
Course Notes for
Introduction to Scientific Computation

Professor Keith Geddes

Fall term, 2008

David R. Cheriton School of Computer Science

University of Waterloo

August 28, 2008

1

Contributions to these notes have been made
by past and present instructors for CS 370.

The support of the Mathematics Endowment Fund (MEF)
in preparing these notes is gratefully acknowledged.

c©Keith Geddes, Waterloo, August 28, 2008

2

Contents

1 Floating Point Number Systems 7
1.1 Pitfalls in Floating Point Computation 7
1.2 Floating Point Numbers . 8
1.3 Absolute and Relative Error . 9
1.4 Relationship between x and its representation fl(x) 10
1.5 Roundoff Error Analysis . 12
1.6 Conditioning and Stability . 14

2 Interpolation 19
2.1 Polynomial Interpolation . 20

2.1.1 The Basic Theorem of Polynomial Interpolation 20
2.1.2 The Vandermonde System . 20
2.1.3 The Lagrange Form . 21

2.2 Piecewise Polynomial Interpolation . 23
2.2.1 Cubic Spline Interpolants . 24
2.2.2 Matlab Support for Splines . 24
2.2.3 Representation of S(x) . 25

3 Planar Parametric Curves 29
3.1 Introduction to Parametric Curves . 29
3.2 Interpolating Curve Data by a Parametric Curve 30
3.3 Graphics for Handwriting . 31

4 Numerical Linear Algebra 35
4.1 From Equation Reduction to Triangular Factorization 35

4.1.1 Reducing a system of equations 35
4.1.2 Augmented Matrix Notation and Row Reduction 36
4.1.3 Matrix factorization form of Gaussian elimination 40

4.2 LU Factorization . 40
4.2.1 How do we count work? . 41
4.2.2 Pivoting and the Stability of Factorization 42
4.2.3 Stability . 43

4.3 Matrix and Vector Norms . 44
4.4 Condition Numbers . 45

4.4.1 Conditioning . 45
4.4.2 The residual . 46

5 Google Page Rank 49
5.1 Introduction . 49
5.2 Representing Random Surfer by a Markov Chain Matrix 50

5.2.1 Dead End Pages . 51
5.2.2 Cycling Pages . 51

5.3 Markov Transition Matrices . 52

3

5.4 Page Rank . 53

5.5 Convergence Analysis . 53

5.5.1 Some Technical Results . 53

5.5.2 Convergence Proof . 54

5.6 Practicalities . 55

5.7 Summary . 56

5.7.1 Some Other Interesting Points . 56

6 Least Squares Problems 57

6.1 Least Squares Fitting . 58

6.2 Total squared error . 60

6.3 The Normal Equations . 61

6.4 Solving Least Squares Problems in Matlab 64

6.5 Another example: Canada’s Population 64

7 Fourier Transforms 67

7.1 Introduction to Fourier Analysis . 67

7.2 Fourier Series . 69

7.3 Discrete Fourier Transform (DFT) . 71

7.3.1 Inverse Discrete Fourier Transform (IDFT) 74

7.3.2 Lack of Standardization . 75

7.4 Dependencies Among the Fourier Coefficients 75

7.5 1-D Image Compression . 76

7.6 2-D Image Compression . 77

7.7 Fast Fourier Transform . 79

7.8 A Two Dimensional FFT . 82

8 Dynamic Simulation: Modeling with ODEs 83

8.1 Single Population Model: How is Canada Growing? 83

8.1.1 Difference Equation Model . 84

8.1.2 Differential Equation Model . 84

8.2 Novelty Golf Driving Range . 85

8.3 Pursuit Problems . 86

8.3.1 Derivation of the Equations . 86

8.4 Standard First Order Form for Initial Value Problems 88

8.4.1 The single population model . 89

8.4.2 The golf driving range . 89

8.4.3 The pursuit problem . 90

8.5 The Matlab ODE Suite . 90

8.5.1 The basic form of the ODE suite interface 91

8.5.2 Extending the basic form of the Matlab ODE suite interface . . . 93

4

9 Initial Value Problems 97
9.1 Introduction . 97

9.1.1 Other Differential Equations . 100
9.2 Approximating Methods . 101

9.2.1 The Forward Euler Method . 101
9.2.2 Discrete Approximations . 103
9.2.3 The Modified Euler Method . 105

9.3 Global vs. Local Error . 108
9.4 Practical Issues . 108
9.5 Overview of Numerical Methods and the Matlab ODE Suite 110

9.5.1 Classification of methods for advancing the solution 111
9.5.2 Time step control II: extending the Matlab ODE interface 112

A Conveying Information in Graphs 115

B Review of Complex Numbers 119
B.1 Roots of Unity . 120
B.2 Orthogonality Property . 121

5

6

1 Floating Point Number Systems

1.1 Pitfalls in Floating Point Computation

The content of most mathematical courses assumes that all the arithmetic is exact when
working, for example, over the real number field R. However, problems in scientific
computation typically use a computer’s floating point number system, a system in which
most real numbers have only an approximate representation. In this section we give some
examples of computational pitfalls that result from the use of inexact arithmetic.

Example 1
Suppose we would like to compute the value e−5.5. One possible method is to use

the Taylor series expansion

ex = 1 + x +
x2

2!
+

x3

3!
+ ... (1.1)

If we use a calculator which carries five significant figures, we get

e−5.5 = 1.0− 5.5 + 15.125− 27.730 + ... (1.2)

and after 25 terms, additional terms no longer change the sum.

Another method is to note that

e−x =
1

ex =
1

1 + x +
x2

2!
+ ...

(1.3)

so that

e−5.5 =
1

1 + 5.5 + 15.125 + ...
(1.4)

and again after 25 terms, additional terms no longer change the sum. The correct answer,
to five significant digits, is

e−5.5 = .0040868. (1.5)

However, the computational results obtained by the two methods outlined above are

e−5.5 = 1 + 5.5− 15.125 + ... = .0026363

e−5.5 =
1

1 + 5.5 + 15.125 + ...
= .0040865 .

Why is the result obtained by the first method so wrong?

7

1.2 Floating Point Numbers

For most of our discussions of numerical computation, we assume we are using the
arithmetic of the mathematically defined real number system, which we denote by R.
The number system R is infinite in two senses:

1. R is infinite in extent, in the sense that there are numbers, x, in R such that |x| is
arbitrarily large.

2. R is infinite in density, in the sense that any interval I = {x | a ≤ x ≤ b} of R is
an infinite set.

Digital computers can represent only finite sets of numbers, so all implementations of
algorithms must use approximations to R and inexact arithmetic. The approximations
to R used by digital computers are known as floating point number systems.

To describe floating point number systems, we need to look first at the representation
of real numbers as normalized digital expansions relative to some chosen base for the
number system. As humans, we (usually) use the base-10 number system, i.e. digits
0, 1, 2, . . . , 9, also called the decimal digits. For example, the rational number 73

3
can be

represented by the following normalized decimal digit expansion:

2.4333333 . . .× 101 = 2× 101 + 4× 100 + 3× 10−1 + 3× 10−2 + · · ·

Digital computers, however, typically use the base-2 number system (binary), which can
be expressed using the digits 0 and 1. Some computers use the base-16 number system
(hexadecimal), in which the digits are usually expressed as 0, 1, 2, . . . , 9, A, B, C, D, E
and F . Note that

73

3
= 24 +

1

3
= 16 + 8 +

1

4
+

1

16
+

1

64
+ · · · .

So in base 2, 73
3

can be represented by the normalized binary digit expansion

1.1000010101 . . .×24 = 1×24 +1×23 +0×22 +0×21 +0×20 +0×2−1 +1×2−2 + · · ·

while in base 16, 73
3

can be represented by the normalized hexadecimal digit expansion

1.8555555 . . .× 161 = 1× 161 + 8× 160 + 5× 16−1 + 5× 16−2 + · · · .

The Floating Point Number System F(β, t, L, U)

Let β be a positive integer that is to be used as the base for a number system; e.g.

β = 10: the decimal number system

β = 2: the binary number system

β = 16: the hexadecimal number system.

8

Any positive number in R can be represented by an infinite base-β expansion in the
normalized form

d0.d1d2d3 · · · × βp

where

- dk are base-β digits, i.e. dk ∈ {0, 1, . . . , β − 1}

- ‘normalized’ means d0 6= 0

- p is an integer (not necessarily positive).

We call d0.d1d2d3 . . . the significand (also sometimes called the mantissa), β the base,
and p the exponent.

Floating point number systems limit the infinite density of R by retaining a fixed
number, t, of digits in the significand (t is called the precision of the number system).
They limit the infinite extent of R by allowing only a finite number of integer values for
the exponent p, specifically by imposing the restriction L ≤ p ≤ U for two fixed integer
bounds L and U . So every floating point number system is identified by four integer
parameters, {β, t, L, U}, which are the base, the precision, and lower and upper bounds
on the exponent range. The numbers which can be represented in such a system are
precisely those of the form

± d0.d1d2...dt−1 × βp for L ≤ p ≤ U with d0 6= 0

and 0 (a special case).

There are two standardized floating point number systems that are widely used in
the design of computer software and hardware:

IEEE single precision system: {β = 2; t = 24; L = −126; U = 127}.
IEEE double precision system: {β = 2; t = 53; L = −1022; U = 1023}.

We will denote a floating point number system by F(β, t, L, U) or sometimes simply by
F when the parameters are understood.

1.3 Absolute and Relative Error

When we obtain a computed result, x, and we wish to discuss its relationship with the
correct mathematical result, xexact, we can measure either the absolute error :

Errabs = |xexact − x|

or we can measure the relative error:

Errrel =
|xexact − x|
|xexact|

.

Note: When measuring relative error, sometimes the value used in the denominator is
the computed value |x| rather than |xexact| as stated above. In most cases, the difference
between the two definitions is insignificant.

9

For the type of computations performed on a digital computer, the relative error
measure is most useful. This is because there is a close relationship between relative
error and the number of correct significant digits in the computed result.
Remark: The significant digits of a number are all the digits starting with the leftmost
nonzero digit.

The computed result x is said to approximate xexact to about s significant digits if the
relative error is approximately 10−s; or, to be more precise, if the relative error satisfies

0.5× 10−s ≤ |xexact − x|
|xexact|

< 5.0× 10−s . (1.6)

Consider the situation from Example 1. Two different methods are used to compute
a floating point approximation for the value e−5.5. The correct value, to five significant
digits, is

e−5.5 = 0.0040868 .

The value computed by the first method is x1 = 0.0026363, yielding a relative error of

Errrel =
|0.0040868− x1|

0.0040868
≈ 3.5× 10−1 .

Based on equation (1.6), we would estimate that x1 has approximately one significant
digit correct (in actual fact, we can see that it has no correct digits).

Next consider the value computed by the second method, x2 = 0.0040865. Its relative
error is

Errrel =
|0.0040868− x2|

0.0040868
≈ 0.7× 10−4 .

Based on equation (1.6), we would estimate that x2 has approximately four significant
digits correct. We can see that x2 is indeed correct to four significant digits.

An important property of relative error is that it gives a measure of the number of
correct significant digits independent of the actual magnitudes of the numbers involved.
For example, suppose that the correct mathematical result for some problem is

xexact = 4.0868 .

This is the same answer as expected in Example 1 but multiplied by 103 (e.g., suppose
that the correct result is 1000 e−5.5). If we get a computed result of x1 = 2.6363 then its
relative error is 3.5× 10−1, precisely the same as for x1 in the preceding example. If we
get a computed result of x2 = 4.0865 then its relative error is 0.7× 10−4, precisely the
same as for x2 in the preceding example. Again, x2 has four significant digits correct,
and the relative error predicts this independently of the magnitudes of the numbers.

1.4 Relationship between x and its representation fl(x)

An important consequence of the design of floating point number systems is that the
largest relative error that can occur in representing a real number x by its floating
point approximation fl(x) is bounded (for all x whose exponents are within range).

10

This maximum relative error measure of machine precision is called machine epsilon,
denoted here by ε. It is also called the unit roundoff error since ε can be defined as
the smallest representable number such that, in F(β, t, L, U),

1 + ε > 1 .

If a computer uses base β arithmetic with t digits in the significand, i.e. F(β, t, L, U),
then the value of machine epsilon (or unit roundoff error) is

ε =
1

2
β1−t .

In general then, the relative error between any nonzero real number x and its floating
point representation is bounded by ε. Let fl(x) be the floating point representation of
x. Then

|fl(x)− x|
|x| ≤ ε .

This relationship can also be expressed as

fl(x)− x = δ x

where |δ| ≤ ε

and thus we have

fl(x) = x (1 + δ) (1.7)

where δ is some value (positive, negative or zero) such that −ε ≤ δ ≤ ε .

The IEEE standard basically says that a single arithmetic operation in F must be
done so that the computed result is rounded to the nearest representable floating point
number to the exact real arithmetic result. An exception occurs if the exponent is
out of range, which leads to a state called overflow if the exponent is too large, or
underflow if the exponent is too small.

Let us denote the floating point addition operator in F by ⊕. Then for adding two
floating point numbers w, z ∈ F , using (1.7), we have

w ⊕ z = fl(w + z) = (w + z)(1 + δ) .

Next we will consider adding three floating point numbers a, b, c ∈ F using the floating
point addition operation in F .

Exercise

Make up an example to show that the sum of three numbers in F , computed using ⊕,
depends on the order in which the terms are added. I.e. find values of a, b, c ∈ F such
that

(a⊕ b)⊕ c 6= a⊕ (b⊕ c) .

11

1.5 Roundoff Error Analysis

Although each floating point arithmetic operation is done with a relative error that is
bounded by ε, it is not the case that the result of a sequence of two or more floating
point arithmetic operations has a relative error that is bounded by ε. Consider adding
three floating point numbers a, b, c ∈ F .

How does (a ⊕ b) ⊕ c differ from the true sum a + b + c ? I.e., what is the size of
the relative error in this sum computed in F? We will do a small exercise in traditional
floating point error analysis to answer this question.

First we express (a⊕b)⊕c in terms of exact additions with relative error perturbations
δ1 due to the first operation, and δ2 due to the second operation:

(a⊕ b)⊕ c = (a + b)(1 + δ1)⊕ c =
(

(a + b)(1 + δ1) + c
)

(1 + δ2)

=
(

(a + b + c) + (a + b)δ1

)

(1 + δ2)

= (a + b + c) + (a + b)δ1 + (a + b + c)δ2 + (a + b)δ1δ2 . (1.8)

Therefore,

|(a + b + c)− ((a⊕ b)⊕ c)| ≤ (|a|+ |b|+ |c|) (|δ1|+ |δ2|+ |δ1| |δ2|) (1.9)

where we have slightly increased the upper bound (the right hand side) to make the
bound symmetric in the variables a, b and c. In other words, the upper bound as stated
is not affected by the order of the terms in the sum.

If a + b + c 6= 0 then the relative error in the floating point sum

Errrel =
|(a + b + c)− ((a⊕ b)⊕ c)|

|a + b + c|

is bounded as follows, from (1.9):

Errrel ≤
|a|+ |b|+ |c|
|a + b + c| (2 ε + ε2) . (1.10)

Note that (1.10) tells us:

• if |a + b + c| ≈ |a|+ |b|+ |c| (for example, if a, b, c are all positive, or all negative)
then Errrel is dominated by (2 ε + ε2) which is small;

• if |a + b + c| ≪ |a| + |b| + |c| then Errrel can be quite large, namely (2 ε + ε2)

multiplied by the “magnification factor” |a|+|b|+|c|
|a+b+c|

.

In what situations will the factor |a|+|b|+|c|
|a+b+c|

be very large? This will happen when

the denominator (the actual sum) is much smaller than the numerator (the sum of the
absolute values). This phenomenon, known as cancellation, can occur when adding a
mix of both positive and negative values.

For example, in the floating point number system F(10, 5,−10, 10), suppose that

a = 10000. , b = 3.1416 , c = −10000.

12

Then |a|+ |b|+ |c| = 20003.1416 and a + b + c = 3.1416. Thus, the relative error bound
given by (1.10) is

Errrel ≤ 6367.2 (2 ε + ε2) ≈ 0.6

since ε = 1
2
10−4. (Note that since the unit roundoff error ε is a small quantity, ε2 is very

small, and we can approximate 2 ε + ε2 ≈ 2 ε .) This relative error of 0.6× 100 is quite
large, implying that there may be no significant digits correct in the result. Indeed, for
this example the computation proceeds as follows:

(a⊕ b)⊕ c = 10003.⊕ (−10000.) = 3.0000

compared with the true sum which is 3.1416 and therefore the computed sum actually
has one significant digit correct.

In contrast, using the same floating point number system F(10, 5,−10, 10), suppose
that all three summands are positive:

a = 10000. , b = 3.1416 , c = 10000.

In this case the relative error bound given by (1.10) is

Errrel ≤ 2 ε + ε2 ≈ 2 ε ≈ 10−4

which implies that we can expect about four correct significant digits in the result. (This
is a “best case” situation, where the relative error bound is a small multiple of ε.) The
actual computation for this case is as follows:

(a⊕ b)⊕ c = 10003.⊕ 10000. = 20003.

compared with the true sum which is 20003.1416 and we can see that we have, in fact,
all five significant digits correct in this case.

The error bound (1.10) for the case of adding three numbers can be generalized to
the case of adding N numbers. Let xi ∈ F , i = 1, . . . , N , be N given floating point
numbers (i.e. numbers stored in a computer system). If

fl

(

N
∑

i=1

xi

)

denotes the computed result of adding the N numbers in F , and if
∑N

i=1 xi 6= 0 then
the relative error bound can be expressed as

∣

∣

∣

∑N
i=1 xi − fl

(

∑N
i=1 xi

)
∣

∣

∣

∣

∣

∣

∑N
i=1 xi

∣

∣

∣

≤
∑N

i=1 |xi|
∣

∣

∣

∑N
i=1 xi

∣

∣

∣

1.01 N ε . (1.11)

The appearance of the factor 1.01 in (1.11) is an artificial technicality. We had noted
in the roundoff error analysis for adding three numbers that, for practical purposes,

13

2 ε + ε2 ≈ 2 ε since ε is small. Similarly, the analysis leading to the bound (1.11) has
employed a simplification such that an expression of the form

(N − 1) ε +
(N − 1)(N − 2)

2
ε2 + · · ·+ εN−1

has been replaced by an upper bound of the form 1.01 N ε, which holds as long as
N < .01

ε
. This level of detail is of no importance to us here; in applying the bound (1.11)

we understand that, for practical purposes, 1.01 N ε ≈ N ε .

A similar roundoff error analysis for a product of numbers, rather than a sum, shows
that the error bound is always approximately N ε . This arises because for a product we
have

∣

∣

∣

∣

∣

N
∏

i=1

xi

∣

∣

∣

∣

∣

=

N
∏

i=1

|xi|

and therefore,
∣

∣

∣

∏N
i=1 xi − fl

(

∏N
i=1 xi

)
∣

∣

∣

∣

∣

∣

∏N
i=1 xi

∣

∣

∣

≤ 1.01 N ε . (1.12)

1.6 Conditioning and Stability

It is important to understand the concept that some problems, as posed, may be well-
conditioned and some may be ill-conditioned. More precisely, we like to have a measure
of how well-conditioned (or how ill-conditioned) a given problem may be. The concept
of conditioning may be defined as follows.

Consider a problem P with input values I and output values O. If a small change of
size ∆I in one or more input values causes a relatively small change in the mathematically
correct output values, then the problem is said to be well-conditioned. Otherwise, the
problem is said to be ill-conditioned. Stated another way, an ill-conditioned problem
has output that is very sensitive to slight changes in the input.

Remark 1: This phenomenon is a statement about a mathematical problem, and is not
due to floating point errors.

Remark 2: There is always a “sliding scale” for “how well-conditioned” or “how ill-
conditioned” a particular problem is.

Example 2

Finding the point of intersection of two lines requires some calculation. Depending
on the lines themselves, this calculation may be well-conditioned or ill-conditioned. The
lines in Figure 1(a) are nearly perpendicular. A small adjustment to the slope of one of
the lines will not move the point of intersection very much, and hence that calculation
is well-conditioned. On the other hand, the lines in Figure 1(b) are nearly parallel. A
slight adjustment to the slope of one of those lines will move the point of intersection
quite a lot. That calculation is ill-conditioned.

14

(a) Well-conditioned (b) Ill-conditioned

Figure 1: The calculation to find the intersection of two lines can be well-conditioned,
as in (a), or ill-conditioned, as in (b).

Looking back to Example 1

Let the problem P be: Given x, compute f(x) = ex. In this case, I = {x} and
O = {ex}.

We can prove that this problem is well-conditioned. To do so, we use some calculus
to obtain the following estimate:

|f(x)− f(x + ∆x)|
|f(x)| ≈ |f

′(x)| |∆x|
|f(x)| .

This comes from the Taylor series expansion

f(x + ∆x) = f(x) + f ′(x) ∆x +
1

2
f ′′(x) ∆x2 + O(∆x3)

≈ f(x) + f ′(x) ∆x

assuming that |∆x| is small.

Expressing the above as a relationship between the relative change in input, |∆x|
|x|

,
versus the relative change in output, we have

|f(x)− f(x + ∆x)|
|f(x)| ≈ |x| |f

′(x)|
|f(x)| ×

|∆x|
|x| .

The condition number κ(P) of problem P is defined to be the maximum “magni-
fication factor” by which a relative change in the input values may be magnified in
the corresponding changes in output values due solely to the mathematical problem
(independent of any particular algorithm).

In this example, the analysis tells us that the condition number is

κ(P) =
|x| |f ′(x)|
|f(x)|

15

for any function f(x). In our example, f ′(x) = f(x) so in this particular case we have

κ(P) = |x| .

The computational results obtained by the two methods outlined in Example 1 are

e−5.5 = 1− 5.5 + 15.125− · · · = 0.0026363

e−5.5 =
1

1 + 5.5 + 15.125 + · · · = 0.0040865 .

Using a “bad algorithm” (the first method), the computed result was 0.0026363 com-
pared with the correct value which is 0.0040868. In other words, all digits in the com-
puted result are wrong!

