUniversity Press, Baltimore, MD, 1989.
26

AppendiesA Floating Point Cost CodeTable 1: Hardware and software floating point operation ost.Compute in base preision, default gfreq.Table 2: Software floating point with minimal garbage olletion.Set gfreq=10^8, ompute only in software floats.Table 3: Software floating point operation ost versus preision.Inrease preision multiplier, ompute in software floats.> with(LinearAlgebra):> basepre := trun(evalhf(Digits));basepre := 15A.1 Hardware oating point environment> n := 500; n := 500> Digits := basepre; UseHardwareFloats := true:Digits := 15> A := RandomMatrix(n, n, generator=-1.0..1.0,outputoptions=[datatype='float[8℄'℄):> hfTime := time(MatrixMatrixMultiply(A, A));hfTime := 0:860> T_h := evalf[4℄(hfTime/(2*n^3));T h := 0:3440 10�827

A.2 Software oating point environment> #kernelopts(gfreq=10^8):> n := 50; n := 50> multiplier := 1:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 15> t := SFloat(1, -pre):> A := RandomMatrix(n, n, generator=rand(-10^pre..10^pre),outputoptions=[datatype='sfloat'℄):> A := t.A:> sfTime := time(MatrixMatrixMultiply(A, A));sfTime := 2:209> T_s := evalf[4℄(sfTime/(2*n^3));T s := 0:8835 10�5> kernelopts(gtimes); 3
28

B Nonsingular Linear Systems CodeTable 4: Nonsingular linear systems: size, ost and speedup.Default gfreq.B.1 Proedure preLinearSolve> preLinearSolve := pro (A::Matrix, b::Vetor, pre::integer)loal basepre, ipiv, x, delta_x, Normx, eps, k, r;basepre := trun(evalhf(Digits));Digits := basepre; UseHardwareFloats := true;ipiv := LinearAlgebra:-LUDeomposition(A, output=['NAG'℄);x := LinearAlgebra:-LinearSolve([ipiv℄, b);delta_x := x; Normx := LinearAlgebra:-Norm(x);eps := SFloat(5, -pre)*Normx;for k from 2 while LinearAlgebra:-Norm(delta_x) > eps doDigits := k*basepre; UseHardwareFloats := false;r := A.x - b;Digits := basepre; UseHardwareFloats := true;delta_x := LinearAlgebra:-LinearSolve([ipiv℄, r);Digits := k*basepre; UseHardwareFloats := false;x := x - delta_x;end do;return x;end pro:B.2 Problem setup> with(LinearAlgebra):> basepre := trun(evalhf(Digits));basepre := 1529

> multiplier := 8:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 120> n := 100; n := 100> t := SFloat(1, -pre):> A := RandomMatrix(n, n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> A := t.A:> b := RandomVetor(n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> b := t.b:B.3 Iterative Method> st := time():> iterative_x := preLinearSolve(A, b, pre):> iterativeTime := time() - st:B.4 Diret Method> st := time():> diret_x := LinearSolve(A, b):> diretTime := time() - st():B.5 Results> diretTime, iterativeTime;579:060; 51:65030

> SpeedUp := evalf[3℄(diretTime/iterativeTime);SpeedUp := 11:2> diffNorm := Norm(iterative_x - diret_x):> evalf[3℄(diffNorm); 0:412 10�115> # Note: iterative_x is fully aurate.

31

C E�et of Garbage ColletionTable 5: Effet of garbage olletion on Diret Method.C.1 Problem setup> kernelopts(gfreq=10^8):> with(LinearAlgebra):> basepre := trun(evalhf(Digits));basepre := 15> multiplier := 8:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 120> n := 100; n := 100> t := SFloat(1, -pre):> A := RandomMatrix(n, n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> A := t.A:> b := RandomVetor(n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> b := t.b:C.2 Diret Method> st := time():> diret_x := LinearSolve(A, b):> diretTime := time() - st(): 32

C.3 Results> kernelopts(gtimes); 2> evalf[4℄(kernelopts(bytesallo));0:2882 109> diretTime; 39:190