This bad computational result cannot be blamed on the problem: the problem as
stated is well-conditioned. From above, the condition number for this problem is

κ(P) = |x| = 5.5 .

Noting that κ(P) < 10, we can conclude that roundoff errors (in relative error) of size ε
(the unit roundoff error) can lead to relative errors in the output bounded by

Errrel ≈ κ(P) ε < 10 ε .

For example, if ε is approximately 10−5 as in Example 1, then the output might have
relative error as large as 10−4 meaning that we should expect to have about four signif-
icant digits correct (rather than than all five digits correct). This is the worst that can
happen due to the conditioning of the problem.

Any larger errors, such as seen in this example, must be blamed on the choice of
a bad algorithm. Indeed, Example 1 shows a good algorithm which computes e−5.5 to
good accuracy. We say that the first computation is using an unstable algorithm and
the second computation is using a stable algorithm. The concept of stability may be
defined as follows in a general setting.

Consider a problem P with condition number κ(P) and suppose that we apply al-
gorithm A to solve problem P . If we can guarantee that the computed output values
from algorithm A will have relative errors not too much larger than the errors due to
the condition number κ(P), then algorithm A is said to be stable. Otherwise, if the
computed output values from algorithm A can have much larger relative errors, then
algorithm A is said to be unstable.

We can state the concept of stability more informally as follows. If an algorithm
produces inaccurate results, we have to try to determine whether the errors can be
blamed on the mathematical problem as stated (i.e. the problem has a large condition
number), or, as is often the case, we have chosen an unstable algorithm to solve the
problem. In the latter case, we try to find a more stable algorithm; i.e., an algorithm
which does not cause a large magnification of errors. Since we always commit roundoff
errors during the execution of an algorithm in a floating point number system, it is the
magnification of such errors that is of concern to us.

16

Exercises

1. The numbers in a floating point system F(β, t, L, U) are defined by a base β, a
significand length t, and an exponent range [L, U]. A nonzero floating point number
x has the form

x = ± d0.d1d2 · · · dt−1 × βe .

Here d0.d1d2 · · · dt−1 is the significand and e is the exponent. The exponent satisfies
L ≤ e ≤ U . The di are base-β digits and satisfy 0 ≤ di ≤ β−1. Nonzero floating point
numbers x are normalized: d0 6= 0. The floating point number zero is represented by
setting all digits in the significand to zero and setting e = L.

(a) What is the largest value of n so that n! can be exactly represented in the floating
point number system F(2, 5,−10, 10)? Show your work.

(b) Suppose that on a base-2 computer, the distance between 7 and the next largest
floating point number is 2−12. What is the distance between 70 and the next
largest floating point number?

(c) Assume that x and y are normalized positive floating point numbers in a base-2
computer with t-bit significand. How small can y − x be if x < 8 < y?

2. Consider a fictitious floating point number system composed of the following num-
bers:

S = { ± d1.d2d3 × 2±y : d2, d3, y = 0 or 1,

and d1 = 1 unless d1 = d2 = d3 = 0 } .

I.e. each number is normalized unless it is the number zero.

(a) Plot the elements of S on the real axis.

(b) Indicate on your plot the regions of OFL (overflow) and UFL (underflow).

(c) How many elements are contained in S?

(d) What is the value of ε (machine epsilon)?

3. Using the floating point number system F(2, 20,−200, 200), represent the distance
between the Earth and the Sun (1.5 × 108 kilometers) and the distance between
Toronto and Waterloo (110 kilometers). What length does the last bit of the signifi-
cand represent in each case?

4. Carry out a roundoff error analysis to show that, in a floating point number system,
if ab + c 6= 0 then

|(ab + c)− ((a⊗ b)⊕ c)|
|ab + c| ≤ |ab|

|ab + c|ε (1 + ε) + ε

where ε denotes machine epsilon. Justify each inequality that you introduce.

17

18

2 Interpolation

It is often the case that one has a discrete (finite) set of data (x1, y1), . . . , (xn, yn) that
describes the behaviour of some (unknown) function g(x) and that one wishes to deter-
mine g(x) or at least some approximation to g(x). One can then use this function to
evaluate the data at some unknown values, determine instantaneous changes at some
points (i.e., estimate the derivative), and so on.

One approach is to require that our approximate function g(x) should have the
property that it interpolates the data, that is,

g(x1) = y1, . . . , g(xn) = yn. (2.1)

For example, suppose that we have the four (x, y) points in the plane: (0, 1), (1, 2), (2, 0)
and (3, 3). Then the polynomial

g(x) =
4

3
x3 − 11

2
x2 +

31

6
x + 1

interpolates the four points (as shown in Figure 2) and we can evaluate g(x) for other
x-values. For example, estimate the value of g

(

3
2

)

just by looking at the graph.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Figure 2: g(x) interpolates the four points (0, 1), (1, 2), (2, 0) and (3, 3)

In this section, we discuss several standard ways to construct and evaluate functions
of one variable, g(x), that pass through the points (xi, yi), i = 1, 2, . . . , n, i.e.

g(xi) = yi for i = 1, . . . , n . (2.2)

Any function that satisfies (2.2) is said to interpolate the data. In general, the inter-
polation function g(x) is not unique.

There are two primary topics covered in this chapter. The first topic is polynomial
interpolation, i.e. the case where g(x) is a polynomial. This topic is basic to numerical
computation in at least two ways:

19

• for applications involving a small number of points, i.e. typically n not larger than
5 or 6;

• as a component (conceptually, or explicitly) of a larger computation. E.g. numeri-
cal integration, numerical solution of differential equations, or numerical optimiza-
tion.

The second topic of this chapter is piecewise polynomial interpolation. In that case,
g(x) is defined as a different polynomial for each separate subinterval in a specified
subdivision of the domain of x values. We discuss two particularly common cases:

• piecewise linear interpolation, in which g(x) is linear on each subinterval;

• cubic splines, in which g(x) is a cubic polynomial on each subinterval.

Both of these interpolating functions play an important role in the representation of
curves for computer graphics, which is the application that we emphasize in this topic.

2.1 Polynomial Interpolation

In polynomial interpolation, the interpolation function g(x) is chosen to be a single
polynomial. Practically speaking, a polynomial is easy to evaluate (e.g., using Horner’s
rule). Theoretically speaking, it has a nice existence and uniqueness property, as follows.

2.1.1 The Basic Theorem of Polynomial Interpolation

Theorem: Given n points, (xi, yi), i = 1, . . . , n with xi 6= xj if i 6= j, there is a
unique polynomial, p(x), of degree not exceeding n− 1 that interpolates this data.

There are several ways to prove this theorem. One is based on the Vandermonde system
of equations, discussed in the next subsection; another is based on directly constructing
p(x) using the Lagrange polynomial form (discussed in section 2.1.3).

Note that the theorem only claims the existence of an interpolating polynomial. In
the next two subsections, we describe two approaches for constructing the interpolating
polynomial.

2.1.2 The Vandermonde System

A polynomial of degree (at most) n−1 is commonly represented in terms of the standard
monomial basis as follows:

p(x) = c1 + c2x + · · ·+ cnx
n−1 (2.3)

defined by n coefficients c1, ..., cn. The most straightforward method to define a poly-
nomial interpolant is via a linear system of equations. Specifically, the interpolation
conditions p(xi) = yi for i = 1, . . . , n define a system of n linear equations to be solved

20

for the n unknown coefficients. For example, for the four planar points given previ-
ously the interpolating polynomial is of the form p(x) = c1 + c2x + c3x

2 + c4x
3 and the

interpolation conditions yield the following linear system of equations:

p(0) = 1
p(1) = 2
p(2) = 0
p(3) = 3

=⇒
c1 = 1
c1 + c2 + c3 + c4 = 2
c1 + 2c2 + 4c3 + 8c4 = 0
c1 + 3c2 + 9c3 + 27c4 = 3

.

In general, if we are given a set of data (x1, y1), ..., (xn, yn) and we wish to determine
an interpolating polynomial of the form (2.3) then we can set up the linear system
V · ~c = ~y where

V =









1 x1 ... xn−1
1

1 x2 ... xn−1
2

...
1 xn ... xn−1

n









, ~c =









c1

cn









and ~y =









y1

yn









.

A matrix of the form V is called a Vandermonde matrix. Note that all of the data
required for defining a Vandermonde matrix is contained in its second column, namely
Vi,2 = xi for i = 1, . . . , n.

The formulation of the interpolation problem into a linear system of equations has
both practical and theoretical implications. The theoretical implication is that we can
prove the basic theorem in Section 2.1.1 by showing that V is nonsingular if the n values
{xi} are distinct. Indeed, the usual proof of this theorem is based on establishing that

det(V) =
∏

i<j

(xi − xj).

The practical implication is that we have reduced the problem of computing the inter-
polating polynomial to solving a linear system of equations.

2.1.3 The Lagrange Form

Expressing a polynomial in its standard monomial (or power) basis is common practice
and computing with polynomials in this form seems simple. However, there are alterna-
tive forms for expressing a polynomial that can be more efficient for certain applications,
in particular for polynomial interpolation. The Lagrange form is one such alternative.

Given a set of data (xi, yi), i = 1, . . . , n, we define the n Lagrange basis functions
Lk(x), k = 1, . . . , n, as follows:

Lk(x) =
(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

It is easy to show that

Lk(xj) =

{

0 j 6= k
1 j = k .

(2.4)

21

Note that Lk(x), for any other real number x, need not be 0 or 1.
Define a polynomial p(x) in terms of the Lagrange basis functions using as coefficients

the given {yi} data values as follows:

p(x) = y1L1(x) + y2L2(x) + · · ·+ ynLn(x) .

Then p(x) is a polynomial of degree n − 1 that interpolates the n data points since for
each i we have

p(xi) = y1L1(xi) + · · ·+ yiLi(xi) + · · ·+ ynLn(xi)
= y1 · 0 + · · ·+ yi · 1 + · · ·+ yn · 0
= yi .

For the cubic example (interpolating four points) discussed above, we have:

L1(x) = (x−1)(x−2)(x−3)
(−1)(−2)(−3)

= (x−1)(x−2)(x−3)
−6

L2(x) = (x−0)(x−2)(x−3)
(1)(−1)(−2)

= (x)(x−2)(x−3)
2

L3(x) = (x−0)(x−1)(x−3)
(2)(1)(−1)

= (x)(x−1)(x−3)
−2

L4(x) = (x−0)(x−1)(x−2)
(3)(2)(1)

= (x)(x−1)(x−2)
6

and the Lagrange interpolating polynomial is

p(x) = 1 · L1(x) + 2 · L2(x) + 0 · L3(x) + 3 · L4(x)
= −1

6
(x− 1)(x− 2)(x− 3) + x(x− 2)(x− 3) + 1

2
x(x− 1)(x− 2) .

One can check by multiplying out the factors that the polynomial expressed here in
Lagrange form is the same polynomial determined previously in standard monomial
form, namely

p(x) =
4

3
x3 − 11

2
x2 +

31

6
x + 1 .

Exercises

1. Consider data (x1, y1), (x2, y2), (x3, y3) with x1 < x2 < x3 and y2 > max(y1, y3).
Graphically, the middle data point is higher than the two end points. This data is
interpolated by a quadratic polynomial, p2(x). Intuitively, it seems clear that p2(x)
lies above the line joining the two end data points for x1 < x < x3, and, consequently,
there is a maximum value of p2(x) in this interval.

We want to show algebraically that this is correct and give a formula for the max-
imum. The algebra (and programs for doing computations) are simplified by doing
some transformations of the data. By rescaling the x-variable, we can assume that
x1 = 0 and x3 = 1; we will rename x2 = a for convenience. Without loss of generality,
we can also assume that y1 < y3 and, by subtracting y1 from each yk, that y1 = 0.

(a) The line interpolating the end points of the normalized data is p1(x) = y3x.
Show that p2(x) > p1(x) for 0 < x < 1.
Hint: The Lagrange representation of p2(x) may be helpful.

22

(b) Show that the coefficient of x2 in p2(x) is negative.

(c) Let xmax be the x-value at which p2(x) achieves its maximum. Derive a formula
for xmax in terms of a, y2, and y3.

2. Let Lk(x), k = 1 . . . n, be the Lagrange basis functions for xk = k, k = 1 . . . n. By
considering an appropriately chosen data set {yk} and using the basic theorem in
Section 2.1.1, prove that

n
∑

k=1

k Lk(x) = x

for every value of x.

2.2 Piecewise Polynomial Interpolation

Polynomial interpolation may not be suitable when the number of interpolation points
gets large. Figure 3 shows how the interpolating polynomial can have wild oscillations in
order to pass through the points. For cases like this, piecewise polynomial interpolation
might be more appropriate.

Suppose you have n points of interpolation data of the form (xi, yi), i = 1, . . . , n.
Suppose also that the x values are ordered such that xi < xi+1. These x-values define
a partition of the total interval (x1, xn) into n − 1 subintervals. Authors vary on the
terminology for these xi, which are commonly referred to as the nodes, breakpoints, or
knots of the piecewise polynomial.

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

x

y

(a) 4 points

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

x

y

(b) 10 points

Figure 3: Polynomial interpolation can result in wild oscillations when trying to inter-
polate too many points.

23

A piecewise polynomial interpolant, s(x), is:

• a function of x for x1 ≤ x ≤ xn,

• an interpolant, i.e. s(xi) = yi,

• a polynomial for each subinterval, (xi, xi+1), usually different on
each subinterval,

• continuous for the total interval [x1, xn].

(2.5)

The Matlab command plot(x,y), for vector arguments x and y, creates a plot of the
piecewise-linear (degree 1) interpolant of (xi, yi), i = 1, . . . , n.

2.2.1 Cubic Spline Interpolants

This is a case in which the polynomial on each subinterval is of degree (at most) 3. Let
S(x) be a cubic spline with knots at xi. Some of the defining characteristics of S(x) are:

1. S(x) is a piecewise polynomial interpolant (see (2.5));

2. S(x) is of degree ≤ 3 between the knots; i.e., it is a cubic polynomial on each
subinterval;

3. S(x) is twice continuously differentiable; i.e.,

dS(x)

dx
and

d2S(x)

dx2

are continuous functions for x1 ≤ x ≤ xn.

It would be nice if these three conditions completely defined S(x). But, unfortunately,
they do not. It is necessary to add additional requirements at the end points, x1 and xn,
to completely define S(x). Different applications of cubic splines will call for different
choices for these end conditions, and this brings some messy technicalities to the dis-
cussion of cubic splines. For good results in applications (e.g., graphics), it is important
that these details be addressed correctly.

Computing with a cubic spline, S(x), involves two activities:

• computing a representation for S(x) from the data (xi, yi);

• evaluating S(x) at one (or more) values of x, i.e., evaluating S(x) using the chosen
representation.

2.2.2 Matlab Support for Splines

Matlab’s support for interpolation computations in one variable can be thought of as
being organized into three layers of increasing technical detail and complexity of use.
The simpler layers use the more complex ones and hide their details from the user. It is
reasonable to refer to these as ‘layers’ because these names are overloaded; the function

24

that they perform depends on the form of parameter sequence, i.e. the signature of the
command. This can be seen from the help <cmd> documentation for each.

The Matlab command interp1 is the simplest, least specific layer. The primary
command of the second layer is the spline command. Using different signatures, spline
can be used to either

(a) combine the two tasks of computing the representation and evaluating S at pre-
scribed arguments, or

(b) just compute the representation.

If the vectors x and y hold the interpolation data (i.e. the x- and y-coordinates of the
interpolation points), and xeval holds the x-values at which one wants to evaluate the
cubic spline, then task (a) is accomplished by the Matlab command

yeval = spline(x,y,xeval) .

The vector yeval contains the corresponding values of S(x).
Matlab calls its internal representation of a cubic spline a ppform. If Matlab’s spline

command is called as

pp = spline(x,y)

then the ppform is returned in variable ‘pp’. This variable is not useful directly, but
can be passed to Matlab command ppval, along with an argument vector at which you
want to evaluate the spline, in order to get the corresponding vector of spline values.

The most complex layer is formed by the spline toolbox of Matlab. This layer has
many commands which can be listed by entering help splines. For example, csape is
a more sophisticated function to compute cubic splines.

2.2.3 Representation of S(x)

There are two basic concepts associated with the representation of cubic splines that we
hope to convey. One is that continuity of S(x) and its derivatives across a breakpoint
xk places conditions on the coefficients of the representations in the adjoining intervals
[xk−1, xk] and [xk, xk+1]. This is, of course, common to piecewise polynomial represen-
tation generally. The second concept is that for cubic splines these conditions lead to a
system of linear equations in which the coefficients of the cubic spline representation are
the unknowns. This system must be solved to find values for these coefficients. Fortu-
nately, the system of equations has a special form (tridiagonal), enabling it to be solved
very efficiently. Otherwise, cubic splines would be less practical.

A standard representation for a cubic spline is based on defining S(x) as a cubic
polynomial pi(x) on each subinterval xi ≤ x ≤ xi+1. Figure 4 presents a schematic of
the definition.

25

x2 x3 xn-1 xn

p (x)
2

n-1
p (x)

x1

p (x)
1

Figure 4: Schematic of piecewise definitions for a cubic spline.

The form selected for representing pi(x) is not one of the standard polynomial rep-
resentations that we have discussed. Rather, it is a form which was invented specifically
for cubic splines such that the coefficients in this representation can be computed and
stored very efficiently. For i = 1, . . . , n− 1, we write

pi(x) = ai−1
(xi+1 − x)3

6hi

+ ai
(x− xi)

3

6hi

+ bi(xi+1 − x) + ci(x− xi) (2.6)

where hi = xi+1 − xi is the length of the ith subinterval.
This might suggest that the representation of S(x) would require storing 3n − 2

coefficients (i.e., ai for i = 0, . . . , n − 1, and bi and ci for i = 1, . . . , n − 1). However,
this would be inefficient since some of the information in these coefficients duplicates
information in the interpolation data (xi, yi), presumably also stored. By applying the
interpolation conditions, it is easily shown that the coefficients bi and ci can be cheaply
computed from ai and the interpolation data using the formulas

bi =
yi

hi
− ai−1hi

6
, (2.7)

ci =
yi+1

hi
− aihi

6
. (2.8)

Hence, only the n values of ai need to be computed and stored, in addition to the
interpolation data.

Applying the conditions which force continuity of the first derivative across the break-
points, and specifying boundary conditions at the two end points, leads to a system of
linear equations which can be expressed as an n × n tridiagonal linear system to be
solved for the coefficients ai, i = 0, . . . , n− 1.

Applying the conditions which force continuity of the second derivative across the
breakpoints yields equations which are identities. In other words, one finds that the
form (2.6) has the very special property that p′′i (xi+1) = p′′i+1(xi+1) for i = 1, . . . , n− 2,
so that the continuity of the second derivative of S(x) at each interior breakpoint is
assured by this special form.

26

Exercises

1. (a) Show that p′′i (xi+1) = ai. Why is this not sufficient to ensure that S(x) is twice
continuously differentiable?

(b) The requirement that S(x) be continuous means that

lim
x→xi−

S(x) = lim
x→xi+

S(x) (2.9)

at each internal knot, i.e. for i = 2, . . . , n − 1. “limx→xi− S(x)” is the limit of
the values of S(x) as x → xi while x < xi; it is called the limit from the left.
Clearly, limx→xi− S(x) = limx→xi− pi−1(x), since if x is near xi but x < xi then
x is in the (i− 1)st subinterval.
Show that the continuity condition, (2.9) and the interpolation condition for
S(x) at x = xi require

lim
x→xi−

pi−1(x) = yi (2.10)

lim
x→xi+

pi(x) = yi . (2.11)

(c) Show that (2.10) implies (2.8) and that (2.11) implies (2.7).

2. Consider the following alternative representation for a cubic spline, S(x):

S(x) =







a + b(x− 1) + c(x− 1)2 − 1
4
(x− 1)2(x− 2) 1 ≤ x ≤ 2

e + f(x− 2) + g(x− 2)2 + 1
4
(x− 2)2(x− 3) 2 ≤ x ≤ 3.

We also wish our cubic spline to satisfy the boundary conditions:

d2S

dx2
(1) = 0 ,

d2S

dx2
(3) = 0 .

(a) What are the conditions on the coefficients a through g such that S(x) interpo-
lates the points (1,1), (2,1), and (3,0)? Deduce the values of a and e.

(b) What is the condition on the coefficients such that S ′(x) is continuous at x = 2?

(c) Show that enforcing the boundary conditions at x = 1 and x = 3 leads to c = −1
4

and g = −1
2
.

(d) Compute the values of b and f from part (a).

(e) To ensure that S(x) is a cubic spline, what other condition needs to be checked?
(It is not necessary to actually verify this condition for the purpose of this
exercise.)

27

28

3 Planar Parametric Curves

3.1 Introduction to Parametric Curves

This is a short introduction to concepts, examples, and terminology of parametric curves
in the x-y plane. Parametric curves are directed curves described by a pair of continuous
functions, x(t) and y(t), of a common argument t usually called the parameter, for

a ≤ t ≤ b. For notational convenience, we define the vector function ~P (t) = (x(t), y(t)).

The curve C is the set of points {~P (t) | a ≤ t ≤ b}.

Some Examples

C1: x(t) = cos(πt), y(t) = sin(πt), 0 ≤ t ≤ 1 .

C1 is the semi-circle in the upper half plane directed from (1, 0) to (−1, 0).

C2: x(t) = cos(π(1− t)), y(t) = sin(π(1− t)), 0 ≤ t ≤ 1 .

C2 is C1 with its direction reversed.

C3: x(t) = cos(πt2), y(t) = sin(πt2), 0 ≤ t ≤ 1 .

C3 is visually the same curve as C1, but it has a different parameterization. Math-
ematically, it is a different parametric curve.

C4: x(t) = cos(πt), y(t) = sin(πt), 0 ≤ t ≤ 2 .

C4 is the entire circle; it is a closed curve, whereas the previous examples are open
curves. It is a simple curve, meaning that it does not intersect itself.