33

D Ill-onditioned Linear Systems CodeTable 6: Ill-onditioned linear systems.Default gfreq.D.1 Proedure preLinearSolve> preLinearSolve := pro (A::Matrix, b::Vetor, pre::integer)loal basepre, ipiv, x, delta_x, Normx, eps, k, r;basepre := trun(evalhf(Digits));Digits := basepre; UseHardwareFloats := true;ipiv := LinearAlgebra:-LUDeomposition(A, output=['NAG'℄);x := LinearAlgebra:-LinearSolve([ipiv℄, b);delta_x := x; Normx := LinearAlgebra:-Norm(x);eps := SFloat(5, -pre)*Normx;for k from 2 while LinearAlgebra:-Norm(delta_x) > eps doDigits := k*basepre; UseHardwareFloats := false;r := A.x - b;Digits := basepre; UseHardwareFloats := true;delta_x := LinearAlgebra:-LinearSolve([ipiv℄, r);print(`Norm(delta_x)` = LinearAlgebra:-Norm(delta_x));Digits := k*basepre; UseHardwareFloats := false;x := x - delta_x;end do;print(`#Iterations` = k-1);return x;end pro:D.2 Problem setup> with(LinearAlgebra):> basepre := trun(evalhf(Digits));34

basepre := 15> multiplier := 8:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 120> n := 100; n := 100> t := SFloat(1, -pre):> A := RandomMatrix(n, n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> A := t.A:> b := RandomVetor(n, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> b := t.b:> # Create matrix A with larger ondition number.> A := Transpose(A).A:> ondA := evalf[3℄(ConditionNumber(A));ondA := 14800:D.3 Iterative Method> st := time():> iterative_x := preLinearSolve(A, b, pre):Norm(delta x) = 0:916610133592613816 10�8Norm(delta x) = 0:649768918493847026 10�1935

Norm(delta x) = 0:461555877050158644 10�30Norm(delta x) = 0:327887888693404913 10�41Norm(delta x) = 0:232927678675440092 10�52Norm(delta x) = 0:165466123224243248 10�63Norm(delta x) = 0:117558431188850830 10�74Norm(delta x) = 0:835141325409320218 10�86Norm(delta x) = 0:593240981105982526 10�97Norm(delta x) = 0:421396189769436202 10�108Norm(delta x) = 0:299349272043340206 10�119#Iterations = 12> iterativeTime := time() - st:D.4 Diret Method> st := time():> diret_x := LinearSolve(A, b):> diretTime := time() - st():D.5 Results> diretTime, iterativeTime;439:620; 64:440> SpeedUp := evalf[3℄(diretTime/iterativeTime);SpeedUp := 6:83> diffNorm := Norm(iterative_x - diret_x):> evalf[3℄(diffNorm); 0:851 10�111> # Note: iterative_x is fully aurate.36

E Least Squares CodeTable 7: Least squares problems: size, ost and speedup.E.1 Proedure preLeastSquares> preLeastSquares := pro(A::Matrix, rows::integer, ols::integer,b::Vetor, pre::integer)loal basepre, At, Q0, R0, Q0t, b2, R0upper, R0upper_t, x, r,delta_x, Normx, eps, k, s1, s2, k1, u, i, delta_r;basepre := trun(evalhf(Digits));At := LinearAlgebra:-Transpose(A);Digits := basepre; UseHardwareFloats := true;(Q0, R0) := LinearAlgebra:-QRDeomposition(Matrix(rows,[A℄));Q0t := LinearAlgebra:-Transpose(Q0);b2 := Q0t.b;R0upper := R0[1..ols, 1..ols℄;R0upper_t := LinearAlgebra:-Transpose(R0upper);x := LinearAlgebra:-BakwardSubstitute(R0upper, b2[1..ols℄);r := Q0[1..rows, ols+1..rows℄ . b2[ols+1..rows℄;delta_x := x; Normx := LinearAlgebra:-Norm(x);eps := SFloat(5, -pre)*Normx;for k from 2 while LinearAlgebra:-Norm(delta_x) > eps doDigits := k*basepre; UseHardwareFloats := false;s1 := b - r - A.x; s2 := -At.r;Digits := basepre; UseHardwareFloats := true;k1 := LinearAlgebra:-ForwardSubstitute(R0upper_t, s2);u := Q0t.s1;delta_x := LinearAlgebra:-BakwardSubstitute(R0upper,u[1..ols℄-k1);for i from 1 to ols do u[i℄ := k1[i℄ end do;delta_r := Q0.u;Digits := k*basepre; UseHardwareFloats := false;37