C5: x(t) = 1 + cos(2πt)
1+Kt

, y(t) = .8 + .8 sin(2πt)
1+Kt

, 0 ≤ t ≤ 2 .

This curve is shown in Figure 5 for a particular value of K. What is the value of
K?

Visually, it is clear that these example curves are smooth in some sense. Mathematically,
this is reflected in the fact that all the derivatives of x(t) and y(t) exist; i.e., the vector

derivatives of ~P (t) exist for all k:

dk ~P (t)

dtk
=

(

dkx(t)

dtk
,
dky(t)

dtk

)

.

The tangent line to C at t = t0 has the direction of the first derivative, d~P (t0)/dt.
This tangent is a line that can also be expressed as a parametric curve, Ttan(s) =
(xtan(s), ytan(s)), where we have used a new parameter −∞ < s <∞.

Ttan(s) = ~P (t0) +
d~P (t0)

dt
(s− t0)

29

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

elliptic spiral

x

y

Figure 5: The parameterized curve C5.

and consequently

xtan(s) = x(t0) +
dx(t0)

dt
(s− t0)

ytan(s) = y(t0) +
dy(t0)

dt
(s− t0) .

A square can also be described as a parametric curve, using a piecewise definition.

x(t) = t, y(t) = 0, 0 ≤ t ≤ 1 ;

x(t) = 1, y(t) = t− 1, 1 ≤ t ≤ 2 ; (3.1)

x(t) = 1− (t− 2), y(t) = 1, 2 ≤ t ≤ 3 ;

x(t) = 0, y(t) = 1− (t− 3), 3 ≤ t ≤ 4 .

Visually, this curve is not smooth; mathematically, this is reflected in the fact that x(t)
and y(t) do not have derivatives at t = 1, 2, 3.

3.2 Interpolating Curve Data by a Parametric Curve

Suppose we are given a sequence of points (xi, yi), i = 1, . . . , n, that lie on a curve in
the plane. We can create a parametric curve that passes through these points if we can:

(a) identify suitable parameter values ti, i = 1, . . . , n, and

(b) construct interpolating functions x(t) for data (ti, xi) and y(t) for data (ti, yi).

One simple approach for (a) is to regard the row index i as the sampled value of a
real-valued parameter, t, whose range is 1 ≤ t ≤ n; i.e., take ti = i.

30

For step (b), we could use piecewise linear interpolation, giving a function xpl(t) for
0 ≤ t ≤ n. If we did the same thing with the y coordinate data, we would get another
function, ypl(t), for 0 ≤ t ≤ n, and together (xpl(t), ypl(t)) define a parametric curve
passing through the data points. By default, the Matlab plotting command plot(x,y)

plots the piecewise linear interpolation curve, (xpl(t), ypl(t)).
For a smoother interpolating curve, consider using cubic spline interpolation. I.e.,

interpolate (ti, xi) by a cubic spline function, xcs(t), and do the same for the y coordinate
data. Then we would have a smooth interpolating parametric curve (xcs(t), ycs(t)).

How well would using a piecewise linear interpolating parametric curve work for
representing the unit square curve in equation (3.1)? How well would using a cubic
spline interpolating parametric curve work for this same curve?

For cubic spline interpolation, choosing the parameter values ti = i can lead to a
curve that does not look the way you intended due to distortions caused by this naive
choice of parameterization. An ideal parameterization would be one where the parameter
values ti reflect the arc length distance along the curve between successive data points.
A good approximation to this ideal is obtained by defining successive parameter values
ti based on the Euclidean distance between points, namely

ti+1 = ti +
√

(xi+1 − xi)2 + (yi+1 − yi)2 . (3.2)

3.3 Graphics for Handwriting

Handwriting can be viewed as a series of curve segments in the plane. Here we discuss
creating a computer representation of handwriting based on interpolating parametric
curves using cubic splines. See Appendix A for an example and a discussion of cus-
tomizing plots for different purposes.

Consider the following Matlab based procedure for representing a single script letter,
or a word.

(a) Identify smooth curve segments that make up the script. E.g. the hand-written
form of the digit “3” normally has a non-smooth cusp in the middle. It could be
broken up into 2 smooth curve segments. A scripted upper-case “C” is normally
smooth enough to be a single curve segment, possibly a somewhat complex one. See
Figure 6 for the construction of the course title.

(b) For each segment, capture suitable data points (xi, yi), i = 1, . . . , n on the segment,
to roughly show its shape. Normally, this should take between 8 and 16 points per
letter, depending on how ornate the letter is. Although this table of points will
capture the shape adequately, plotting the table as a piecewise linear polynomial
will produce a very crude image of the script letter; hence, steps (c) through (f).

(c) Introduce a parameter ti for each data point. This was discussed above in subsection
3.2.

(d) Compute a cubic spline ppform structure in Matlab, call it xpp, for the interpolating
cubic spline of data (ti, xi), and a second one, ypp, for the data (ti, yi). We refer to
these two spline functions as xcs(t) and ycs(t).

31

End Result Using Splines

−15 −10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10
Curve and Point Data

x axis

y
ax

is

Figure 6: Constructing the CS 370 logo with splines.

(e) Compute a finer partition, trefj of the parameter interval t1 ≤ t ≤ tn.

(f) Create plotting points (xrefi, yrefi) by evaluating the cubic splines at each param-
eter value in trefj. i.e. xrefi = xcs(trefi) and yrefi = ycs(trefi) for i = 1, . . . , n.
Finally, plot (xrefi, yrefi).

This process has been followed to produce the CS 370 logo that appears on the title
page of these notes. In Figure 6, we show the result of steps (a) and (b) in the lower
figure, and the result of steps (e) and (f), plotted with no axes, in the upper figure.

Some details

Steps (a) and (b)
A simple way to accomplish steps (a) and (b) is to write a large version of the letter
(or word) on squared graph paper. Identify the segments and mark the data points
on the curve segments. Introduce an x axis and a y axis on the paper and read off
the coordinates of the sequence of points on each segment. For efficiency, pick a small
number of data points to capture the main features of the shape. If the curve segment
is closed (e.g. the letter “O”), repeat the first data point as the last one in the sequence.

Step (d)
Some spline end conditions work better than others, depending on the curve and its

32

position in the letter. In general, this can only be determined by trial and error; however,
for smooth closed curves, periodic end conditions should be used.

Step (e)
Below is a Matlab-like algorithm for refining a partition, t, by a factor of 3.

% refining the partition defined by row array, t, of parameter values

% creates a refined row array, tref, of parameter values

n = length(t);

tref = zeros(1,3*(n-1)+1);

for k = 1:n-1

i = 3*(k-1)+1;

dt = t(k+1) - t(k);

tref(i) = t(k);

tref(i+1) = t(k)+dt/3 ;

tref(i+2) = t(k)+2*dt/3;

end

tref(3*(n-1)+1) = t(n);

What about an arbitrary constant refinement factor (i.e. n instead of 3.)?
Can you write a fully vectorized one (i.e. no for loop) ?

33

34

4 Numerical Linear Algebra

4.1 From Equation Reduction to Triangular Factorization

“Gaussian elimination” for solving systems of linear equations has several meanings.
Commonly, solving a linear systems of equations such as Ax = b is first learned via a
process of reducing the given system of equations to a new system in which the unknowns,
xi, are systematically eliminated. It may be necessary to re-order the equations to
accomplish this (equation pivoting).

However, the standard computer techniques referred to as “Gaussian elimination”
for solving Ax = b are based on factoring A into triangular matrices, L and U . That
is, these computer algorithms find non-singular N × N matrices L and U such that
A = LU . After the matrix factorization, the system can be solved in two steps: first
solving Lz = b for z, followed by solving Ux = z for x. The factorization may not be
possible without re-ordering the equations. In matrix terms, re-ordering the equations
is accomplished by multiplying A and b by a ‘permutation’ matrix, P . Then, solving
the equivalent system PAx = Pb can be done by factoring the matrix PA.

In this section, we show how these views are closely related. To do this, we discuss a
common intermediate view that is often used in elementary teaching about solving linear
systems of equations, the augmented matrix notation. The role here of the discussion
of the augmented matrix procedure is that it enables us to move from manipulating
equations as per the equation reduction view to a matrix operations description. This
in turn leads to the concepts of matrix factorization.

4.1.1 Reducing a system of equations

The elementary equation reduction form of Gaussian elimination can be summarized as
follows. Let E1, E2, . . . , EN represent the N equations in the system of equations.

Step one:
The first step of the reduction process aims to eliminate x1 from all the N equations
except for E1.

For n→2 to N
replace En by En − An,1

A1,1
E1

End for

The result is a new system with

1) a subsystem of N − 1 new equations in unknowns (x2, x3, . . . , xN), and

2) a single equation involving (x1, x2, . . . , xN).

The solution of the new and old systems are the same.

The next step of the reduction, which is the final step, uses the first step recursively!

35

a) Apply “step one” to the smaller subsystem of N − 1 equations in (1) involving
the variables (x2, x3, . . . , xN). However, instead of eliminating x1 (which is already
gone), eliminate x2.
Do this step recursively until you arrive at a system with only one equation and
one unknown, xN . Thus, xN is known.

b) Use the known value of xN to solve the 2-equation system from the previous
recursion step. That is, solve for xN−1. Work your way back through the recursion
steps, and eventually solve for x1 using (x2, x3, . . . , xN).

After k invocations of the recursion of the reduction process, we have

• a subsystem of N − k equations in unknowns (xk+1, . . . , xN), and

• a subsystem of k equations. In this subsystem, the first equation involves all
the unknowns (x1, x2, . . . , xN). For each equation j (j = 2, . . . , k), the unknowns
(x1, . . . , xj−1) have been eliminated.

Question: What if x1 does not appear in equation 1 (i.e A1,1 = 0)? Or if the same thing
happens in trying to apply subsequent reductions?

4.1.2 Augmented Matrix Notation and Row Reduction

Matrix notation was originally introduced to avoid explicitly writing down the symbols
for the unknowns (x1, . . . , xk). This made pencil and paper calculations faster. But
matrix notation is also useful for expressing the equation reduction process in terms of
matrix multiplications.

Here we define the augmented system matrix as the N × (N + 1) matrix

A = [A, b] .

Step one of the equation reduction process can be described in terms of the following
row reduction operations.

For n→2 to N
replace row n by

(

row n− An,1

A1,1
row 1

)

End for

This row reduction step can be expressed mathematically as a matrix multiplication by
the N ×N matrix M (1),

[A(1), b(1)] = M (1)A .

The pattern of entries in M (1) is as shown in Figure 7, where each ‘x’ in the first column
represents a non-zero number.

To pick a specific case, do you see why M
(1)
3,1 =

−A3,1

A1,1
? And so in general M

(1)
k,1 =

−Ak,1

A1,1

for k = 2, . . . , N .

36

1

x

x

1

1

1

1

1

1

1

x

x

x

x

x
zeros

zeros

(1)
=M

Figure 7: The matrix operator that performs the first step of the reduction.

Terminology:

“M (1) is lower triangular” means that M
(1)
j,k = 0 for all k > j

“M (1) is unit diagonal” means that M
(1)
k,k = 1 for all k

Some comments:

1. Recall that we identified 2 results from “step one” of the equation reduction above:

• a subsystem of N − 1 equations involving (x2, . . . , xN). The coefficient matrix

for this subsystem is A
(1)
j,k for 2 < j < N and 2 < k < N (an (N − 1)× (N − 1)

submatrix of A(1)), and the right -and side is b
(1)
j for 2 < j < N ;

• a single equation involving (x1, . . . , xN). This equation has coefficients A
(1)
1,k for

1 < k < N (the first row of A(1)) and right-hand side b
(1)
1 .

2. x satisfies A(1)x = b(1).

3. M (1) depends only on A.

4. b(1) is defined as M (1)b.

A BIG IDEA

The kth step of the row reduction process can be described as a matrix multiplication
in essentially the same way. It can be expressed using the N ×N matrix M (k) with the
pattern shown in Figure 8, for k = 2, 3, . . . , N − 1.

M (k)[A(k−1), b(k−1)] = [A(k), b(k)] . (4.1)

Note that the comments made above for the first step of equation reduction have their
analogs for the kth step, and also note that we have assumed A

(k−1)
k,k 6= 0.

37

1

1

1

1

1

1

1

1

zeros

=M

x

x

x

x

x

(k)

column
k

zeroszeros

Figure 8: The matrix operator that performs the kth step of the reduction.

When k = N − 1,

• the ‘subsystem’ of equations actually has only one equation, i.e. A
(N−1)
N,N xN =

b
(N−1)
N ;

• A(N−1) is upper triangular;

• we can solve A(N−1)x = b(N−1) for xN , xN−1, . . . , x1 (in that order).

The above discussion has recast the process of equation reduction into matrix nota-
tion and expressed it in terms of matrix multiplications. We now want to manipulate
this new formulation to describe some algebraic facts about solving Ax = b. Here are
three exercises, the first two of which are useful in this discussion.

Exercises

1. If both B and C are lower triangular and unit diagonal, then so is the product BC.

2. If M is lower triangular and unit diagonal, then so is M−1.

3. Assuming that A
(k−1)
k,k 6= 0

M
(k)
j,j = 1, 1 ≤ j ≤ N (4.2)

M
(k)
k,n =

−A
(k−1)
k,n

A
(k−1)
k,k

, k + 1 ≤ n ≤ N (4.3)

M
(k)
j,n = 0, other values of j, n. (4.4)

38

Define U = A(N−1); this is the standard designation of this upper triangular matrix
in the context of Gaussian elimination.

The matrix description of the kth reduction step shown in (4.1) can be broken into
two steps:

M (k)A(k−1) = A(k) and M (k)b(k−1) = b(k) . (4.5)

The first of these implies

A(k−1) = (M (k))−1A(k) , (4.6)

and the second implies

b(k−1) = (M (k))−1b(k) . (4.7)

If we look at (4.6) for k = N − 1, we see that A(N−2) =
(

M (N−1)
)−1

A(N−1). In general,

A(N−k) =
(

M (N−k+1)
)−1 (

M (N−k+2)
)−1 · · ·

(

M (N−1)
)−1

A(N−1). (4.8)

Each matrix inverse,
(

M (N−j)
)−1

, j = 1, . . . , k − 1, in (4.8) is lower triangular and unit
diagonal (see Exercise 2 above). Moreover, the product of these matrices is also lower
triangular and unit diagonal (see Exercise 1 above). So, setting k = N − 1, and defining
the matrix J as the product of the inverse matrices in (4.8), and setting A(N−1) = U ,
we have

A(1) = JU (4.9)

where J is a lower triangular and unit diagonal matrix, and U is an upper triangular
matrix. Finally, since

A =
(

M (1)
)−1

A(1) =
(

M (1)
)−1

J U , (4.10)

by defining L as the product
(

M (1)
)−1

J , the matrix of coefficients of the original system
of equations can be written as a product of two factors,

A = LU , (4.11)

where L is a lower triangular, unit diagonal matrix, and U is an upper triangular matrix.

If we performed the same development on (4.7), we could conclude that

b = Lb(N−1) . (4.12)

Then, we can get the solution, x, by solving

Ux = b(N−1) . (4.13)

This triangular factorization is the matrix view of Gaussian elimination. By factoring
the system matrix A into upper and lower triangular factors, the solution can easily be
extracted.

39

4.1.3 Matrix factorization form of Gaussian elimination

This view of Gaussian elimination has the following major steps:

1. Compute triangular factors L and U so that LU = A.

2. Solve Lz = b (see (4.12) and identify z with b(N−1)).

3. Solve Ux = z.

What we have shown in the preceding sections is that these steps are not only possible,
but are, in fact, closely related to what is done by the elementary equation reduction
process. The next section presents and analyzes algorithms for the computations of
these three steps.

4.2 LU Factorization

Consider an N × N matrix A, a solution vector x and a right hand side vector b. We
wish to solve

Ax = b . (4.14)

The preceding section gave an overview of how the triangular factorization of A is related
to the row reduction process, but not the details of how to carry out the computation.
Here we present the algorithm for factoring A = LU , where L is unit lower triangular,
and U is upper triangular.

Algorithm: LU Factorization
Given an N ×N matrix A = aij

For k = 1, . . . , N
For i = k + 1, . . . , N

mult := aik/akk

aik := mult
For j = k + 1, . . . , N

aij := aij −mult ∗ akj

EndFor
EndFor

EndFor

Note that in the above LU factorization algorithm, the original entries of A are
overwritten by L and U . The strictly lower part of the modified A array contains the
strictly lower part of L (the unit diagonal is understood). The upper triangular part of
the A array now contains U . This convention is common among implementations of the
LU factorization algorithm because it requires no extra storage.

To solve equation (4.14), we note that

Ax = LUx = b . (4.15)

40

If we define z = Ux, then it follows from equation (4.15) that

Lz = b , (4.16)

Ux = z . (4.17)

Equations (4.16) and (4.17) are easy to solve. Let the entries of (L)ij = lij , where we
recall that L is unit lower triangular. We can easily solve Lz = b for z using the forward
solve algorithm:

Algorithm: Forward Solve
For i = 1, . . . , N

zi := bi

For j = 1, . . . , i− 1
zi := zi − lij ∗ zj

EndFor
EndFor

Let the entries of (U)ij = uij. We can easily solve Ux = z for x using the back solve
algorithm:

Algorithm: Back Solve
For i = N, . . . , 1

xi := zi

For j = i + 1, . . . , N
xi := xi − uij ∗ xj

EndFor
xi := xi/uii

EndFor

One of the advantages of factoring A = LU is that we can solve for multiple right-
hand sides simply by doing multiple forward and back solves. Can you think of an
efficient way to form A−1 given that you have already found A = LU?

4.2.1 How do we count work?

The running time of the above algorithms will be proportional to the number of flops.
Notice that most statements consist of linked triad operations such as

zi := zi − lij ∗ zj .

That is, usually multiplication is paired with an addition or subtraction. So, often
a measure of work is to simply count the number of multiply-adds. Usually, the total
number of multiply-adds is about one-half the total number of additions+subtractions+
multiplies + divides. In fact, both operation counts are called number of flops. There
is no standard agreement on this terminology. We shall adopt the Matlab convention,

41

which is to count the total number of operations, i.e. one multiply-add is two flops. The
flop count will include the total number of adds + multiplies + divides + subtracts. A
simple calculation gives the total number of flops for factoring an N ×N matrix:

LU Factorization Work =
2N3

3
+ O(N2) flops

= O(N3) flops. (4.18)

The flop count for the Forward Solve plus Back Solve is:

Forward + Back Solve Work = 2N2 + O(N)

= O(N2). (4.19)

Obviously, for large N , the factorization process is more expensive than the forward/back
solve.

4.2.2 Pivoting and the Stability of Factorization

Each of the closely related views of Gaussian elimination given in the opening section can
fail if a division by zero is encountered at some stage. This problem can be sidestepped
if we carry out some form of row pivoting.

For the equation reduction view, row pivoting defines a re-ordering of the equations.
For the augmented matrix view, it has the effect of re-ordering the rows of [A(k), b(k)].
This operation can be described in matrix terms as a multiplication by a permutation
matrix. A permutation matrix is a matrix of 0s and 1s. Each row of a permutation
matrix contains exactly one 1 (all the other elements are 0s). The same is true for each
column of a permutation matrix. For example, the permutation matrix that interchanges
the second and third rows of a 3× 3 matrix is

P =





1 0 0
0 0 1
0 1 0



 .

Try multiplying a 3× 3 matrix by P to see how it works.
In the LU factorization algorithm, if a

(k)
kk = 0 at some stage, then we examine all

entries in the kth column below a
(k)
kk to find the element with the largest absolute value.

Suppose |a(k)
τk | is the largest, i.e.

max
j=k,..,N

|a(k)
jk | = |a

(k)
τk | . (4.20)

Then we swap row τ with row k, and use a
(k)
τk to form the multiplier. This process is

called pivoting. Note that at least one of a
(k)
kk , a

(k)
k+1,k, . . . , a

(k)
Nk must be nonzero, otherwise

the matrix is singular. Row-swapping produces a re-ordering of the rows of A that could
be described by a permutation matrix, P . This same re-ordering is applied to the right-
hand side vector b. As a result, we get the new system of equations, PAx = Pb, having
the same solution, x, as the original system, Ax = b.

42

Algorithmically, the process of pivoting is intertwined with the factorization to pro-
duce P , L, and U from A.

Standard computer oriented algorithms for solving Ax = b have two stages:

(a) from A, compute P , L and U such that PA = LU ;

(b) from P , L, U and b, compute x.

The amount of work required for stage (a) is 2N3

3 +O(N2) flops, while stage (b) requires

2N2 + O(N) flops.

In Matlab, stage (a) can be done using the lu(A) command:

[L,U,P] = lu(A) .

4.2.3 Stability

So far, we have been discussing the factorization algorithm as it operates using math-
ematically exact arithmetic. What happens when we implement the algorithm in the
inexact arithmetic of a floating point number system? Could errors build up during the
O(N3) arithmetic operations of the factorization?

The following is a general rule of thumb concerning the behaviour of algorithms
implemented in inexact (floating point) arithmetic.

If an algorithm fails under some condition when exact arithmetic is used,
then, if the algorithm is implemented using inexact arithmetic, it can generate
large errors when the failure condition is approximately true.

The algorithm of interest here is the LU factorization of matrix A. Using exact arith-
metic, it can fail if a

(k)
kk = 0 at some stage. The rule of thumb says that a program to

implement it in floating point arithmetic can generate large errors if |a(k)
kk | is very small.

(So what constitutes being small?)

However, if we add row pivoting to the LU factorization algorithm, then, in exact
arithmetic, the resulting algorithm only fails if the row pivoting fails to find a non-zero
entry anywhere on or below the diagonal in column k of A(k). So we can expect the
factorization computed in floating point to be reasonably accurate unless all the entries
of A(k) on or below the diagonal in column k are small, not just A

(k)
kk itself.

A measure of the stability of factorization is

ρ = max
i,j,k
|a(k)

ij |, (4.21)

i.e. if the size of the maximum entry in A(k) becomes very large during the course of
elimination, then this indicates that small pivots are encountered.