x := x + delta_x; r := r + delta_r;end do;return (x, r);end pro:E.2 Problem setup> with(LinearAlgebra):> basepre := trun(evalhf(Digits));basepre := 15> multiplier := 8:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 120> ols := 25; rows := 2*ols;ols := 25rows := 50> t := SFloat(1, -pre):> A := RandomMatrix(rows, ols,> generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> A := t.A:> b := RandomVetor(rows, generator=rand(-10^pre..10^pre),> outputoptions=[datatype='sfloat'℄):> b := t.b:E.3 Iterative Method> st := time():> (x, r) := preLeastSquares(A, rows, ols, b, pre):> iterativeTime := time() - st:38

E.4 Diret Method> st := time():> (Q, R) := QRDeomposition(A):> b2 := Transpose(Q).b:> diret_x := BakwardSubstitute(R, b2):> diret_r := b - A.diret_x:> diretTime := time() - st:E.5 Results> diretTime, iterativeTime;50:900; 5:900> SpeedUp := evalf[3℄(diretTime/iterativeTime);SpeedUp := 8:63> diffNorm_x := Norm(x - diret_x):> evalf[3℄(diffNorm_x); 0:685 10�119> diffNorm_r := Norm(r - diret_r):> evalf[3℄(diffNorm_r); 0:239 10�118
39

F Singular Linear Systems: SVD CodeApply Corless and Shiho's"Iterated Improvement using the SVD."F.1 Proedure IteratedSVD> IteratedSVD := pro (A::Matrix, Ap::Matrix, b::Vetor,pre::integer)loal basepre, eps, x, r, k, delta_x;basepre := trun(evalhf(Digits));# Desired size of residual is eps.eps := SFloat(1, -pre);# Compute initial solution.# Ap = approximate Moore-Penrose pseudo-inverse of A# aurate to (at most) basepre.Digits := basepre; UseHardwareFloats := true;x := Ap.b;Digits := 2*basepre; UseHardwareFloats := false;r := A.x - b;# Iterate until Norm(r) <= eps.for k from 2 while LinearAlgebra:-Norm(r) > eps doDigits := basepre; UseHardwareFloats := true;delta_x := Ap.r;Digits := k*basepre; UseHardwareFloats := false;x := x - delta_x;Digits := Digits + basepre;r := A.x - b;end do;return x;end pro: 40

F.2 Problem setup# For k >= n define k-by-n matrix A with rank(A) < n and# k-vetor b, with x_true a solution of A.x = b> with(LinearAlgebra):> basepre := trun(evalhf(Digits));basepre := 15> multiplier := 8:> pre := multiplier*basepre:> Digits := pre; UseHardwareFloats := false:Digits := 120> ols := 25; rows := 2*ols;ols := 25rows := 50> rank := ols-1; rank := 24> A := RandomMatrix(rows,rank).RandomMatrix(rank, ols):> x_true := RandomVetor(ols):> b := A.x_true:> # ranktol: threshold for deiding rank based on singvals.> ranktol := SFloat(1, -basepre);ranktol := 0:1 10�1441

F.3 Iterative Method> st := time():> Digits := basepre; UseHardwareFloats := true:Digits := 15> # SVD omputation in base preision.> (U, S, Vt) := SingularValues(A, output=['U','S', 'Vt'℄):> # Compute Ap = Moore-Penrose pseudo-inverse of A .> tau := ranktol*Norm(S):> Sp := Vetor(rows, 0):> for i from 1 to rows do> if S[i℄ > tau then Sp[i℄ := 1.0/S[i℄ end if;> end do:> Spt := DiagonalMatrix(Sp[1..ols℄, rows, ols):> Ap := Transpose(Vt).Transpose(Spt).Transpose(U):> x_iter := IteratedSVD(A, Ap, b, pre):> iterativeTime := time()-st:F.4 Diret Method> st := time():> Digits := pre; UseHardwareFloats := false:Digits := 120> # SVD omputation in high preision.> (U, S, Vt) := SingularValues(A, output=['U','S', 'Vt'℄):> # Compute the Moore-Penrose pseudo-inverse of A.> tau := ranktol*Norm(S):> Sd := Vetor(rows, 0):> for i from 1 to rows do> if S[i℄ > tau then Sd[i℄ := 1.0/S[i℄ end if;> end do:> Sdt := DiagonalMatrix(Sd[1..ols℄, rows, ols):> Ap := Transpose(Vt).Transpose(Sdt).Transpose(U):42