43

4.3 Matrix and Vector Norms

Before we continue, we give a short overview of matrix and vector norms. The norm of
a vector is a measure of its size. Let x be the vector

x =











x1

x2
...

xn











. (4.22)

Then we define the 1-norm, 2-norm, and ∞-norm as

‖x‖1 =

n
∑

i=1

|xi|

‖x‖2 =

(

n
∑

i=1

x2
i

)1/2

‖x‖∞ = max
i
|xi| .

Usually, these types of norms are referred to as p-norms

‖x‖p where p = 1, 2,∞ . (4.23)

Matlab computes these vector norms using the norm command.

Properties of Norms

‖x‖ = 0 iff xi = 0 ∀i
‖αx‖ = |α| ‖x‖ , α = scalar

‖x + y‖ ≤ ‖x‖+ ‖y‖

Matrix Norms
We define a matrix norm for an n× n matrix A corresponding to a given vector norm,
as follows:

‖A‖p = max
‖x‖6=0

‖Ax‖p
‖x‖p

for any ‖ · ‖p norm. It can be shown that (see any linear algebra text)

‖A‖1 = max
j

n
∑

i=1

|aij|

= max absolute column sum

‖A‖∞ = max
i

n
∑

j=1

|aij|

= max absolute row sum.

44

For the ‖ · ‖2 norm, we have to consider the eigenvalues of A. Recall that A has an
eigenvalue λ (a scalar) associated with a nonzero vector x if

Ax = λx,

where the vector x is the eigenvector associated with the eigenvalue λ. If λi, i = 1, .., n
are the eigenvalues of AtA, then

‖A‖2 = max
i
|λi|1/2.

Matlab also computes these matrix norms via the norm command.
Note that for any n× n matrices A and B, and any n-vector x, we have

‖A‖ = 0 iff aij = 0 ∀i, j
‖αA‖ = |α| ‖A‖ , α = scalar

‖A + B‖ ≤ ‖A‖+ ‖B‖
‖Ax‖ ≤ ‖A‖ ‖x‖
‖AB‖ ≤ ‖A‖ ‖B‖
‖I‖ = 1 , I = identity matrix.

4.4 Condition Numbers

4.4.1 Conditioning

Suppose we perturb the right-hand-side vector b in

Ax = b.

What happens to x? Let’s replace b by b+∆b, which means that x will change to x+∆x,
which gives

A(x + ∆x) = b + ∆b. (4.24)

Since if x is the exact solution, then Ax = b, so that equation (4.24) becomes

∆x = A−1∆b. (4.25)

Noting that Ax = b, so that

‖b‖ ≤ ‖A‖‖x‖, (4.26)

and from equation (4.25) we obtain

‖∆x‖ ≤ ‖A−1‖‖∆b‖. (4.27)

Now, equation (4.26) gives

‖x‖ ≥ ‖b‖‖A‖ or
‖A‖
‖b‖ ≥

1

‖x‖ . (4.28)

45

Equations (4.27) and (4.28) give

‖∆x‖
‖x‖ ≤ ‖A‖ ‖A−1‖‖∆b‖

‖b‖ . (4.29)

Note that the above is true for any ‖ · ‖p norm.
Let κ(A) = ‖A‖‖A−1‖ be the condition number of A. So, equation (4.29) says

that

relative change in x ≤ condition number × relative change in b.

If κ(A) is large, then the problem may be ill-conditioned; since the bound is not very
sharp, κ(A) may grossly overestimate the problem. On the other hand, if κ(A) is small
(near one), then, for sure the problem is well-conditioned.

Now, suppose we perturb the matrix elements A, i.e.

(A + ∆A)(x + ∆x) = b, (4.30)

then, assuming Ax = b, i.e. x is the exact solution, equation (4.30) implies

A∆x = −∆A(x + ∆x)

∆x = −A−1 [∆A(x + ∆x)] , (4.31)

which then gives

‖∆x‖ ≤ ‖A−1‖‖∆A‖‖x + ∆x‖, (4.32)

or

‖∆x‖
‖x + ∆x‖ ≤ ‖A−1‖‖A‖‖∆A‖

‖A‖

= κ(A)
‖∆A‖
‖A‖ . (4.33)

Once again the condition number appears. So, a measure of the sensitivity to changes
in A or b is the condition number. Note that

• κ(A) ≥ 1;

• κ(αA) = κ(A), α = scalar.

4.4.2 The residual

The accuracy of the computed solution is sometimes measured by the size of the residual
which is defined as follows. If the computed solution for the system Ax = b is x + ∆x
(it is not exact) then the residual is

r = b− A(x + ∆x) . (4.34)

46

If the residual r = 0 then ∆x = 0 and we have the exact solution. From equation (4.34)
we have

A(x + ∆x) = b− r .

Similar analysis as in equations (4.24-4.29) gives

‖∆x‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ . (4.35)

Thus a small residual does not necessarily imply a small error, if κ(A) is large. For
example, it is unavoidable that

‖r‖
‖b‖ ≃ εmachine (4.36)

in which case equation (4.35) implies

‖∆x‖
‖x‖ ≤ κ(A) εmachine

which may not be small if the problem is poorly conditioned.
For implementation in floating point arithmetic, Gaussian elimination with pivoting

is known to be a stable method. Moreover, it yields a computed result whose residual
is small, namely, the residual is approximately the size indicated by equation (4.36) in
most cases. For this reason, it is a commonly used method.

Another type of analysis known as “backward error analysis” yields the following re-
sult. Gaussian elimination with pivoting produces a computed solution x̂ which satisfies

(A + E)x̂ = b

where ‖E‖ = εmachine ‖A‖. In other words, Gaussian elimination with pivoting solves a
nearby problem exactly. From equation (4.33) we have

‖x− x̂‖
‖x̂‖ ≤ κ(A) εmachine .

As stated before, the condition number is a property of the problem and not a property
of the algorithm used to solve the problem. We conclude that the result computed
in a floating point number system via Gaussian elimination with pivoting is about as
accurate as could ever be achieved. However, the computed solution may not be close
to the true solution if the problem has a large condition number.

47

48

5 Google Page Rank

It is well known that various search engines use different techniques in order to give
their “best” ranking for a given search query. This implies that a given search query
will often give different results for different search engines. One can see this simply by
running a few search examples on msn.com, yahoo.com or google.com.

The Google search engine is recognized for the quality of its search results. In this
section, we discuss the algorithm used by Google called the Page Rank Algorithm to
rank Web pages in importance.

5.1 Introduction

When one uses Google to search web pages for key words a set of pages is returned, each
ranked in order of its importance. The question we try to answer in this section is how
this ranking is obtained.

We can model the structure of the Web by a directed graph. The nodes in the graph
represent web pages. A directed arc is drawn from node j to node i if there is link from
page j to page i. Let deg(j) be the outdegree of node j, that is, the number of arcs
leaving node j. A typical graph is shown below. In this case deg(j) = 2 while deg(i) = 3.

i

j

The basic page rank idea is as follows. A link from web page j to web page i can be
viewed as a vote on the importance of page i by page j. We will assume that all outlinks
are equally important (this could be changed easily), so that the importance conferred
on page i by page j is simply 1/deg(j) (assuming that there is a link from j → i). But
this simply gives some idea of the local importance of i, given that we are visiting page
j. To get some idea of the global importance of page i, we have to have some idea of
the importance of page j. This requires that we examine the pages which point to page
j, and then we need to determine the importance of these pages, and so on.

49

Let us consider the hypothetical concept of a random surfer. This surfer selects each
page in the Web in turn. From this initial page, the surfer then selects at random an
outlink from this initial page, and visits this page. Another outlink is selected at random
from this page, and so on. The surfer keeps track of the number of times each page is
visited. After K visits, the surfer then begins the process again, by selecting another
initial page. This algorithm is presented in (5.1). We assume that there are R pages in
the web. There are at least two major problems with algorithm (5.1). Can you spot the
problems?

Random Surfer Algorithm

Rank(m) = 0 , m = 1, ..., R

For m = 1, ..., R

j = m

For k = 1, ..., K

Rank(j) = Rank(j) + 1

Randomly select outlink l of page j

j = l

EndFor

EndFor

Rank(m) = Rank(m)/(K ∗R) , m = 1, ..., R

(5.1)

If K in algorithm (5.1) was sufficiently large, then we would get a good estimate
of the importance of each page on the Web. However, this would be a very expensive
algorithm, first because the number of web pages, R, is very large, and second because
K needs to be large as well to ensure that we are getting a good sample of all the paths
in the Web. We clearly need to do something smarter here.

5.2 Representing Random Surfer by a Markov Chain Matrix

We can solve the random surfer problem more efficiently using some numerical linear
algebra. Let P be a matrix of size R× R, where R is the number of pages in the Web.
Note that P is a very large matrix! Let Pij be the probability that the random surfer
visits page i, given that he is at page j. Thus

Pij =
1

deg(j)
, if there is a link j → i

= 0 , otherwise. (5.2)

There are, however, two problems associated with letting the random surfer’s movements
be governed with the probability matrix P as it stands.

50

5.2.1 Dead End Pages

What happens if page i has no outlinks? In this case, once our random surfer visits page
i, he will have no way of leaving this page. To avoid this problem, we suppose that the
random surfer teleports to another page at random, if he encounters a dead end page.
We suppose that this teleportation moves the surfer to any other page in the Web with
equal probability. More precisely, let d be an R dimensional column vector such that

[d]i = 1 , if deg(i) = 0

= 0 , otherwise (5.3)

and let e = [1, 1, ..., 1]t be the R dimensional column vector of ones. Then we define a
new matrix P ′ of transition probabilities to include the teleportation property, as follows:

P ′ = P +
1

R
e · dt . (5.4)

5.2.2 Cycling Pages

Suppose that page j contains only a link to page i, and page i contains only a link to
page j. This will trap our random surfer in an endless cycle. We will again use the
teleportation idea to make sure that the random surfer can escape from the boredom
of visiting the same pages in cyclic fashion. Let 0 < α < 1 (Google uses α = .85), and
define a new matrix of probabilities

M = αP ′ + (1− α) · 1

R
e · et . (5.5)

What does equation (5.5) do? Essentially, we are saying that the surfer moves to other
pages based on the usual idea of selecting an outlink at random, and, in addition, the
surfer can also teleport any other page on the web with equal probability. We weight
the usual outlink probabilities by α, and the teleportation probability by (1−α), so that
the total probability of visiting the next page on the web is one. Once again, we can
interpret Mij as the probability that the random surfer will move from page j to page i.
Note that from the definition of M we have that 0 < Mij ≤ 1, and

∑

i

Mij = 1 ; (5.6)

i.e., each column sums to 1 (colsum(M) = 1). In other words, given that the random
surfer is at page j, then the probability that he will end up at some new page is one.

The matrix M defined by equation (5.5) is referred to as the Google Matrix.

51

5.3 Markov Transition Matrices

Let us be a bit more formal here.

Definition 5.1 A matrix Q is a Markov matrix if

0 ≤ Qij ≤ 1 and
∑

i

Qij = 1 . (5.7)

Obviously, matrix M in equation (5.5) is a Markov matrix. Let [p]i represent the
probability that the random surfer is at page i so that p is an R dimensional column
vector. We could, for example, specify that initially

[p]i =
1

R
, ∀i (5.8)

that is, the random surfer visits each page initially with equal probability.

Definition 5.2 A vector q is a probability vector if

0 ≤ [q]i ≤ 1 and
∑

i

[q]i = 1 . (5.9)

Given that, at hop n, the random surfer is in the state represented by the probability
vector pn, that is, the probability that the surfer is at page i is [pn]i, then the probability
vector at state n + 1 is

pn+1 = Mpn . (5.10)

We should verify that pn+1 is a probability vector. Since M is a Markov matrix, and pn

is a probability vector, then we have that

[pn+1]i ≥ 0 , ∀i (5.11)

and as well

∑

i

[pn+1]i =
∑

i

∑

j

Mij [p
n]j

=
∑

j

[pn]j
∑

i

Mij

=
∑

j

[pn]j

= 1 . (5.12)

Thus pn a probability vector implies then pn+1 is also a probability vector for each n.

52

5.4 Page Rank

Given the assumption above, we can now precisely state the algorithm for determining
the ranking of each page in the Web. Let

p0 =
1

R
e (5.13)

(that is, the random surfer visits each page initially with equal probability). Then the
rank of page i is given by [p]∞i where

p∞ = lim
k→∞

(M)kp0 . (5.14)

So, essentially, we start with p0 defined by equation (5.13) and then repeatedly
multiply by M , to give us p∞. There are two obvious questions

• Does iteration (5.14) converge?

• If yes, how fast does this iteration converge?

5.5 Convergence Analysis

In order to analyze the convergence of iteration (5.14), we have to review some basic
linear algebra. (Maybe you haven’t seen this before, but its easy). Suppose we have a
special vector x such that

Qx = λx (5.15)

where λ is a (possibly complex) nonzero scalar. The special vector x is an eigenvector
of the matrix Q, with eigenvalue λ.

Note that equation (5.15) is equivalent to finding a nonzero solution of the linear
system of equations (λI − Q)x = 0 and so λ an eigenvalue of Q is equivalent to the
matrix λI − Q being singular. This in turn implies that eigenvalues are roots of the
characteristic polynomial det(λI −Q) of Q.

5.5.1 Some Technical Results

We are going to very briefly derive some technical properties of the eigenvalues of a
Markov matrix here. If you are not a linear algebra fan, I suggest you skip to Section
5.5.2.

Theorem 5.3 Every Markov matrix Q has 1 as an eigenvalue.

Proof: The eigenvalues of Q and Qt are the same (since Q and Qt have the same
characteristic polynomials). Since Qte = e, we have that λ = 1 is an eigenvalue of Qt.
Thus λ = 1 is an eigenvalue of Q.

Theorem 5.4 Every (possibly complex) eigenvalue λ of a Markov matrix Q satisfies

|λ| ≤ 1 . (5.16)

Thus 1 is the largest eigenvalue of Q.

53

Proof: This result actually follows from the Gershgorin Circle Theorem (a result
that can be found in optimization texts) applied to the eigenvalues of Qt. Since the
eigenvalues of Q and Qt are the same, the theorem follows.

Definition 5.5 A Markov matrix Q is a positive Markov matrix if

Qij > 0 , ∀i, j . (5.17)

Theorem 5.6 If Q is a positive Markov matrix, then there is only one eigenvector of
Q with |λ| = 1.

Proof: See, for example, (Grimmett and Stirzaker, Probability and Random Pro-
cesses, Oxford University Press, 1989.)

5.5.2 Convergence Proof

Theorem 5.7 If M is a positive Markov matrix, the iteration (5.14) converges to a
unique vector p∞, for any initial probability vector p0.

Proof: Let xl be an eigenvector of M , corresponding to the eigenvalue λl. Suppose
that M has a complete set of eigenvectors, in other words, we can represent p0 as

p0 =
∑

l

clxl (5.18)

for some scalars cl. (We do not have to make this assumption, but it simplifies the
proof). Suppose also that we order these eigenvectors so that |λ1| > |λ2| ≥ ... so that
x1 corresponds to the unique eigenvector with λ1 = 1. Then

(M)kp0 = c1x1 +

R
∑

l=2

cl(λl)
kxl . (5.19)

From Theorem (5.6), we have that |λl| < 1 for all l > 1, so that

lim
k→∞

(M)kp0 = c1x1 (5.20)

for any p0. c1x1 cannot be identically zero, since p0 is a probability vector, and hence
p∞ is a probability vector. Hence c1 6= 0 and x1 cannot be the zero vector. Uniqueness
follows since if we start the iteration with another probability vector

q0 =
∑

l

blxl (5.21)

for some coefficients bl, then

q∞ = lim
k→∞

(M)kq0 = b1x1 . (5.22)

But, for given x1, since q∞,p∞ are probability vectors, we have b1 = c1.

54

Remark 5.8 The speed of convergence of algorithm (5.14) is determined by the size of
the second largest eigenvalue λ2 of the Google matrix M , since |λl| < |λ2|, l > 2. One can
show that the size of |λ2| ≃ α (see Golub and van Loan, Matrix Computations, 1996).
For example, if α = .85, then |λ2|114 = (.85)114 ≃ 10−8. This means that 114 iterations
of algorithm (5.14) for any starting vector should give reasonably accurate estimates for
p∞.

The Web is estimated to contain billions of pages. Using algorithm (5.14) is esti-
mated to require several days of computation. Note that the ranking vector p∞ can be
computed and stored independent of the Google query. When a user enters a keyword
search, a subset of Web pages containing the keywords is returned. Then, these pages
are ranked according to the precomputed vector p∞.

Why not just choose α very small, since this would speed up the computation?
Consider the case α = 0. Then its easy to see that [p∞]i = 1/R, i.e. all pages are
ranked equally. The smaller the value of α, the faster the convergence of algorithm
(5.14). However small values of α result in less significant ranking information.

5.6 Practicalities

If we assume that pn is a probability vector then

eet

R
pn =

1

R
e(etpn)

=
e

R
(5.23)

so that

Mpn = αP ′pn + (1− α)
e

R
(5.24)

and that

P ′pn = (P +
e · dt

R
)pn

= Ppn + e(
dtpn

R
) . (5.25)

Putting these two steps together gives

Mpn = α(Ppn + e(
dtpn

R
)) + (1− α)

e

R
. (5.26)

Typically, P is quite sparse, so that even though M is dense, we can perform the matrix-
vector multiply Mpn in O(R) operations.

55

5.7 Summary

Given the positive Markov matrix M which represents the structure of the Web, the
pages can be ranked using the components of the vector pk computed via algorithm
(5.27) below.

Page Rank Algorithm

p0 = e/R

For k = 1, ..., until converged

pk = Mpk−1

If max
i
|[pk]i − [pk−1]i| < tol then quit

EndFor

(5.27)

5.7.1 Some Other Interesting Points

Instead of defining M as

M = αP ′ + (1− α)eet/R , (5.28)

Google actually uses

M = αP ′ + (1− α)evt (5.29)

where v is a probability vector, which can be tuned by allowing teleportation to particu-
lar pages. That is, Google can intervene to adjust page ranks up or down for commercial
considerations.

Google also reports that the Page Rank is updated only every few weeks, due to the
cost of computation. There is considerable effort directed to speeding up the convergence
of the iterative algorithm (5.27). In mathematical terms, algorithm (5.27) is known as the
power method for finding the eigenvector of M corresponding to the largest eigenvalue.

56

6 Least Squares Problems

Suppose you took a beautiful picture of the Montreal city-scape, but the film was par-
tially over-exposed before you developed it. The resulting photos might contain a bright
side and a dark side, or a bright blob in the middle, as shown in figure 9. Not all is

(a) Original (b) Over-exposed

Figure 9: Original and Over-exposed pictures of Montreal

lost – we can remove some of the shading artifacts1. However, we need to estimate the
shading effect accurately first.

Suppose we know the type of shading effects, but we do not know how strong the
effect is. Figure 10 shows a model in which the observed photo can be decomposed
into three parts: the true photo, a centered exposure artifact, and a left-right exposure
artifact.

+ ?× + ?×=

Figure 10: Decomposition of over-exposed photo. Although we know the form of the
exposure artifacts, the question-marks indicate that we do not know how strong each
artifact is.

1In image processing, an “artifact” is an unwanted feature in an image, usually the result of some
sort of problem or inaccuracy.

57

6.1 Least Squares Fitting

Figure 10 illustrates a particular model for representing the observed picture. The form
of the exposure artifact components is assumed to be known – it is the amount of each
component that is unknown. We will estimate how much of each component is present
by a process known as least squares fitting. In particular, we will model the observed
photo as a linear combination of four components, illustrated in Figure 11.

= ×β3 +×β2 +×β1 +

Figure 11: Decomposition of over-exposed photo into four components.

To go further with this problem, we will represent an “image object” as a single
column vector. The original image is stored as a table of 256× 256 numbers. To make
it into a column vector, we simply read off all the numbers in the table, going down one
column at a time2, as in Figure 12. Using the same method, we can convert each of the

Original image

Break image

into columns

Place all the columns

in a single, long

column vector.

...

Figure 12: Representing an image as a column vector

components in Figure 11 to vectors, producing four column vectors. Then, Figure 11
can be written as a vector equation,

y = a1β1 + a2β2 + a3β3 + ǫ (6.1)

y = Aβ + ǫ , (6.2)

2This is Matlab’s ordering of matrix data. However, the specific ordering does not matter, as long
as we are consistent.

58

where A = [a1|a2|a3]. In this context, the image itself (represented by ǫ) is anything
that does not fit the model. In many other least squares fitting problems, we model
everything except random noise; in that case, ǫ would represent noise. But in our
scenario, the image is what is left after we remove all the exposure artifacts.

The question remains, how do we choose the parameters β1, β2 and β3 to best match
the artifacts observed in the image? What we aim to do is find the parameter values
that minimize some measure of the residual. The residual, r, is the vector of differences
between the observed data (image), and the model for a given set of parameter values,

r =







r1
...

rm






= y −Aβ (6.3)

where m is the number of pixels (65,536 for our 256× 256 image). Notice that in this
case the desired image (ǫ) is actually r, the residual (compare (6.3) to (6.2)). This is
not normally the case, but happens in our scenario. The reason for this is that we are
modeling the artifacts so that we can remove them. In essence, we are modeling the
part we don’t want, so the part we do want (the uncorrupted image data) is left in ǫ.

A few words about the dimensions of these matrix expressions. If one were to draw
a picture of the matrix expression on the right-hand-side of equation (6.3), it might look
like Figure 13. The long, tall look of this matrix expression is typical of least squares
fitting problems. Each row in the matrix expression represents one observation of the
system (one opportunity to observe the interplay between the parameters β and the
output y). Usually there are many more observations (rows) than there are parame-
ters (columns in A). This makes A tall and narrow. Since we have so many more
observations than fitting parameters, it is highly unlikely that we will be able to find
parameter values that fit all the observations exactly. This type of problem is called
overdetermined. Instead of trying to fit all the observations exactly, we seek parameter
values that approximate the observations as “closely as possible”. What we mean by
that is discussed in the next section.

y A β

Figure 13: Illustration of the matrix expression for calculating the residual vector.

59

6.2 Total squared error

A useful summary of the errors associated with the given choice of β is the square of
the (Euclidean) length of r. We will call this measure the total squared error, and
denote it

E(β) =

m
∑

i=1

r2
i . (6.4)

The total squared error can also be written E(β) = ‖r‖2 = ‖y − Aβ‖2. Furthermore,
the expression rtr is the same as ‖r‖2 (rt is the transpose of r). Hence, E(β) can also
be written

E(β) = (y −Aβ)t (y −Aβ) . (6.5)

Figure 14 shows the results when choosing particular parameter values. Figure 14(a)
is the residual image corresponding to β = [163.4 1.5 0.5]t, resulting in a total squared
error of 29,352, while Figure 14(b) corresponds to β = [163.4 1.9 0.7]t, resulting in a
total squared error of 14,261. Figure 14(b) has a smaller total squared error than (a).
It is not surprising that (b) also looks like it has less exposure artifact than (a).

(a) E(163.4, 1.5, 0.5) = 29, 352 (b) E(163.4, 1.9, 0.7) = 14, 261

Figure 14: For (a), β = [163.4 1.5 0.5]t and E(β) = 29, 352. For (b), β = [163.4 1.9 0.7]t

and E(β) = 14, 261.

Can we find parameter values β1, β2 and β3 that make a better linear fit to the data
than the values tried in Figure 14? Here “better” means smaller total squared error.

The answer is ‘Yes’. In fact, we are going to discuss how to compute β̄ that gives
the smallest possible total squared error. I.e. E(β̄) ≤ E(β) for all possible choices of β.
The parameters in β̄ are called the least squares fit parameters for this data. For the
example in Figure 10, the least squares fit parameters are β̄ = [163.4 2.047 0.7127]t and
give a total squared error of E(β̄) = 13, 005.

60

6.3 The Normal Equations

There is a simple method to finding the optimal least squares fit parameters for a linear
least squares problem. If the model is a linear function of the parameters (i.e. if the
model can be written as a matrix times the vector of parameters values), then this
method is guaranteed to find the least squares solution.

To find the least squares solution, we need to solve the normal equations. This
section describes what the normal equations are, and where they come from. You will
see that it is nothing more than first-year calculus.

In calculus, if you want to find the minimum value of a function f(x), you take the
derivative and set it equal to zero. The same methodology applies to higher-dimensional
functions, such as our total squared error function, E(β). The definition of the (direc-
tional) derivative of E(β) is

∂E

∂β
= lim

e→0

E(β + e)−E(β)

‖e‖ . (6.6)

The numerator of (6.6) can be written

E(β + e)− E(β)

= (y −A(β + e))t (y −A(β + e))− (y −Aβ)t (y −Aβ)

=
(

yt − (β + e)tAt
)

(y −A(β + e))−
(

yt − βtAt
)

(y −Aβ)

= yty − ytA(β + e)− (β + e)tAty + (β + e)tAtA(β + e)

−yty + ytAβ + βtAty − βtAtAβ

= −ytA(β + e)− (β + e)tAty + (β + e)tAtA(β + e) + ytAβ + βtAty − βtAtAβ

= −ytAβ − ytAe− βtAty − etAty + (β + e)tAtA(β + e) + ytAβ + βtAty − βtAtAβ

= −ytAe− etAty + (β + e)tAtA(β + e)− βtAtAβ

= −2etAty + (β + e)tAtA(β + e)− βtAtAβ (since ytAe = etAty)

= −2etAty + βtAtAβ + βtAtAe + etAtAβ + etAtAe− βtAtAβ

= −2etAty + 2βtAtAe + etAtAe (since βtAtAe + etAtAβ)

= 2et
(

AtAβ −Aty
)

+ etAtAe .

Phew! Now we can write (6.6) as

∂E

∂β
= lim

e→0

2et (AtAβ −Aty) + etAtAe

‖e‖ (6.7)

= lim
e→0

2et (AtAβ −Aty)

‖e‖ + lim
e→0

etAtAe

‖e‖ (6.8)

= 0 (6.9)

The second limit in (6.8) is zero, since

0 ≤ lim
e→0

etAtAe

‖e‖ ≤ lim
e→0

‖e‖2‖A‖2
‖e‖ = ‖A‖2 lim

e→0
‖e‖ = 0 . (6.10)

61

Therefore, the first limit in (6.8) must also be zero. We can think of the expression as
the dot-product of two vectors: the unit vector e/‖e‖, and the vector 2(AtAβ −Aty).
The dot-product of a unit vector with any vector is that vector’s length (norm) times
the cosine of the angle between the two vectors. Since the limit must be zero for all unit
vectors e/‖e‖, the only alternative is that

AtAβ −Aty = 0 , (6.11)

and hence we arrive at the normal equations,

AtAβ = Aty . (6.12)

The important thing to note about the normal equations is that the matrix AtA is square
and symmetric. Figure 15 illustrates this fact. Thus, assuming AtA is nonsingular, we
can solve for the optimal β by simply inverting AtA,

β =
(

AtA
)−1

Aty . (6.13)

The matrix (AtA)
−1

At is called the pesudoinverse of A, and is denoted A†. Using the
least squares fitting parameters, the restored image is compared to the original and the
over-exposed images in Figure 16.

β

AA
′

A
′

y

(a)

(A′
A)β = A

′y

(b)

Figure 15: Illustration of the normal equations. (a) shows the A matrices explicitly,
while (b) shows the size of the system after multiplying.

There is an important geometrical interpretation to the least squares fit. Consider
the following derivation of the residual.

y −Aβ = r (6.14)

y = Aβ + r (6.15)

Aty = AtAβ + Atr (6.16)

(AtA)−1Aty = β + (AtA)−1Atr (6.17)

A†y = β + A†r (6.18)

Then, multiplying (6.18) on both sides by A gives

AA†y = Aβ + AA†r . (6.19)

62

(a) Original (b) Over-exposed (c) Restored

Figure 16: Corruption and restoration of the Montreal image. The total squared error
for the over-exposed image is 134,770. The total squared error for the restored image is
13,005 (corresponding to parameter values [163.4 2.047 0.713]t).

The amazing thing is that AA† is a projection matrix3. We will denote it PA. That
is, if y is a vector, then the vector PAy is the orthogonal component of y in the range
of A (the subspace spanned by the columns of A), as shown in Figure 17. The nice
thing about the least squares solution is that the residual term, PAr, is zero (compare
(6.16) to (6.12)). This gives us a geometrical interpretation for the least squares solution.
Here is the way to think about it. Our model consists all the images that we can make
by taking linear combinations of the exposure artifacts (stored in the columns of A);
essentially, multiplying the matrix A by the vector of parameters β. Hence, range(A) is
the space of all possible images that we can model exactly. The observations probably
do not fit our model perfectly, so the vector y is not in the subspace range(A). The least
squares parametric fit corresponds to the closest point in range(A) to y, the orthogonal
projection (also known as the perpendicular distance).

null(A)

range(A)

y
r

PA
y

Figure 17: Orthogonal projection decomposition of the vector y.

3A projection matrix is any matrix P that satisfies P 2 = P . Geometrically, the projection matrix
moves all vectors in our space onto a subspace . Which subspace it projects onto depends on P .

63

6.4 Solving Least Squares Problems in Matlab

Here is a Matlab m-file to compute β.

% cubic least squares fitting for the Montreal over-exposure problem

montreal = double(imread(’Montreal_corrupt.jpg’));

[h w] = size(montreal);

y = montreal(:); % this is the observed (corrupted) image

a1 = ones(w*h,1); % constant component

gauss = fspecial(’gaussian’, size(montreal), 40); % Gaussian blob component

a2 = gauss(:) / max(gauss(:)) * 600;

x_grad = repmat(1:w,h,1);

a3 = x_grad(:); % left-right gradient component

A = [a1 a2 a3];

beta = (A’ * A) \ (A’ * y) % solve the normal equations

r = y - A * beta; % remove unwanted exposure artifacts

montreal_restored = reshape(r,h,w);

imagesc(montreal_restored); colormap(gray);

6.5 Another example: Canada’s Population

Population growth is often modeled as an exponential process, modeled by the formula

P (t) = a emt , (6.20)

where a and m are parameters that are different for different populations (e.g. the a
and m for Canada will be different than for China).

The Statistics Canada web page

http://www.statcan.ca/english/Pgdb/demo03.htm

shows census data for Canada’s population from 1851 to 2001. The total population data
is plotted in Figure 18(a). The data points seem to be on (or close to) an exponential
curve, so the model in (6.20) fits.

We would like to perform a least squares parameter fitting of the model in (6.20) to
the population data (i.e. find the a and m values that best fit the data). However, since
the formula for the population is non-linear, we cannot represent the data using a linear
model like that in (6.2). Thus, none of the least squares theory already developed can
be used directly on this data. We instead manipulate (6.20), and take the logarithm of
both sides.

P (t) = a emt (6.21)

log P (t) = log
(

a emt
)

(6.22)

log P (t) = log a + mt (since log emt = mt) (6.23)

(6.24)

64

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

5

10

15

20

25

30

35

P
op

ul
at

io
n

of
 C

an
ad

a
(in

 m
ill

io
ns

)

Year

(a) Population of Canada

1860 1880 1900 1920 1940 1960 1980 2000 2020
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

Lo
g(

P
op

ul
at

io
n

of
 C

an
ad

a
in

 m
ill

io
ns

)

Year

(b) Logarithm of Population of Canada

Figure 18: Population of Canada over 150 years

If we define y to be log P (t), and b to be log a, then we have a linear model,

y = mt + b . (6.25)

Figure 18(b) plots the population data with the vertical (population) axis in a log-scale.
As you can see, the data falls almost perfectly on a line. Our goal now is to find the m
and b values to fit the line in Figure 18(b). This type of fitting is called a log-linear
fitting.

Recall the linear model in (6.2),

y = Aβ + ǫ . (6.26)

We will define β, our vector of model parameters, as [m b]t. The corresponding matrix
A then must have all the t-values (years) of the data points in the first column, and a
column of ones in the second column.











y1851

y1861
...

y2001











=











1851 1
1861 1

...
2001 1











[

m
b

]

+ ǫ (6.27)

Notice that the random noise variable, ǫ, is of no interest in this model, unlike in the
image over-exposure example above. It is simply a column-vector of residual values that
result when we choose particular values for the model parameters. In this case, we are
interested in the model.

Solving the least squares problem is as simple as solving the linear system of equations
(AtA)β = Aty for β. Figure 19 plots the least squares log-linear model fit over the data
points. The following script creates the plot.

65

load Canada_popn_data.txt % read in data

t = Canada_popn_data(:,1); % extract 1st column (year)

P = Canada_popn_data(:,2); % extract 2nd column (pop’n)

N = size(P,1);

y = log(P); % take the log of the population

A = [t ones(N,1)]; % create the system matrix

beta = (A’*A) \ (A’*y) % Solve the Least Squares problem!

m = beta(1); % Read out parameter values

a = exp(beta(2)); % -Recall that log(a) = b = beta(2)

Pmodel = a * exp(m*t); % generate some data to plot the model

% Plot data and model curve

plot(t, P/1000, ’o’, t, Pmodel/1000, ’r-’);

ylabel(’Population of Canada (in millions)’);

xlabel(’Year’);

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

5

10

15

20

25

30

35

P
op

ul
at

io
n

of
 C

an
ad

a
(in

 m
ill

io
ns

)

Year

Figure 19: Least squares log-linear model of Canada’s population

Exercise

1. Describe a simple but efficient way to compute AtA, and indicate how many multi-
plications it requires?

66

7 Fourier Transforms

In this chapter we will introduce a tool, the Discrete Fourier Transform, which transforms
a finite set of data in one or more dimensions into a second finite set of data. The
transformation is reversible and gives an alternate view of information which may be
more useful for certain applications. In this case the primary motivation comes from
compression of sound and images, and processing of signals (which are usually sound or
images).

7.1 Introduction to Fourier Analysis

Suppose one has a table of values which change with equally spaced time intervals, say
f0, . . . , fN−1, and one wishes to analyze the data for trends. As an example, one could
have data from the last 20 years for the monthly spot price of orange juice (so 240 equally
spaced pieces of information). In this example, one could expect some price fluctuations
that are of a cyclic nature, for example based on seasonal supply and demand, a low
price in the fall and a higher price in the spring. This would imply that the prices vary
according to

80 90 100 110 120 130 140 150 160

0

0.5

1

1.5

2

2.5

3

3.5

4

1 year

which represents the graph of the function f(t) = a + b sin(2π
12

t) for some constants a, b.
However, the actual data would most likely be of the form

0 50 100 150 200 250
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

67

due to such factors as imports from the southern hemisphere, weather fluctuations caused
by sunspots or El Nino phenomena, and so on. These factors might also occur on a
regular predictable pattern but with alternate cycle periods. As such then we need to
see how much the data cycles once every 240 months, or twice every 240 months and so
on. If f(t) is the function of orange prices then we are interested in representing this
function in the form

f(t) = a0 + a1 cos(q · t) + b1 sin(q · t) + a2 cos(2q · t) + b2 sin(2q · t) + · · · (7.1)

where q = 2π
T

with T = 240, the time interval of the data. If something such as sunspot
activity was the only additional factor beyond seasonal fluctuations that entered into
our equation, and if these occurred at say regular 10 year intervals, then our function
might be of the form

f(t) = a0 + b2 sin(2q · t) + b20 sin(20q · t)

which looks like

0 50 100 150 200

1

1.5

2

2.5

3

Fourier analysis for discrete or continuous data involves the conversion of time or spatial
information into frequency information via function representations of the form (7.1).

Some issues that will be discussed in the following sections include:

a) How to determine coefficients ak and bk for data represented in functional form
f(t).

b) What to do (and how to do it) in the case where the input consists of discrete
rather than continuous data f0, . . . , fN−1.

c) How to do the discrete computation fast.

d) Applications of Fourier analysis.

68

7.2 Fourier Series

Let us first consider the case of continuous data, where we are given a function f(t) and
a period T . We assume that our function is periodic with period T , that is, has the
property that

f(t± T) = f(t) (7.2)

Note that g(t) = cos(2πkt
T

) and h(t) = sin(2πkt
T

) have such a property for every integer k.
For example,

h(t + T) = sin(
2πk(t + T)

T
) = sin(

2πkt)

T
+ 2π) = h(t).

We are interested in representing f(t) in terms of a sum of trig functions

f(t) = a0 +
∞
∑

k=1

ak cos(
2πkt

T
) +

∞
∑

k=1

bk sin(
2πkt

T
) (7.3)

Each ak, bk represents the amount of information in a harmonic of period T
k

or frequency
k
T
.

For simplicity let us assume that we have a function defined on t ∈ [0, 2π], with
period T = 2π, so that we are looking for a representation

f(t) = a0 +
∞
∑

k=1

ak cos(kt) +
∞
∑

k=1

bk sin(kt). (7.4)

Then we can find formulas for the ak and bk in terms of the input function. Indeed, the
functions (1, cos kt, sin kt) have the property that

∫ 2π

0

cos kt sin kt dt = 0

∫ 2π

0

cos kt cos k′t dt = 0 ; k 6= k′

∫ 2π

0

sin kt sin k′t dt = 0 ; k 6= k′

∫ 2π

0

sin kt dt = 0

∫ 2π

0

cos kt dt = 0. (7.5)

(this is the same as saying that the functions (1, cos kt, sin kt) are orthogonal on [0, 2π]).

69

From equations (7.4-7.5) we can determine the coefficients ak, bk.

a0 =

∫ 2π

0

f(t) dt

2π

ak =

∫ 2π

0

f(t) cos kt dt

∫ 2π

0

cos2 kt dt

bk =

∫ 2π

0

f(t) sin kt dt

∫ 2π

0

sin2 kt dt

(7.6)

For example, a formula for aℓ is determined by multiplying both sides of equation (7.4)
by cos(ℓt), integrating both sides from 0 to 2π and then taking the integral inside the
summations to be done on a term by term basis. This gives

∫ 2π

0

f(t) cos(ℓt)dt =

∫ 2π

0

a0 cos(ℓt)dt+

∞
∑

k=1

∫ 2π

0

ak cos(kt) cos(ℓt)dt+

∞
∑

k=1

∫ 2π

0

bk sin(kt) cos(ℓt)dt.

so
∫ 2π

0

f(t) cos(ℓt)dt = aℓ

∫ 2π

0

cos(ℓt) cos(ℓt)dt = aℓ · π

and hence our formula for aℓ.
We can write the Fourier series (7.4) more compactly if we use Euler’s formula:

ei·θ = cos(θ) + i sin(θ) (7.7)

where i =
√
−1, something which will become particularly convenient when we consider

the discrete case. Using

e−i·θ = cos(θ)− i sin(θ)

we get that

cos(θ) =
ei·θ + e−i·θ

2
and sin(θ) =

ei·θ − e−i·θ

2i
.

Consequently, we can write

f(t) =

∞
∑

k=−∞

cke
ikt (7.8)

where ck are in general now complex numbers. The correspondence with the ck and the
ak, bk of representation (7.3) is given by

c0 = a0, ck =
ak

2
− i · bk

2
and c−k =

ak

2
+ i · bk

2
for k > 0.

70

Note that

|c0| = |a0|, |ck| = |c−k| =
1

2

√

a2
k + b2

k for k > 0.

We can obtain a formula for cℓ by noting that

∫ 2π

0

eikte−iℓt dt = 0 ; k 6= ℓ

= 2π ; k = ℓ. (7.9)

If we multiply both sides of (7.8) by e−iℓt and integrate term by term we obtain the
formula

cℓ =
1

2π

∫ 2π

0

e−iℓtf(t) dt. (7.10)

For typical functions f(t), there is a small amount of information in the high fre-
quency harmonics. Therefore, we can approximate any input signal f(t) by

f(t) ≃
M
∑

k=−M

cke
i kt (7.11)

for M not too large. In an electrical signal, the magnitude of the cj represents the
amount of power in the frequency k/T . High frequencies often represent noise in a
signal. By suppressing high frequency components of a signal or image (filtering), we
can often produce a clean image. On the other hand, high frequency components in
a digital image can represent edges, so that by boosting high frequency components,
edges are enhanced. Image compression algorithms (i.e. JPEG) utilize that fact that
little information is carried in high frequency components to reduce that storage required
for a digital image.

7.3 Discrete Fourier Transform (DFT)

We now have covered the background mathematics for defining the discrete Fourier
transform (DFT). In general and formal terms, the DFT is a reversible transformation
of a sequence of N complex numbers. Specifically, it transforms the sequence {fn| n =
0, . . . , N − 1}, which we will refer to as a data sample, into another sequence of N
complex numbers, {Fk| k = 0, . . . , N − 1}, which we refer to as the Fourier coefficients
of the sample. ‘Reversible’ means that if we are given the Fourier coefficients, there is
a simple inverse transformation by which we can reproduce the data sample itself. In
common applications of the DFT, the fn are real values and are observations of some
process (e.g. electrical signals, prices, temperatures, etc.).

Why bother? We will try to answer this in general terms; the assignments make an
extensive study of one particular application. To understand how the DFT can be
useful, it is helpful to distinguish between data (e.g. observations) and information (e.g.
answers to questions).

• In general, one needs to process data somehow to gain desired information.

71

• In principle, any information available from the data sample is also available from
its Fourier coefficients, since each sequence can be determined from the other.

• In practice, some types of information are more accessible from the Fourier coeffi-
cient sequence than from the data sample directly.

Recall from (B.5) that W = e2πi/N is the Nth root of unity. Then we define the
Fourier coefficient, Fk, by

Fk =
1

N

N−1
∑

n=0

fn W
nk

. (7.12)

We will sometimes denote this operation as a function called “DFT”, so that F =
DFT(f). One might reasonably assume that this definition is meant to apply for 0 ≤
k ≤ N − 1; however, in fact, it applies for all integer values of k! Mathematically, it is
true and useful to think of {Fk} as a doubly-infinite sequence. However, only N of the
terms are distinct; the rest are duplicates of them. Let us see why.

Assume that {Fk| k = 0, . . . , N − 1} have been computed by (7.12). Hence, we have
N elements in our data sample. It is a basic property of the set of integers that any
integer k can be uniquely expressed as k = mN + p for some pair of integers m and
p with 0 ≤ p ≤ N − 1. This is the meaning of ‘p ≡ n mod N ’. Each term in the

summation in (7.12) contains a power of W
k
, and

W
k

= e−2kπi/N = e−2mNπi/Ne−2pπi/N = W
p

.

So

Fk =
1

N

N−1
∑

n=0

fn W
nk

=
1

N

N−1
∑

n=0

fnW
np

= Fp . (7.13)

Hence we can regard the definition (7.12) of {Fk} as defining a doubly infinite and
periodic sequence (−∞ < k <∞) that is determined by the subsequence4 with 0 ≤ k ≤
N − 1.

We now observe another property of W , and observe that it implies a special kind
of symmetry among the Fourier coefficients when the data sample values, {fn}, are all
real valued. For 1 ≤ k ≤ N − 1, note that N − k also lies between 1 and N − 1. Thus,

W N−k = e2πi(N−k)/N

= e2πie−2πik/N

= W
k

.

Consequently, if the data values {fn} are real, then

Fk =
1

N

N−1
∑

n=0

fn W
kn

=
1

N

N−1
∑

n=0

fn W (N−k)n = FN−k . (7.14)

Hence, there is a conjugate symmetry property in the Fourier coefficients of a real-valued
data sample. In other words, when the values in the data sample {fn} are real, we get

4Mathematically, any subsequence of length N works.

72

Fk = FN−k for 1 ≤ k ≤ N − 1. For example, if N = 9, then we know that F1 = F8,
F2 = F7, etc.

Here are two examples for N = 9.