> x_dir := Ap.b:> diretTime := time()-st:F.5 Results> iterativeTime, diretTime;1:060; 252:110> SpeedUp := evalf[3℄(diretTime/iterativeTime);SpeedUp := 238:> # Chek omputed results.> hek_dir := Norm(Ap.(A.x_dir - b)):> hek_dir := evalf[3℄(hek_dir);hek dir := 0:108 10�115> hek_iter := Norm(Ap.(A.x_iter - b)):> hek_iter := evalf[3℄(hek_iter);hek iter := 0:179 10�116> r_dir := Norm(A.x_dir - b);r dir := 0:13 10�110> r_iter := Norm(A.x_iter - b);r iter := 0:1 10�11143

G Polynomial Systems CodeG.1 Proedure DiretNonLinearSolve########Proedure AssignDigits: a utility routine.########Purpose: Returns digitswith digits = newDigits exept that if oldDigitsis within hardware preision then digits will not exeed hardware preision.> AssignDigits := pro (oldDigits::integer, newDigits::integer)loal digits;digits := newDigits;if oldDigits <= evalhf(Digits) anddigits > evalhf(Digits) thendigits := trun(evalhf(Digits));end if;return digits;end pro:########Proedure DiretNonLinearSolve.########Purpose: Diret solution of a nonlinear system of polynomial equations topreision spei�ed by Digits.# Parameters:# input: p -- vetor of polynomials# n -- number of polynomials# vars -- list of variables in polynomial system# hint -- initial guess for the solution, as a set# {x[1℄ = <float>, x[2℄ = <float>, ... }# output: (x, iterations) with# x -- a vetor, the high preision solution# iterations -- the number of iterations used44

> DiretNonLinearSolve := pro (p::Vetor, n::integer,vars::list(name), hint::set(equation))loal i, x, xseq, f, J0, J, final_Digits, deltax, sqrt_eps,Norm_deltax, guard, k, working_pre, r;x := Vetor(n, (i) -> eval(vars[i℄, hint));xseq := seq(x[i℄, i=1..n);f := unapply(p, vars);J0 := linalg[jaobian℄([seq(p[i℄, i=1..n)℄, vars);J := unapply(onvert(J0,'Matrix'), vars);final_Digits := Digits;if final_Digits <= evalhf(Digits) thenUseHardwareFloats := trueelseUseHardwareFloats := falseend if;deltax := x; sqrt_eps := sqrt(SFloat(5, -final_Digits));Norm_deltax := LinearAlgebra:-Norm(deltax);guard := 4; # Number of guard digitsfor k from 1 while Norm_deltax > sqrt_eps doworking_pre := max(0, -2*ilog10(Norm_deltax^2));Digits := AssignDigits(final_Digits, working_pre + guard);r := Vetor(n, evalf(f(xseq)));deltax := LinearAlgebra:-LinearSolve(J(xseq), r);Norm_deltax := LinearAlgebra:-Norm(deltax);print(`Norm(deltax)` = Norm_deltax);x := x - deltax; xseq := seq(x[i℄, i=1..n);end do;return (x, k-1);end pro: 45

G.2 Proedure preNonLinearSolve########Proedure preNonLinearSolve.########Purpose: Solve a nonlinear system of polynomial equations to high preisionvia an iteration exploiting hardware oats in eah iteration.# Parameters:# input: p -- vetor of polynomials# n -- number of polynomials# vars -- list of variables in polynomial system# hint -- initial guess for the solution, as a set# {x[1℄ = <float>, x[2℄ = <float>, ... }# pre -- the required preision# output: (x, iter) with# x -- a vetor, the high preision solution# iter -- the number of iterations required to# ahieve the desired auray.> preNonLinearSolve := pro (p::Vetor, n::integer,vars::list(name), hint::set(equation), pre::integer)loal basepre, x, iterations, i, xseq, f, J0, J, ipiv,r, deltax, eps, Norm_deltax, k;# Compute the solution to basepre.basepre := trun(evalhf(Digits));Digits := basepre; UseHardwareFloats := true;(x, iterations) := DiretNonLinearSolve(p, n, vars, hint);print("solution omputed to base preision");xseq := seq(x[i℄, i=1..n);f := unapply(p, vars);J0 := linalg[jaobian℄([seq(p[i℄, i=1..n)℄, vars);J := unapply(onvert(J0,'Matrix'), vars);ipiv := LinearAlgebra:-LUDeomposition(J(xseq),output=['NAG'℄);46