Example 1: a smooth hump

n 0 1 2 3 4 5 6 7 8
fn 0 .3 .7 .95 1. .95 .7 .3 0
Fn 4.9 -2.25+.82i -.22+.18i .03-.04i -.002+.013i -.002+.013i .03+.04i -.22-.18i -2.25-.82i

Observe that Fk = F9−k for k = 1, 2, 3, 4; this is the conjugate symmetry expressed
in (7.14), and has nothing to do with the fact that in this case f itself happens to be
symmetrical. Note that the relation also holds for k = 0. This comes from the fact that
the Fourier coefficients are periodic so that F0 = F9 = F9 (since it is real-valued and
equals its own conjugate). This coefficient has a special name, the direct current (DC)
value. We can present this example graphically.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
smooth hump data

data sample for smooth hump example

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
 modulus of all fourier coeff

1 2 3 4
0

0.5

1

1.5

2

2.5
 modulus of independent fourier coeff: excluding DC

Fourier coefficients for smooth hump
data sample

The graphs on the the right, show the modulus (magnitude) of the Fourier coefficients,
|Fk|. The upper graph shows all 9 coefficients. This is redundant because of the conjugate
symmetry. The lower graph shows only the coefficients for k = 1, 2, 3, 4. We do not show
|F0| because it contains a particularly simple piece of information about the data sample,
i.e. F0 is the sum of the data sample values.

Example 2: a rough hump

n 0 1 2 3 4 5 6 7 8
fn 0 .1 .9 .75 1. .95 .45 .55 0
Fn 4.7 -2.10+.69i -.45+.07i -.55-.17i .755+.020i .755-.020i -.55+.17i -.45-.07i -2.10-.69i

73

Graphically, we can present this example as

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
rought data

data sample for rough hump example

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
 modulus of all fourier coeff

1 2 3 4
0

0.5

1

1.5

2

2.5
 modulus of independent fourier coeff: excluding DC

Fourier coefficients for rough hump data
sample

Even though these data samples do not have many points, they illustrate how the Fourier
coefficients can quantify some aspects of the pattern present in the data sample. They
can provide some numerical information about what we can easily see qualitatively from
the graphs of data samples, but not so easily see by reading their tables. The extent
to which the data has one pattern (e.g. one hump) in both cases is reflected in the size
of F1, compared to |Fk| for k = 2, 3, 4. In Example 2 (shown in the figure), the data
sample also has a smaller pattern that occurs about four times (i.e. about 4 smaller
fluctuations); this is reflected in the fact that F4 is the largest coefficient other than F0

and F1.

The extent to which the data varies smoothly with n is related to how quickly the
Fourier coefficients decrease in size as n increases. In the smooth hump case, we see that
|Fk+1|/|Fk| is a small fraction for k = 2, 3 and 4. In the case of the rough hump, these
ratios are bigger than 1, and the curve is less smooth.

7.3.1 Inverse Discrete Fourier Transform (IDFT)

We mentioned above that there is a simple transformation of the Fourier coefficients that
recovers the data sample values. If the Fk are defined by (7.12) , then this transformation
is

fn =
N−1
∑

k=0

FkW
nk . (7.15)

This can be established by looking at a matrix representation of (7.12), and using
the orthogonality of (B.9). Let f be the column vector of the data sample, and let F be
the column vector of Fourier coefficients. Then (7.12) can be written

F =
1

N
Mf (7.16)

74

where M is the N×N matrix in which the jth column is W (j). In matrix form, equation
(B.9) states that

M
t
M = NI (7.17)

where I is the N ×N identity matrix. In other words,

M−1 =
1

N
M

t
.

So, from (7.16), we can conclude that

f = M
t
F .

If we write this out componentwise, we find that it is (7.15).

7.3.2 Lack of Standardization

Unfortunately, there is no standard definition of the exact formula used to define the
Fourier transform and its inverse. The differences do not affect the basic role of the
transform (as an alternative representation of a sequence of numbers). But they do
result in different numerical values for the coefficients of the transform.

One of the differences comes from choosing one of two basic nth roots of unity,
(e±i 2π/N), that can be used to define a transform. We will use U for either. The other
source of differences is associated with the choice of a scale factor for the transformation.
We will use variable c for it. The value of c will determine the scale factor needed in the
inverse transform, which must be Nc.

Using these parametric symbols, the common definitions of the transform and inverse
transform can be written

Fk = c
N−1
∑

n=0

fn(U
k
)n (7.18)

fn =
1

Nc

N−1
∑

k=0

Fk(U
n)k.

In these notes, we use U = e2πi/N and c = 1/N . Matlab uses U = e−2πi/N and c = 1.
Moreover, Matlab’s array indexing starts with 1 instead of 0. This can cause some minor
confusion between the mathematics and the Matlab computation. For example, to store
a data sample {fn| n = 0 . . .N − 1} in a Matlab array x, it stores fn−1 in x(n).

7.4 Dependencies Among the Fourier Coefficients

Let {fn} be a sequence of N real numbers and {Fk} be its Fourier transform. Then
{Fk} is a sequence of N complex numbers, and each complex number is a pair of real
numbers. Hence, the set of complex numbers contains twice as many real numbers, 2N .
Since {Fk} is completely determined by {fn}, there must be N dependencies among the
real and imaginary parts of the {Fk}. That is, there must be special characteristics in
the complex numbers of the Fourier transform of a set of real numbers.

75

The good news is that a description of these dependencies is independent of the
particular details of the definition of {Fk} discussed above. The bad news is that it is
a bit complicated by slight differences when N is even or odd. Let m be determined
by N = 2m or N = 2m + 1 (m = floor(N/2) ; see Matlab floor function.) The
complications start with the range of indices for {Fk}.

Nodd → −m ≤ k ≤ m Neven → −(m− 1) ≤ k ≤ m (7.19)

There is one dependency that always holds when {fn} is real, regardless of the parity of
N:

imag(F0) = 0 . (7.20)

i.e. F0 is real. In fact, F0 is the sum of the {fn}; it is sometimes referred to as the DC
component, DC value, or DC coefficient. Its role in representing signals is distinguished
from the other coefficients.

If N is odd, then
F−k = Fk for k = 1, . . . , m . (7.21)

For each k, this represents two real-number dependencies since both real(F−k) and
imag(F−k) are determined by (7.21). Notice that (7.20) and (7.21) provide the expected
N dependencies for when N is odd.

If N is even, then F−k = Fk for k = 1, . . . , m − 1 and imag(Fm) = 0. These
dependencies plus (7.20) make up the N dependencies for this case.

7.5 1-D Image Compression

5 10 15 20 25 30
−0.5

0

0.5

1

1.5
repetitive pattern − 1D image

1-D image x

0 2 4 6 8 10 12 14 16
0

5

10

15

20

 mod of fourier coeff: including DC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

 mod of fourier coeff: excluding DC

size of Fourier Coefficients

Figure 20: 1-D analogy of scaled image data and its Fourier transform

On the left of Figure 20, we show a plot of the intensities of a 32-number 1D image.
Actually, it is a small pattern that is repeated 4 times. The pattern can be specified with
7 numbers so there are really only 7 ‘pieces’ of real-number information in the image.
On the upper right of Figure 20, we show plots of the modulus of the Fourier coefficients

76

|Fk|, k = 0, . . . , 15. We can see that only four are non-zero, and one of them is F0 which
is real. So F has the information of 7 real numbers. Because the pattern has Fourier
frequency 4, F1 = F2 = F3 = 0. On the lower right of Figure 20, we show a plot of the
non-DC part of the Fourier transform; this contains the actual pattern information and
can be plotted on a more readable scale without the DC component (|F0|).

If we create a new pattern, y, which is somewhat like x by setting

y(1 : 16) = x(1 : 16)

y(17 : 24) = 1.0 (7.22)

y(25 : 32) = x(25 : 32) ,

then y has some of the pattern of x, but is in fact non-repetitive. The figure below shows
y, as well as the size of its Fourier coefficients. Notice that F1, F2 and F3 are not zero for
this case. However, Fourier coefficient 4 is still the second largest (after F0), indicating
a strong resemblance to a pattern that repeats four times in the total sequence.

5 10 15 20 25 30
−0.5

0

0.5

1

1.5
non−repetitive pattern − 1D image

1-D image x

0 2 4 6 8 10 12 14 16
0

5

10

15

20

 mod of fourier coeff: including DC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

 mod of fourier coeff: excluding DC

size of Fourier Coefficients

Image y has a number of small Fourier coefficients. How important is the information
stored in them? If we drop the four coefficients that have a modulus smaller than 1,
and reconstruct a new image vector from the inverse transform of this new set of Fourier
coefficients, we get the compressed image shown in Figure 21.

7.6 2-D Image Compression

The data for a Matlab image is an array, X, of pixel data. The image specified by X
is displayed as a rectangle of very small squares called pixels. The pixel at position
(i, j) is coloured according to the value X(i, j). The pixel data may be of several types.
The type that we will discuss is double precision floating point numbers in the range
0 ≤ x ≤ 1. We will call this type of image data scaled image data. The image can be
displayed in a Matlab figure window by the command imagesc(X), in conjunction with
a colormap for that figure, set either by default or explicitly by the colormap command.
When a gray scale is used to display the array (i.e. using the command colormap(gray)),

77

5 10 15 20 25 30
−0.5

0

0.5

1

1.5
Original and compressed 1−D image data

original
compressed

Figure 21: Comparison of original (non-repetitive) image and compressed image

the square at position (i, j) is set to a shade of gray determined by X(i, j), with 0 being
black and 1 being white.

Figure 22(a) shows a 256× 256 pixel gray scale image of a photo of Montreal. Part
(b) of the figure shows a compressed version of the same image, using only 15% of the
Fourier coefficients. This compression is achieved by the following method:

1. Take the 2D Fourier transform of the image array (the 2D DFT is discussed later
in §7.8).

2. Compress the transformed array by replacing small Fourier coefficients by 0.

3. Reconstruct the compressed image array using the inverse 2D Fourier transform
of the compressed data.

The number of nonzero Fourier coefficients dropped from about 65K to about 10K.

One goal of image compression is to facilitate the efficient transmission of images.
One way to achieve this is to transmit only the non-zero Fourier coefficients of the image,
i.e. transmit a compressed transform of the image. However, for many images even the
compressed transform is a large file. So image transmission protocols use transforms of
sub-blocks of an image. In other words, they break the image into pieces, and apply the
compression to each small piece. We will use 16× 16 pixel sub-blocks in this discussion.

The 2D Fourier transform of a 16× 16 array X of scaled image data is described in
§7.8 as a complex array {Fk,l} indexed by 0 ≤ k, l ≤ 15. Matlab uses a 16× 16 complex
array, Z, to represent {Fk,l}, with F0,0 stored in Z(1,1), and Fk,l stored in Z(k+1,l+1)

for 0 ≤ k, l ≤ 15. The DC component of the 2D Fourier transform is F0,0.

78

(a) Original (b) Compressed by 85%

Figure 22: Images of Montreal

(a) Original (b) Compressed by 85%

Figure 23: A 32× 32 sub-block of the images in Figure 22

Figure 24 shows the magnitudes of the Fourier coefficients for a 16× 16 sub-block of
Figure 22 with the DC component set to zero (so the pattern dependent coefficients can
be seen more easily). The compressed transform is shown on the right.

7.7 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm (or group of algorithms) that is
designed to evaluate the DFT very efficiently. Suppose we would like to compute all N
Fourier coefficients,

Fk =
1

N

N−1
∑

n=0

fn W
nk

for k = 0, . . . , N − 1 (7.23)

where W = e2πi/N is an Nth root of unity. Note that evaluating the summation directly
will cost O(N) complex floating point operations for each value of k. Thus, evaluating
Fk for all N values of k costs a total of O(N2) complex floating point operations.

79

0

5

10

15

0
2

4
6

8
10

12
14

16

0

2

4

6

8

(a) Original

0

5

10

15

0
2

4
6

8
10

12
14

16

0

2

4

6

8

(b) Compressed by 85%

Figure 24: Magnitudes of the Fourier coefficients for a 16 × 16 sub-block of the image
in Figure 22. Subfigure (a) shows the original Fourier coefficients, and (b) shows the
coefficients after compression.

In this section we show how to compute these N quantities

F0, . . . , FN−1

in O(N log2 N) operations using a divide and conquer approach. We assume that N = 2m

for some m. If this is not the case, then the input signal is padded with zeros (note that
this does not effect the sums).

We can split the sums into two parts,

Fk =
1

N

N
2
−1
∑

n=0

fnW
nk

+
1

N

N−1
∑

n= N
2

fnW
nk

. (7.24)

Letting p = n− N
2
, these summations can be written

Fk =
1

N

N
2
−1
∑

n=0

fnW
nk

+
1

N

N
2
−1
∑

p=0

fp+ N
2

W
(p+ N

2)k

=
1

N

N
2
−1
∑

n=0

fnW
nk

+
1

N

N
2
−1
∑

n=0

fn+ N
2

W
nk

W
N
2

k

=
1

N

N
2
−1
∑

n=0

(

fn + W
N
2

k
fn+ N

2

)

W
nk

. (7.25)

We know that W
N
2

k
= e−ikπ = (−1)k. Thus, for even values of k, equation (7.25)

becomes

F2k =
1

N

N
2
−1
∑

n=0

(

fn + fn+ N
2

)

W
2nk

k = 0, . . . ,
N

2
− 1 , (7.26)

80

while for odd values of k, equation (7.25) becomes

F2k+1 =
1

N

N
2
−1
∑

n=0

(

fn − fn+ N
2

)

W
n(2k+1)

=
1

N

N
2
−1
∑

n=0

[(

fn − fn+ N
2

)

W
n
]

W
2nk

k = 0, . . . ,
N

2
− 1 . (7.27)

If we set

gn =
1

2

(

fn + fn+ N
2

)

hn =
1

2

(

fn − fn+ N
2

)

W
n

, (7.28)

then equations (7.26-7.27) become

F2k =
1
N
2

N
2
−1
∑

n=0

gnW
2nk

(7.29)

F2k+1 =
1
N
2

N
2
−1
∑

n=0

hnW
2nk

, (7.30)

for k = 0, . . . , N
2
− 1. Both of those summations look like new Fourier transforms them-

selves, but of gn and hn instead of fn. However, the summations have half the number

of terms, and use W
2

instead of W . This makes sense because a Fourier transform with
only N

2
elements uses the N

2
th root of unity, and

W
2

= e−
2πi
N

2 = e
− 2πi

N
2 .

Thus, equations (7.29-7.30) can be regarded as two new Fourier transforms of half the
length:

Feven = DFT(g);
N

2
points

Fodd = DFT(h);
N

2
points

Therefore, we have converted the problem of computing a single DFT of N points into
the computation of two DFTs of N

2
points. We can then reduce each of the N

2
length

DFTs into two N
4

length DFTs, and so on. There will be log2 N of these stages. Each
stage requires O(N) complex floating point operations, so the complexity of the FFT is
O(N log2 N).

81

7.8 A Two Dimensional FFT

In image processing applications, a grey scale image is represented by a 2D array of grey
scale values fn,m, n = 0, . . . , (N − 1) and m = 0, . . . , (M − 1). In this case, the two

dimensional DFT uses two roots of unity, WN = e
2πi
N and WM = e

2πi
M , and is defined as

Fk,l =
1

MN

N−1
∑

n=0

M−1
∑

m=0

fn,mW
nk

N W
ml

M . (7.31)

Given a function which computes a 1D DFT, how can we use this to compute the 2D
DFT above?

We can rewrite equation (7.31) as

Fk,l =
1

N

N−1
∑

n=0

W
nk

N

[

1

M

M−1
∑

m=0

fn,mW
ml

M

]

=
1

N

N−1
∑

n=0

W
nk

N Hn,l , (7.32)

where Hn,l = 1
M

∑M−1
m=0 fn,mW

ml

M . Thus Hn,l can be computed efficiently by taking 1D
FFTs of length M of the rows of the input data array. The final computation of Fk,l is
carried out by computing 1D FFTs of length N on the columns of Hn,l. If the complexity
of a 1D DFT of length N is CN log2 N , where C is a constant, then the complexity of
a 2D FFT is CNM log2(MN).

Exercises

1. Let {fn}, n = 0, 1, . . . , N − 1, be N samples of a real signal, and N be even.

(a) Show that W−nk + W−(N−n)k = 2 cos
(

2πink
N

)

.

(b) Suppose the signal {fn} is an even function (fn = fN−n for n = 1, 2, . . . , N
2
− 1).

Show that Fk is real.

2. Suppose the signal {fn} is a square signal, defined as

fn =







0 if n = 0, 1, . . . , N
4
− 1 or n = 3N

4
, 3N

4
+ 1, . . . , N − 1,

1 if n = N
4
, N

4
+ 1, . . . , 3N

4
− 1 .

Show that F2k = 0, k = 1, 2, . . . , N
2
− 1.

82

8 Dynamic Simulation: Modeling with ODEs

In this section, we will present some small examples of modeling with differential equa-
tions. These examples are based on familiar ideas, but typical simulations can require
a very sophisticated understanding of the application area (be it chemistry, finance,
electronics, etc.) and usually involves dozens to thousands of equations.

8.1 Single Population Model: How is Canada Growing?

It is common to measure populations in thousands of individuals (Kpersons). Let us
use the symbol Pt for a population at time t in years. For example, if the population of
Canada in the year 2000 was about 30,750,000, then we write P2000 ≈ 30, 750.
See http://www.statcan.ca/start.html for the data on the Canadian population used
in this section.

A human population in a fixed geographic region changes in size by

• natural regeneration by the net effects of births and deaths

• net immigration (immigration minus emigration)

Let G denote the natural regeneration rate; the conventional units for G is “events
per Kpersons per year”, usually written “events/(Kpersons-year)” (that’s a dash, not a
minus sign). Average event rates for Canada in 1999-2000 were:

birth rate = 10.9 (i.e. 109 babies per 10,000 persons per year)

death rate = 7.5.

The net regeneration effect is the birth rate minus the death rate, so G ≈ 3.4. The
number of immigrants arriving in Canada in 1999-2000 was about 204K. Stats Canada
does not provide a recent figure for emigration; but it does provide data averaging
about 50Kpersons/year for 1991-1996. So letting I be the net immigration rate, we can
estimate I ≈ 155 Kpersons/year.

To simplify the move from this data to mathematical models of population evolution,
we make the BIG assumptions that G and I are constant over time. For modeling
purposes, we need the net regeneration rate in units of Kevents per Kpersons per year;
not in the customary census data units of events/(Kpersons-year) quoted above. So
let r = G/1000 be this rate in the units of Kevents/(Kpersons-year); i.e. for Canada
r ≈ .0034. Then our conceptual model of population change from time t to time t + τ
can be written

Pt+τ ≈ Pt + rPtτ + Iτ . (8.1)

These ideas lead us to two closely related mathematical models for predicting population
evolution from a known starting population Pt0 at a given time t0

• a difference equation based model

• a differential equation based model.

83

8.1.1 Difference Equation Model

Let us pick a fixed interval of years, h. We model the population evolution as a sequence
{p(n), n = 0, 1, 2, . . .}, where p(n) is the model’s estimate of Pt0+nh. Given the initial
population of p(0) = Pt0 , we can compute p(n+1) from p(n) using

p(n+1) = (1 + rh)p(n) + Ih (8.2)

Solution of (8.2): If we let α = 1 + rh, then (8.2) can be written

p(n+1) = αp(n) + Ih

= α(αp(n−1) + Ih) + Ih

= α2(αp(n−2) + Ih) + (α + 1)Ih

= · · ·

If we continue this process, each time substituting p(k) with
(

αp(k−1) + Ih
)

, we eventually

get down to p(0), and we can write

p(k) = αkp(0) +
αk − 1

α− 1
Ih

= αk

(

p(0) +
Ih

α− 1

)

− Ih

α− 1

Notice that Ih
α−1

= I
r
, so

p(k) = (1 + rh)k

(

p(0) +
I

r

)

− I

r
(8.3)

Note the roles of some of the parameters:

• if r > 0 then p(k) →∞ as k →∞ and the model predicts an unlimited population
growth.

• if r < 0 and rh ≥ −1 then p(k) → −I
r

as k →∞ and the model predicts a stable,
finite population.

• if r < 0 and rh < −1 then the contribution of (1 + rh)p(n) to p(n+1) is negative, a
model prediction that doesn’t make sense. This is because h is too large for this
negative r value.

8.1.2 Differential Equation Model

If we return to (8.1), we can rewrite it as 1
τ
(Pt+τ − Pt) ∼= rPt + I . If we introduce

a continuous function of t, p(t), as a mathematical model for the population at time t
then, letting τ → 0, we see that p(t) must satisfy the differential equation

dp(t)

dt
= rp(t) + I . (8.4)

84

Equation (8.4) is called an “ordinary differential equation”, or ODE. The word “ordi-
nary” means that the differential equation does not contain any partial derivatives. The
solution of (8.4), assuming that p(t0) = p0, is

p(t) =

(

p0 +
I

r

)

er(t−t0) − I

r
. (8.5)

This type of ODE is called an “initial value problem”, or IVP, because the initial state
is known.

How do models (8.2) and (8.5) compare? Note that (8.2) is a family of models,
parameterized by h, and that (8.5) is derived as the limit of this family as h → 0.
Table 1 shows what they predict for the population in the year 2020. The entry for
h = 0 is computed using (8.5) and the other columns are computed using (8.1). The
number of time steps, N , is determined by 20

h
. Note that the difference equation model

is more accurate when the time step size h is smaller.

h 0 1 2 5
N - 20 10 4

P2020 37.708 37.703 37.698 37.683

Table 1: Canadian population estimates for the year 2020 (in millions).

8.2 Novelty Golf Driving Range

A golf driving range has installed a one-meter wide moving barrier 30 meters out in
front of the driving tee mat from where the ball is hit. The barrier height fluctuates
with time according to

b(t) = bHeight + 1.2 cos(2πωt),

where ω is the frequency and t is the time in seconds.

We want to simulate the path of the golf ball. Here we assume that golf balls are hit
towards the barrier, and hence we use a two-dimensional (x, y)-coordinate system. The
ball starts at the driving tee at (x, y) = (0, 0). At time t = 0, the ball is struck by the
golf club and is given an initial velocity (Vx, Vy) (both Vx and Vy are greater than 0).
The ball follows a simple trajectory (x(t), y(t)) determined by the differential equations







dx(t)
dt

= Vx

d2y(t)
dt2

= −g ,

(8.6)

where g = 9.81m
s2

is the gravitational constant. If the trajectory hits the barrier, the
trajectory stops at x(t) = 30 meters. Otherwise, it stops when the ball hits the ground
at y(t) = 0. Figure 25 illustrates a ball trajectory clearing the barrier.

85

0 10 20 30 40 50 60 70 80
0

5

10

X

 initial velocity (30,12)

Figure 25: Trajectory of a golf ball. Notice the barrier at 30 m.

8.3 Pursuit Problems

Pursuit problems arise in numerous contexts, the most obvious involving missile guidance
systems. Simply put, the problem involves a target and a pursuer, the latter moving
in such a manner that its direction of motion is always towards the target. Figure 26
depicts the situation.

F
E

pursuer

A

C
D

B

target

x

y

tangent at B

Figure 26: Pursuit problem

The trajectory of the target T is CD, and the “path of pursuit” is AB. The problem
is to determine the trajectory of the pursuer, given the initial position of the pursuer
and the position vector of the target as a function of time for t ≥ 0.

8.3.1 Derivation of the Equations

In the pursuit problem, the trajectory of the target is a known curve in space. It is
represented by a parametric curve in three dimensions with parameter t being the time.

86

We denote it by
T (t) =

(

xT (t), yT (t), zT (t)
)

,

where xT (t), yT (t), and zT (t) are given functions which describe the path of the target.
For any parametric curve, C(t) = (x(t), y(t), z(t)), the tangent line at a given t̄ has

the direction vector

v(t̄) ≡ dC

dt
(t̄) =

(

dx

dt
(t̄),

dy

dt
(t̄),

dz

dt
(t̄)

)

.

In the following, we shall use the simplified notation ẋ(t) to denote dx
dt

(t), etc.

y

z

x

(x (t), y (t), z (t))
P P P

pursuer

target

B

A

C
D

E Ftangent at B

(x (t), y (t), z (t))
T T T

Figure 27: Three-dimensional pursuit problem.

The speed of the pursuer is assumed to be known; we will designate it as sP and
regard it as a constant, although it could be a known function of time. Our task now
is to turn what we know about the pursuer’s trajectory into a system of differential
equations that will permit us to compute the trajectory. Let P (t) = (xP (t), yP (t), zP (t))
be the (unknown) parametric curve of the trajectory of the pursuer. At any time t,
the pursuer must point directly to the target. In other words, the tangent line at P (t)
should be parallel to T (t)− P (t) at every time t.





ẋP (t)
ẏP (t)
żP (t)



 = λ(t)





xT (t)− xP (t)
yT (t)− yP (t)
zT (t)− zP (t)



 , (8.7)

where λ(t) is to be determined.
In the pursuit problem, the parameter t represents time. Therefore, the tangent

direction at P (t) represents the velocity of the pursuer. Here, we assume that the
pursuer chases the target with its full capacity at all times and hence we assume the
speed (which is the length of the velocity vector) is constant, denoted by sP . By (8.7),
we conclude that

sP = λ(t)d(t) ,

87

where

d(t) =

√

(

xT (t)− xP (t)
)2

+
(

yT (t)− yP (t)
)2

+
(

zT (t)− zP (t)
)2

. (8.8)

Thus, λ(t) = sP

d(t)
. Finally, the equations describing the pursuer’s motion are





ẋP (t)
ẏP (t)
żP (t)



 =
sP

d(t)





xT (t)− xP (t)
yT (t)− yP (t)
zT (t)− zP (t)



 .

If sP is sufficiently large, then the pursuer will intercept the target in finite time.
However, in general, the trajectory of the target and the starting positions will determine
whether interception occurs.

8.4 Standard First Order Form for Initial Value Problems

We are going to use computers to approximate the solution of IVPs. In order to do this,
we need a standard way to communicate to the computer what the IVP is – what the
system of ODEs and the initial condition is.

A general system of m ODEs consists of:

- an m-vector valued function, f(t, z) of 1 + m variables, sometimes referred to as
the system dynamics function. The input variable t is the independent variable,
while the input vector z represents the current state of the system. We will use the
word “state” (or “state variables”) to refer to the (vector of) values that we are
modeling. For example, the state tells us the population at a given time (for the
population model), or the position of the pursuer at a given time (for the pursuer
model). Writing out f(t, z) with all its subscripts looks like this:











f1(t, z1, z2, . . . , zm)
f2(t, z1, z2, . . . , zm)

...
fm(t, z1, z2, . . . , zm)











.

- an m×m matrix, M . In general, M may be a function of t, or even (t, z) like f .
In the simple examples presented in these notes, M is the identity matrix so we
don’t need to worry about it.

A solution of the general first order system determined by f(t, z) then is an m-vector
valued function of time, y(t), that satisfies

M
dy(t)

dt
= f(t, y(t)) (8.9)

over some interval of time, t0 ≤ t ≤ tfinal. An initial value problem (IVP) for a system
of the form (8.9) specifies a starting time, t0, and starting state, us. The solution of the
initial value problem, or trajectory, is an m-vector valued function, u(t), that satisfies

88

(8.9) and the initial condition u(t0) = us . In the context of dynamic simulation, it
would be common to say that the system being modeled evolves through the states u(t)
with time.

Notice that the dynamics function f takes as input z, the m-vector of state variables.
If we assume that M is the identity matrix (and we will), then the function f outputs
an m-vector corresponding to the derivatives of these state variables, all listed in the
same order as the input z. So, the dynamics function f is simply a way to calculate the
right-hand-sides for the system of ODEs. It tells how things are changing at any given
time and state.

In the preceding subsection, we saw that the novelty golf driving range model used
two event functions to determine the end time and status of the simulated drive. In
general, an IVP with m equations in form (8.9) can also have k events that might
occur during the evolution of u(t). These events are specified using a k-vector valued
function, E(t, z). A common specification that the jth event has happened in time
interval ta < t < tb is that Ej(t, u(t)) changes sign, i.e. Ej(ta, u(ta)) and Ej(tb, u(tb))
have opposite signs.

Software for dynamic simulations, including Matlab, require the mathematical model’s
equations to be identified as data for the standard first order form described above. In
this subsection, we identify the mathematical model of each of the dynamic simulations
as an IVP for a system of equations in standard form (8.9). The mass matrix for each
of these cases is the identity matrix; so we will not comment specifically on it.

8.4.1 The single population model

The identification of the single population model for form (8.9) is simple:

• m = 1

• p ∼ y

• f(t, y) = r y + I

• t0 = 2000 ; u(s) = 30750.

8.4.2 The golf driving range

The identification of the novelty golf range model is complicated by the fact that the
basic modeling differential equations in (8.6) include a second derivative of the variables,
x(t) and y(t). There is a standard technique of introducing new variables to reduce a
system of ODEs to first order form. This means

• m = 3

• a more complex connection between the variables of the model x and y and the
variables of the form (8.9) y1, y2, y3. The identification is

y1 ∼ x ; y2 ∼ y ; y3 ∼ dy/dt

89

To ensure that y2 and y3 remain consistent with y2 ∼ y and y3 ∼ dy/dt we add the
equation dy2(t)/dt = y3(t) to (8.6). The rest of the identification is

f1(t, y) = Vx ; f2(t, y) = y3 ; f3(t, y) = −g (8.10)

and the initial conditions are

t0 = 0 ; u(s) = (0, 0, Vy)
t .

The two event functions associated with terminating the golf ball trajectories of this
model can be written using standard form variables as a 2-vector valued event function,
E(t, y)

E1(t, y) = y2

E2(t, y) =

{

1 if |y1 − 30| > 1
2

or y2 > b(t)
−1 otherwise

8.4.3 The pursuit problem

The identification of the pursuit problem as an IVP for the standard form of a first order
system of equations is

• m = 3 (for 3-D trajectories)

• y1 ∼ xP ; y2 ∼ yP ; y3 ∼ zP

• t0 = 0 ; u(s) = P (0)

and

f1(t, y) = sP (xT (t)− y1)/dist(t, y)

f2(t, y) = sP (xT (t)− y2)/dist(t, y)

f3(t, y) = sP (xT (t)− y3)/dist(t, y)

The pursuit model also needs an event function to determine if and when the pursuer
captures the target.

8.5 The Matlab ODE Suite

Dynamic simulations based on IVPs in standard form (8.9) are invariably computed
using standard mathematical software. Much of this software is in the public domain
and some of the best of it has been incorporated into Matlab. Let u(t) be the solution
of a standard IVP. A program for numerically solving the standard IVP for u (typically)
computes two arrays for output:

• a column-vector of Nfinal time values, T = [T1, T2, . . . TNfinal
]t, and

90

• an array, Y , containing values for the state variables at the corresponding times.
This array has Nfinal rows, each row holding the m-vector of state variables. Thus,
the kth row is the solution at time Tk. The computed Y values are approximations
to the solution u in that

Yk,j ≈ uj(Tk) . (8.11)

Matlab has a suite of 7 programs for computing numerical solutions of IVPs. The
suite has a user interface that is common to all programs. This interface is quite flexible
to accommodate a range of uses from simple to sophisticated. Version 6 of Matlab made
major changes to this interface (compared to version 5), simplifying it significantly as
well as extending it a small amount.

These notes provide a brief overview of the new interface using some examples. We
do not intend to provide full technical details. The Matlab help is a reference for the
many details of the complete interface5.

8.5.1 The basic form of the ODE suite interface

The basic form of the ODE suite interface assumes that a numerical solution is to be
computed for an IVP of the form shown in equation (8.9) with no mass matrix (more
precisely, with the mass matrix M = I). The input for the basic form for the interface
is:

a) the data describing the standard initial value problem based on (8.9) with M = I.
This data is the dynamics function f(t, z) and the initial state data t0, us.

b) an explicit final time for the numerical solution, tfinal.

How do we make the dynamics function known to the ODE method? From a pro-
gramming language point of view, a natural approach is to make one of the method
parameters a handle (pointer) to a user-defined function. Then the solver could use
this handle to evaluate the function for whatever t and z it likes. This mechanism has
been introduced into Matlab in version 6 under the name of function handles. Try help

function handle. Here, we only discuss user-defined functions (stored in .m files), such
as

function res = myFun(t,y)

res = t*t+ y*y

Matlab assumes that the name of the file containing the function is the function name
followed by the .m extension (myFun.m in the above example)6. The handle of a function
is denoted by adding the @ symbol to the start of the function name, e.g. @myFun.

5In the ‘full product family help’ documentation distributed with Version 6.5, the description is
found in the Contents tree by opening the chain of references MATLAB, Mathematics, Differential
Equations, Initial Value Problems for ODEs.

6In fact, the function name is defined by the file name (minus the .m extension) regardless of the
function name in the body of the file.

91

The Matlab command syntax7 for computing a numerical solution based on this
example dynamics function is then

[T,Y] = odeX (@sdf,tspan,u0) (8.12)

where X is a short string that specifies which particular solver program to use. For
example, X = 23 refers to the Matlab command ode23 (discussed in §9.5). The first
few lines of the help for ode23 (type help ode23) explain the second and third input
arguments.

ODE23 Solve non-stiff differential equations, low order method.

[T,Y] = ODE23(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates the

system of differential equations y’ = f(t,y) from time T0 to TFINAL with

initial conditions Y0. Function ODEFUN(T,Y) must return a column vector

corresponding to f(t,y)...

During the computation of the numerical solution, odeX samples the system’s dy-
namics function many times. The simple relationship between the calling program,
odeX, and the dynamics function is shown in Figure 28.

assign data to variables

tstart , tfinal , ystart

plot something

tstart , tfinal , ystart

T,Y

t, y

f(t,y)
pass variables

call Matlab method and

[]

carry out time stepping evaluate f(t,z)

your Matlab session Matlab method

simplest use of Matlab ode solver

system dynamics function

system dynamics function

and

Figure 28: Basic use of Matlab time stepping command

7for versions 6 or 7

92

8.5.2 Extending the basic form of the Matlab ODE suite interface

The Matlab ODE suite has 17 features, called ‘properties’ in the Matlab documentation,
that affect the operation of the ODE solvers. Each property has a default value, but the
user may want to change some of them in order to

a) compute a numerical solution to an IVP for which M 6= I,

b) stop the computation when a certain condition (event) is met, or

c) control the accuracy, or efficiency, of the computation.

How does the ODE suite interface support changing these properties?

The value of each property can be set by a Matlab function called odeset (see help

odeset). This function creates a Matlab internal data structure called an option

structure, recording the desired options. The input arguments for the odeset func-
tion are of the form ‘name’, value, specifying a property-name/property-value pair.
A user can change any combination of the 17 properties using a single call to odeset;
the resulting option structure can then be passed to the appropriate odeX command as
the 4th argument. The values of individual options in the structure can be obtained by
using the Matlab odeget command (not commonly necessary).

A common reason for overriding a property of the ODE suite is that the standard
form of the model equations includes a mass matrix, M , that is not the identity matrix.
In this case, the Mass property must be overridden. A second reason is the use of event
functions, described in the next section. Scenarios involving controlling the accuracy
and efficiency will be discussed in §9.5.2.

Explicitly setting the Events property

If an IVP has one, or more, event functions as part of its specification, this is commu-
nicated to the ODE suite by appropriately setting the Events property. The value of
the Events property is a function handle for a user-defined Matlab event function; the
default is a NULL pointer. The simplest syntax for a Matlab event function is

[val, terminal, direction] = eventFunct(t,z)

If the IVP in question has, say, 3 events in its specification, then the Matlab eventFunct

function of this syntax would return val as a three-vector giving the values of the three
events.

Suppose we wish to use ode23 to generate a numerical solution to the novelty golf
IVP discussed in the preceding section. Communicating the event functions can be done
with the following lines of Matlab:

myOpts = odeset(‘Events’, @golfEvents);

[T,Y,TEvent,YEvent,EventNum] = ode23(@GolfDyn,tspan,u0,myOpts);

93

The first command sets the value of the Events property to the function handle and
creates an option structure named myOpts. In the second command, the option structure
is passed to the ode method.

Matlab “help ode23” includes the following description of this command syntax.

[T,Y,TE,YE,IE] = ODE23(ODEFUN,TSPAN,Y0,OPTIONS...) with the ’Events’

property in OPTIONS set to a function EVENTS, solves as above while also

finding where functions of (T,Y), called event functions, are zero. For

each function you specify whether the integration is to terminate at a

zero and whether the direction of the zero crossing matters. These are

the three vectors returned by EVENTS: [VALUE,ISTERMINAL,DIRECTION] =

EVENTS(T,Y). For the I-th event function: VALUE(I) is the value of the

function, ISTERMINAL(I)=1 if the integration is to terminate at a zero of

this event function and 0 otherwise. DIRECTION(I)=0 if all zeros are to

be computed (the default), +1 if only zeros where the event function is

increasing, and -1 if only zeros where the event function is

decreasing. Output TE is a column vector of times at which events

occur. Rows of YE are the corresponding solutions, and indices in vector

IE specify which event occurred.

If the simulation is intended to end at a time determined by an event, then TFINAL

of TSPAN becomes a safety net to ensure the computation eventually terminates.

An example: the novelty golf driving range

We can use this simple model to demonstrate several of the features of the ODE suite
interface. The dynamics function for this model is given in (8.10). There are two model
parameters in its definition: Vx, the horizontal velocity of the ball, and g, the vertical
acceleration due to gravity. The parameter g is a constant, so its value can be hard-coded
into the dynamics function. However, Vx is a key modeling parameter that we want to
specify in our call to odeX (so that we can easily change it). Figure 28 shows that the
user never explicitly calls the dynamics function; the dynamics function is called by the
ODE solver. Somehow the value of Vx must be passed through to the dynamics function.

There are two ways (at least) to do this. The simplest is to declare Vx as a global

variable both in your session and in the dynamics function code. This has the usual
problems of global variables as programs get larger and more complex.

The second (and better) way is to expand the parameter list of the dynamics function,
adding Vx (or some other parameter name) at the end of the default list. So, instead
of the default arguments for the dynamics function (t,y), we have (t,y,Vx). But how
does odeX know that it should supply a value for this extra parameter when it calls
the dynamics function? Answer: The parameter list of odeX is also extended by one
parameter8. Making Vx a parameter is the preferred program design route for simulations
of any significant size.

Important: Matlab’s implementation has the following quirk that shows up in the
golf driving range example. The parameter list for Matlab event functions must match
that of dynamics functions. You can see the results in the following Matlab function
codes for the novelty golf driving range simulation.

8making the parameter list of length at least 5

94

Dynamics Function

function dzdt = golf(t, z, Vx)

% z(1) = x(t)

% z(2) = y(t)

% z(3) = y’(t)

dzdt = [Vx ; z(3) ; -9.81];

Events Function

function [values, halt, dir] = golfEvents(t, z, Vx)

% z(1) = x(t); z(2) = y(t); z(3) = y’(t)

% Vx = horizontal velocity - weird Matlab quirk -

% the dynamics function and the events functions MUST have

% same number of extra parameters. We don’t need Vx here

% but we do in the dynamics function, "golf"

% barrier has average height = bHeight

% centered on fieldSize, and fluctuates by up and down by 1.2 meters

% every 2 seconds (i.e. with frequency 0.5)

f = 0.5; % barrier frequency

fieldSize = 30; % meters

bHeight = 4; % so barrier fluctuates between 2.8 and 5.2 meters

values = [0,0]’;

halt = [1,1]’;

dir = [0,0]’;

% Event 1: the ball hits the ground (the ground is located at z(2)=y=0).

values(1) = z(2); % change of sign (+ to -) indicates event 1

% Event 2: the ball hits the barrier

bDyn = bHeight + 1.2 * cos(2 * pi * f * t); % dynamic barrier height

values(2) = 1;

if (abs(z(1) - fieldSize) < 0.5) && (z(2) < bDyn)

disp(’inside barrier’)

values(2) = -1;

end;

Matlab session driver script

% set initial velocity imparted by the golfer’s drive here

Vx = 22; Vy = 12; % m/s

disp([’Vx=’ num2str(Vx) ’, Vy=’ num2str(Vy)]);

tspan = [0 5]

initial = [0; 0; Vy]

95

% Vx*h is the horizontal distance travelled in time h.

% Set MaxStep so that Vx*MaxStep = 1, so time stepping can’t

% pass through a 2 meter wide barrier in one step.

options = odeset(’Events’,@golfEvents, ’MaxStep’, 1/Vx);

[t,z] = ode45(@golf,tspan,initial,options,Vx);

N = length(t)

disp(’tfinal, Xfinal, Yfinal’);

disp([t(N),z(N,1), z(N,2)]);

96

9 Initial Value Problems

9.1 Introduction

In many physical situations one encounters the following problem: determine the be-
haviour of a quantity depending on a variable knowing only how the quantity changes
with respect to the variable. For example, one may want a representation for the path
of an object knowing only its starting location and the physical laws that relate the
position, velocity and acceleration of the particular object.

Example 9.1 An ecologist is studying the effects on the environment of field mice. With
no limitation on food supply the population of mice can be modeled by

y′(t) = a · y(t) (9.1)

where y(t) is the population of mice at time t and a is a constant (the net reproduction
rate, determined by field experiments).

If for a given starting value (say at t = t0) we have the population y0, then it is not
hard to determine that

y(t) = y0 · ea(t−t0) (9.2)

is a solution to (9.1). Thus, the mice population has “exponential” growth. In this case,
we have a formula to determine a value for the population y(t) at any time t.

t

y(t)

t
0

y
0

y(t) = y
0
ea(t−t

0
) −−−>

The equation modeling the population of field mice is unrealistic since, in general,
the food supply for a species is limited and hence a population will not continue to grow
indefinitely. An alternate model for population growth is given by

y′(t) = y(t) · (a− b · y(t)) (9.3)

where a and b are constants. Note that when y(t) is small then

y′(t) ≈ a · y(t)

so that we have exponential growth for small populations. However, when y(t) ≈ a
b

then
y′(t) ≈ 0. That is, the population stops growing and levels off.

97

In fact, there is again a closed-form solution for this IVP, given by

y(t) =
a y0 ea(t−t0)

b y0 ea(t−t0) + (a− y0 b)
.

A plot of this type of population growth, known as logistic growth, is shown in Figure 29.

N
0

a/b

<− exponential growth

growth −> 0

t

N(t)

Figure 29: Logistic population growth. The initial population is N0.

Unfortunately, both of these models are still too simple. For example, a good model of
the population still needs to recognize that the birth rate of mice varies during the year,
as does the food supply. In addition, as we approach the carrying capacity (when the
population approaches a

b
), we expect the population growth to slow down in a different

fashion. A more realistic model would then be

y′(t) = y(t) · (a(t)− b(t) · y(t)α), y(t0) = y0 (9.4)

where a(t), b(t) and α are all determined from field observations. With this more general
model, it is not possible to find a closed-form solution. 2

In the previous example, we wanted to predict y(t) for all values of t. This was
possible for the first two models since we had closed-form solutions (in terms of ex-
ponential functions). But in the third model, no closed-form solution exists and hence
other methods need to be used. In this case we can use numerical methods that generate
an approximation to the solution.

98

t
0

y
0 <− known

want to determine −>

t

y(t)

In general we are interested in the problem of numerically solving an equation of the
form

y′(t) = F (t, y(t)) with y(t0) = y0 . (9.5)

Roughly speaking, the above equation describes a model of a particular quantity y(t)
depending on a given parameter t. The model states that there is an initial known start-
ing value and has a description of how the quantity changes. For a fixed parameter value
t, the changes depend only on the parameter and the quantity y(t) at this parameter.

Equation (9.5) is said to be a first order differential equation with an initial condition.
We assume that no closed-form solution exists for such an equation and hence we need
to obtain a numerical solution. A numerical solution for equation (9.5) means that we
need to choose a set of times t0 < t1 < · · · < tN at which we estimate the value of the
solution, y0, y1, . . . , yN . Our hope is that yn will be “close” to the true value of y(tn)
for each n. Such a numerical solution will allow us to produce a plot of our function
y(t) in a particular interval and to approximate any value of the function (say through
a process such as piecewise polynomial interpolation or spline interpolation).

t
0

y
0

t
1

y
1

t
2

y
2

... t
n

y
n

exact solution −>

<− approximate

 solution

t

y(t)

99

9.1.1 Other Differential Equations

There are other situations in which one wants to determine a particular set of quantities
knowing only how those quantities change.