deltax := x; eps := SFloat(5, -pre);Norm_deltax := LinearAlgebra:-Norm(deltax);for k from 2 while Norm_deltax > eps doDigits := k*basepre; UseHardwareFloats := false;r := Vetor(n, evalf(f(xseq)));Digits := basepre; UseHardwareFloats := true;deltax := LinearAlgebra:-LinearSolve([ipiv℄, r);Norm_deltax := LinearAlgebra:-Norm(deltax);print(`Norm(deltax)` = Norm_deltax);Digits := k*basepre; UseHardwareFloats := false;x := x - deltax; xseq := seq(x[i℄, i=1..n);end do;return (x, k-1);end pro:G.3 Problem setup########Proedure GeneratePolys: a utility routine.########Purpose: Generate a random system of n polynomials in n variables, forgiven n.> GeneratePolys := pro (n::integer)loal p, i, xlist, k;global x;p := Vetor(n);xlist := [seq(x[i℄, i=1..n)℄;for k to n dop[k℄ := randpoly(xlist);end do;return p;end pro: 47

########Proedure RandomRat: a utility routine.########Purpose: Generate random rational numbers.> IntLength := 2:> RandomNum := rand(-10^IntLength .. 10^IntLength):> RandomDen := rand(1..10^IntLength):> RandomRat := pro()RandomNum()/RandomDen()end pro:########Begin problem setup.########> with(LinearAlgebra):> n := 50; pre:= 120; n := 50pre := 120> # Generate a random system of n polynomials in n variables.> # Add onstant terms to the polynomials generated so that> # there is a known solution.> soln := {seq(x[k℄ = RandomRat(), k=1..n)}:> p := GeneratePolys(n):> for k to n do> p[k℄ := p[k℄ - eval(p[k℄, soln)> end do:> vars := [seq(x[k℄, k=1..n)℄:>> for i from 1 to n do> x_exat[i℄ := eval(vars[i℄, soln)> end do:> x_exat := Vetor(n, (i)->x_exat[i℄):>> # Choose how aurate a hint to give to fsolve.> hint := evalf[3℄(soln): 48

G.4 Iterative Method> st := time():> (x_iter, iter) :=> preNonLinearSolve(p, n, vars, hint, pre):Norm(deltax) = 0:00559406778213197754Norm(deltax) = 0:00829141999910298738Norm(deltax) = 0:0000423683774278293988Norm(deltax) = 0:384625601384041979 10�8\solution omputed to base preision"Norm(deltax) = 0:888199999999981386 10�13Norm(deltax) = 0:986333333333364779 10�26Norm(deltax) = 0:582009999999938352 10�38Norm(deltax) = 0:616480000000167566 10�51Norm(deltax) = 0:167565999999997060 10�63Norm(deltax) = 0:550363333333444397 10�77Norm(deltax) = 0:613233000000017910 10�89Norm(deltax) = 0:299329999999975222 10�102Norm(deltax) = 0:148838000000010426 10�114Norm(deltax) = 0:104259999999954016 10�127> iterativeTime := time()-st:> `#Iterations` = iter; #Iterations = 1149

G.5 Diret Method> Digits := pre; Digits := 120> st := time():> (x_dir, iterations) :=> DiretNonLinearSolve(p, n, vars, hint):Norm(deltax) = 0:005526Norm(deltax) = 0:0083234778819211Norm(deltax) = 0:000046691834781847Norm(deltax) = 0:1674699976488610996235 10�7Norm(deltax) = 0:235109999999999841639164036833411477 10�15Norm(deltax) = 0:158399999999999999999999999999953841453901623075040n45477079351978341 10�30Norm(deltax) = 0:4615899n99999999995320206057383232912478125267161437164787648n444488230102584641752874 10�61> diretTime := time()-st:> `#Iterations` = iterations;#Iterations = 7G.6 Results> diretTime, iterativeTime;43:550; 4:640> SpeedUp := evalf[3℄(diretTime/iterativeTime);SpeedUp := 9:4050