Example 9.2 Let ~P (t) = (x(t), y(t), z(t)) be the coordinates of an airplane, relative to

some starting point. Let the velocity of the airplane ~V (t) be (vx(t), vy(t), vz(t)) and the

components of the acceleration ~A(t) be (ax(t), ay(t), az(t)).
An inertial guidance system works by using accelerometers to detect acceleration.

The system then solves the following system of differential equations (in real time)

x′(t) = vx(t), y′(t) = vy(t), z′(t) = vz(t),
v′

x(t) = ax(t), v′
y(t) = ay(t), v′

z(t) = az(t)
(9.6)

where x′(t) = dx
dt

, v′
x(t) = dvx

dt
etc. At t = 0 we know that the airplane is at rest and so

we also have the following initial conditions

(x(0), y(0), z(0)) = (x0, y0, z0) and (vx(0), vy(0), vz(0)) = (0, 0, 0). (9.7)

Equations (9.6) and (9.7) constitute a system of differential equations with an initial
condition. Given the values of the x-, y-, and z-components of acceleration as a function
of time, we can solve these equations to determine the position of the airplane at any
time t. Note that it is crucial to specify the initial condition. 2

Systems of differential equations also appear in such applications as robot control
and pipeline leak detection. They also give us a way to look at higher-order equations.

Example 9.3 Consider the 2nd-order linear differential equation given by

y′′(t)− t y′(t) + a y(t) = sin(t), with y(0) = y0, y
′(0) = 3.

We can write this equation as a first-order system of linear differential equations with
variables y(t) and z(t) = y′(t) via

y′(t) = z(t)
z′(t) = t z(t)− a y(t) + sin(t)

with y(0) = y0 and z(0) = 3.

2

In general, a higher-order differential equation is of the form

y(n)(t) = F (t, y(t), y′(t), . . . , y(n−1)(t)) (9.8)

with initial conditions specified for the first n−1 derivatives at an initial value t0. Again
such a system can be written as a system of first-order equations with initial conditions.

One can also define systems of partial differential equations where there are quantities
that depend on more than on variable. These appear in applications such as animation
(for example the water waves in the movie Titanic), design of aircraft, pricing of options
and hedging in finance, weather prediction and the effect of greenhouse gasses on the
environment.

100

9.2 Approximating Methods

There is a variety of methods for determining a numerical solution for a first-order initial
value problem. For the most part, there are two components for each method:

• time step: find a suitable discrete set of t points t0 < t1 < · · · < tN for evaluation
of our solution;

• solution step: compute a set of y values y0, y1, · · · , yN such that yn approximates
y(tn), the exact value of the solution at tn.

For the solution step, there are single-step methods (where yn+1 is determined from
(tn, yn) and the equation for the derivative), and multi-step methods (where yn+1 is
determined from (tn−i, yn−i) and the equation for the derivative for i = 0, 1, . . . , Nsteps
with Nsteps > 0). The solution methods are also classified into explicit and implicit
methods. Explicit methods simply calculate each yn+1 from previously calculated points,
(tn−i, yn−i). Implicit methods are those where yn+1 is computed by solving an algebraic
equation involving F .

9.2.1 The Forward Euler Method

In this subsection we will focus on the solution step of the approximation process. Thus,
we have the initial value problem

y′(t) = F (t, y(t)) with y(t0) = y0,

and we assume that we have a given set of t points t0 < t1 < · · · < tN . Our goal is to
find the yns.

The Forward Euler method is the simplest technique for obtaining a numerical ap-
proximation to a first-order initial value problem. Given a discrete set of t-values,
t0 < t1 < · · · < tN , the method uses slope as an approximation to the derivative and
then develops a recursive scheme for determining the yn values.

For each n = 0, . . . , N − 1 we make use of the approximation

slope =
y(tn+1)− y(tn)

tn+1 − tn
≈ y′(tn) = F (tn, y(tn)) .

Isolating the y(tn+1) term in the above equation gives the recursive scheme

y(t0) = y0

y(tn+1) = y(tn) + F (tn, y(tn)) · (tn+1 − tn)

for n = 1, . . . , N − 1 .

This scheme is called the Forward Euler method.

101

t

y(t)

t
i

t
i+1

y
i

y
i+1

Figure 30: Forward Euler Method

Example 9.4 Consider the Forward Euler method when applied to the initial value
problem

y′(t) = y(t)
(

2.5 t− t2
√

y(t)
)

, with y(0) = 1.

This is the same as equation (9.4) of Example 9.1 with a(t) = 2.5t, b(t) = −t2 and
α = 1

2
. We can obtain approximations to y(t) for t = 0.4, 0.8, 1.2, 1.6 and 2.0 by using

the recursive scheme

y(0) = 1

y(tn+1) = y(tn) + y(tn) · (2.5 tn − tn
2
√

y(tn)) · 0.4
for n = 0, . . . , 4 .

This gives the y-values

y(0) = 1.0, y(0.4) = 1.0, y(0.8) = 1.34, y(1.2) = 2.01, y(1.6) = 2.78, y(2.0) = 2.48.

Figure 31(a) plots this approximate solution along with the exact solution. This ap-
proximate solution does not match the exact solution very well because the step size is
too large. One would expect that more t-values would provide a more accurate picture.
Figure 31(b) shows the Forward Euler solution with a subdivision of 30 equally spaced
points.

2

Example 9.5 We can do the same approximation in the case of a system of differential
equations. For example, consider the system

dx(t)
dt

= x(t) (a− αy(t))
dy(t)

dt
= y(t) (−b− βx(t))

102

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

y(
t)

Euler’s Method, with 6 equally spaced points

y
exact

(t) −>

<− y
approx

(t)

(a) Step size = 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

y(
t)

Euler’s Method, with 30 equally spaced points

y
exact

(t) −>

<− y
approx

(t)

(b) Step size = 0.0666

Figure 31: Forward Euler Method

with x(0) = x0 and y(0) = y0 and a, b, α, β all positive constants. This is an example of
a predator-prey system where x is the population of the prey and y is the population of
the predator. The two-dimensional recursion scheme for the Forward Euler method in
this case is

xn+1 = xn + xn (a− αyn) h
yn+1 = yn + yn (−b− βxn) h ,

with h = tn+1 − tn.
Assume that we are studying foxes as predators and rabbits as prey, and that we

obtain some field date where

a = 1, α = 0.5, b = 0.75, β = 0.25 .

Figure 32(a) plots 600 time steps of the Forward Euler solution with initial conditions
x0 = 2 (rabbits per hectare), and y0 = 1 (foxes per 100 hectares).

An interesting characteristic of this model (and the chosen parameters) is that the
solution settles down to a steady-state cycle (a periodic solution). Figure 32(b) plots an
additional 30, 000 time steps of the Forward Euler method.

9.2.2 Discrete Approximations

In the last subsection, we presented a recursive scheme based on replacing a derivative by
a slope. It is clear that the smaller the interval the better the slope is at approximating
a derivative. However it is not clear at this stage how good such an approximation
needs to be in order to obtain acceptable answers. In this subsection, we use Taylor
expansions to get an idea of the order of the error and to obtain new, more accurate
approximations.

Recall that for any function y(t), we can do a Taylor expansion about the point t = a:

y(t) = y(a) + y′(a)h +
y′′(a)

2
h2 +

y′′′(a)

6
h3 + · · · (9.9)

103

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
Predator−Prey Model for Foxes and Rabbits: ∆ t = 0.05

Rabbits (x)

F
ox

es
 (

y)

(x
0
,y

0
)

(a) 600 time steps

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
Predator−Prey Model for Foxes and Rabbits: ∆ t = 0.001

Rabbits (x)

F
ox

es
 (

y)

(x
0
,y

0
)

(b) Steady-state

Figure 32: Forward Euler approximation of the Predator/Prey model

where h = t − a. We can be more precise about what happens when we truncate after
a finite number of terms, in which case we have

y(t) = y(a) + y′(a)h +
y′′(a)

2
h2 +

y′′′(a)

6
h3 + · · ·+ y(p)(a)

p!
hp +

y(p+1)(ηt)

(p + 1)!
hp+1 (9.10)

where ηt is a point between a and t. Often we write equation (9.10) as

y(t) = y(a) + y′(a)h +
y′′(a)

2
h2 +

y′′′(a)

6
h3 + · · ·+ y(p)(a)

p!
hp + O(hp+1) . (9.11)

If a = tn and t = tn+1 and p = 1, then equation (9.11) becomes

y(tn+1) = y(tn) + y′(tn)h + O(h2) . (9.12)

which can also be written

y′(tn) =
y(tn+1)− y(tn)

h
+ O(h) . (9.13)

This is called a forward difference approximation to y′(tn) since we are using information
at t = tn and the forward point t = tn+1. Since the error term is O(h), we say that
the approximation is a first-order approximation. Intuitively, this says that the error
is proportional to h. It is important to note that this means the error goes to zero as
h→ 0.

Since y′(t) = F (t, y(t)), we can write (9.12) as

y(tn+1) = y(tn) + F (tn, y(tn))h + O(h2)

which we recognize as the Forward Euler formula. The term O(h2) is called the local
truncation error for our formula.

104

9.2.3 The Modified Euler Method

In order to avoid lots of tedious notation, let us set

y′
n = y′(tn), y′′

n = y′′(tn) and y′′′
n = y′′′(tn) .

Then the Taylor series expansions give (for h = tn+1 − tn)

yn+1 = yn + y′
nh +

y′′
n

2
h2 +

y′′′(η)

6
h3

where η ∈ [tn, tn+1]. We can replace y′′
n by a first order derivative approximation

y′′
n =

y′
n+1 − y′

n

h
+ O(h) (9.14)

to obtain

yn+1 = yn + hy′
n +

h2

2

[

y′
n+1 − y′

n

h
+ O(h)

]

+ O(h3) (9.15)

(9.16)

= yn + h

(

y′
n+1 + y′

n

2

)

+ O(h3) . (9.17)

We are looking for the solution of

y′(t) = F (t, y(t))

so we can write
y′

n = y′(tn) = F (tn, y(tn)) = F (tn, yn) (9.18)

and
y′

n+1 = y′(tn+1) = F (tn+1, y(tn+1)) = F (tn+1, yn+1). (9.19)

Thus we have

yn+1 = yn +
h

2

(

F (tn, yn) + F (tn+1, yn+1)
)

+ O(h3). (9.20)

We may think of (9.20) as approximating the derivative y′(t) using the average of
the slopes at the two end points, as shown in Figure 33.

Since this method uses more information about the dynamics function F , we expect
it to be a higher-order method (that is, a higher power in the truncation error term).
Thus we have Forward Euler, with

yn+1 = yn + hF (tn, yn) + O(h2) (9.21)

and

yn+1 = yn +
h

2

(

F (tn, yn) + F (tn+1, yn+1)
)

+ O(h3) (9.22)

which is called the trapezoidal rule (or Crank-Nicolson) method. Note that yn+1 appears
only on the left hand side in the Forward Euler method. This is called an explicit method.

105

t

y(t)

t
i

t
i+1

y
i

y
i+1

y’
i

y’
i+1

Figure 33: Modified Euler Method

On the other hand, equation (9.22) is an implicit method because the yn+1 appears on
both sides of the equation (and hence one needs to do extra work to isolate this quantity
in order to proceed with the algorithm. In other words, we have to solve a nonlinear
equation for yn+1).

One technique for handling the implicit equation (9.22) is to combine it with the
Forward Euler recursion. That is, we use (9.21) as a first approximation for yn+1 and
then use this value in the right-hand side of (9.22) for our final value of yn+1. This
method is called the Modified Euler method and is formally written

y∗
n+1 = yn + hF (tn, yn) (9.23)

yn+1 = yn +
h

2

(

F (tn, yn) + F (tn+1, y
∗
n+1)

)

. (9.24)

We can determine the accuracy of the Modified Euler method as follows. Notice first
that

yn+1 = yn + hF (tn, yn) + O(h2) = y∗
n+1 + O(h2) (9.25)

and so the difference yn+1−y∗
n+1 has error O(h2). The second-order Taylor approximation

of F (tn+1, yn+1) is

F (tn+1, yn+1) = F (tn+1, y
∗
n+1) +

∂

∂y
F (tn+1, yn+1)(yn+1 − y∗

n+1) + O
(

(yn+1 − y∗
n+1)

2
)

.

(9.26)
Since yn+1 − y∗

n+1 is O(h2), we have

F (tn+1, yn+1) = F (tn+1, y
∗
n+1) + O(h2) . (9.27)

Recall that the Crank-Nicolson method is

yn+1 = yn +
h

2

(

F (tn, yn) + F (tn+1, yn+1)
)

+ O(h3) . (9.28)

106

Therefore, plugging (9.27) into (9.28) gives

yn+1 = yn +
h

2

(

F (tn, yn) + F (tn+1, y
∗
n+1) + O(h2)

)

+ O(h3) (9.29)

= yn +
h

2

(

F (tn, yn) + F (tn+1, y
∗
n+1)

)

+ O(h3) . (9.30)

Thus we have that

y∗
n+1 = yn + hF (tn, yn) (9.31)

yn+1 = yn +
h

2
(F (tn, yn) + F (tn+1, y

∗
n+1)) + O(h3) (9.32)

is an explicit method with a higher-order truncation error than the Forward Euler
method. We can also write this as

k1 = hF (tn, yn)

k2 = hF (tn + h, yn + k1)

yn+1 = yn + k1+k2

2
.

This is an example of a Runge-Kutta method. There are many other possibilities for
deriving explicit Runge-Kutta methods which have local error O(h3) due to truncation.
For example, we have the midpoint Runge-Kutta method given by

k1 = hF (tn, yn)

k2 = hF (tn + h
2
, yn + k1

2
)

yn+1 = yn + k2 .

which is also of order O(h3). One can continue on with such ideas in order to obtain
methods which have local truncation error O(hα) for α = 4, 5, 6, . . . The best known
example of a higher order Runge-Kutta method is

k1 = hF (tn, yn)

k2 = hF (tn + h
2
, yn + k1

2
)

k3 = hF (tn + h
2
, yn + k2

2
)

k4 = hF (tn + h, yn + k3)

yn+1 = yn + k1

6
+ k2

3
+ k3

3
+ k4

6
,

a method having local error O(h5).

107

9.3 Global vs. Local Error

In the preceding subsection, we considered just the local truncation error for the Forward
Euler and Modified Euler methods. This is a local error in the sense that it is the error
when making a single step. In this section, we ask how this affects the global error after
we make a large number of steps. For example, we are interested in y(tn)− yn for some
finite tn > t0.

If we consider, for example, the error when using Modified Euler, then we see that
we have an error term O(h3) at each step. But these errors will accumulate from step
to step so that the global error in the computed solution at the last step will be larger
(possibly by a significant amount) than the local error. In the worst case, all the local
errors accumulate. If we solve the differential equation to some time tn > t0, and if the
step size h is constant for all time steps, then

steps =
tn − t0

h
= O

(

1

h

)

.

Therefore we have
Global Error ≤ Local Error ·# steps

= O(h3) ·O(1
h
)

= O(h2).

In general, tn − t0 =
∑n

k=1 hk with an average step-size of (tn − t0)/n with the global
error being approximately equal to the sum of all the local errors.

One can see that if we have a method with local error O(hp+1) then the global error
is O(hp). In general, when we refer to the order of a method then we refer to the global
error. Thus we say that Modified Euler is a second order method while Forward Euler
is a first order method.

9.4 Practical Issues

The goal of ODE solvers is that for a specific tolerance we determine a set of points tn
and yn such that the local error at the nth step is less than this tolerance. In previous
sections we have focussed on the approximation step, that is, the step to determine the
yn. For any particular problem, this part requires only knowledge of F (t, y(t)). For
example, one has Modified Euler which can be given as a Runge-Kutta method:

k1 = hF (tn, yn)
k2 = hF (tn + h, yn + k1)

yn+1 = yn + k1+k2

2
.

Software Libraries can be developed for the various methods so that the user is only
required to supply a function which evaluates F (t, y) for any (t, y). This is the approach
used by Matlab ODE suite, for example. The cost and efficiency of any method can be
measured by the number of function evaluations required – that is, the number of times

108

the user-supplied function F (t, y) is called to advance the solution to some specified
time.

Note that, up to this stage, we have discussed using constant time steps for computing
our solution. In practice, this is a bad idea since the size of a time step should depend
on the shape of the particular function.

solution changing
slowly

<− solution changing
 rapidly

solution changing
slowly

t

y(t)

In order to get good accuracy with a constant time step, we would need to choose
a time step small enough so that we maintain the desired accuracy at the places where
the function changes most rapidly. This results in wasted work since a much larger time
step could be used where the function changes slowly.

To take advantage of the changing shape of a function, we will need to detect when
to increase or decrease the timestep in response to how rapidly y(t) is changing. Recall
that we know the local truncation error for a given method. For example, the local
truncation error for the Forward Euler method is O(h2), since

yn+1 = yn + hF (tn, yn) + O(h2) .

This means that, for h sufficiently small,

Truncation Error ≤ C · h2

for some constant C. If we could estimate C at each step then we could adjust the
timestep to ensure that the error was within a user-specified tolerance. A standard
technique is to evaluate the solution yn+1 with two methods, a higher-order method
and a lower-order method. The constant C can be estimated from the difference (in
absolute value) between the two solutions. If the error is less than the user-specified
tolerance then the timestep is accepted. Otherwise the timestep size is reduced and this
step is repeated. This process is repeated until the tolerance is met. Conversely, if the
estimated error is much less than the user-specified tolerance then this indicates that
the timestep for the next step can be increased.

The above procedure is how the Matlab solvers ode45 and ode23 work. The ode23

method combines a second-order and a third-order step with automatic stepsize control,
while ode45 does the same thing except using a fourth- and fifth-order pair of steps. In

109

both cases, the user supplies a tolerance. The estimates are not perfect of course, but
in practice the methods work very well.

As an example, the formulas for the ode45 method (known as the Runge-Kutta-
Fehlberg formula) is given by

k1 = hF (tn, yn)

k2 = hF (tn + h
4
, yn + k1

4
)

k3 = hF (tn + 3h
8
, yn + 3k1

32
+ 9k2

32
)

k4 = hF (tn + 12h
13

, yn + 1932k1

2197
− 7200k2

2197
+ 7296k3

2197
)

k5 = hF (tn + h, yn + 439k1

216
− 8k2 + 3680k3

513
− 845k4

4104
)

k6 = hF (tn + h
2
, yn − 8k1

27
+ 2k2 − 3544k3

2565
+ 1859k4

4104
− 11k5

40
)

y∗
n+1 = yn + 25k1

216
+ 1408k3

2565
+ 2197k4

4104
− k5

5
with error O(h4)

yn+1 = yn + 16k1

135
+ 6656k3

12825
+ 28561k4

56430
− 9k5

50
+ 2k6

55
with error O(h5) .

In this case the error can be estimated by

Error = yn+1 − y∗
n+1 =

k1

360
− 128k3

4275
− 2197k4

75240
+

k5

50
+

2k6

55
.

9.5 Overview of Numerical Methods and the Matlab ODE Suite

In §9.2, we introduced the idea of a numerical solution of an IVP and discussed methods
for computing them. We noted that a numerical method has the coupled pair of tasks:

advancing the solution: computing y(n) - which we now designate with a bracketed
superscript since it is an m vector, y(n) = (y

(n)
1 , y

(n)
2 , . . . y

(n)
m)

time step size selection: computing tn

We repeat the conceptual scheme for time stepping methods here.

Initialize y(0), t0, hcand, n = 0

Repeat

i) compute y(n+1), and hn using data tn, y(n), hcand and f(t, z)

ii) tn+1 ← tn + hn

iii) recompute hcand

iv) n← n + 1

(9.33)

110

9.5.1 Classification of methods for advancing the solution

The exact solution of a system of ODEs (8.9) satisfies

y(tn+1) = y(tn) +

∫ tn+1

tn

y′(s)ds = y(tn) + M−1

∫ tn+1

tn

f(s, y(s))ds

= y(tn) + hnM
−1Avg(f) (9.34)

where Avg(f) is an average value of the dynamics function over the trajectory in the
interval tn < s < tn+1 which is of length hn, i.e.

Avg(f) =
1

hn

∫ tn+1

tn

f(s, y(s))ds (9.35)

If M 6= I, then to implement (9.34), a system of linear equations, Mx = Avg(f), would
have to be solved for x and then y(tn+1) could be computed as

y(tn+1) = y(tn) + hnx .

Of course, even if we know tn, tn+1 and y(tn), the relation in (9.34) cannot be used to
compute y(tn+1) exactly because we cannot evaluate the integral term. Actually, there
are two difficulties associated with this integral term.

i) We do not know y(s), hence we do not know the integrand function.

ii) Even if we did, we would not usually be able to integrate it by an explicit formula.

Most time stepping methods for advancing the solution can be viewed as approximate
evaluations of this integral, or, equivalently, this average. The simplest example is the
approximation

Avg(f) ≈ f(tn, y(tn)) (9.36)

which is equivalent to the Forward Euler’s method.
There are several standard general classifications of solution computation methods.

One is the classification into:

One-step methods in which (tn+1, y
(n+1)) is computed from (tn, y(n)), (using f(t, z)

and M).

Multi-step methods in which (tn+1, y
(n+1)) is computed from (tn−k, y

(n−k)) for k =
0, 1, . . . , Nsteps, where Nsteps > 0.

Another standard classification is into:

Explicit methods in which y(n+1) is computed by a formula involving tn−j and y(n−j)

and evaluations of f(t, z), j = 0, 1, ...Nsteps, where Nsteps ≥ 0.

Implicit methods in which y(n+1) is computed by solving an algebraic system of equa-
tions that involve f(t, z).

111

explicit implicit
one-step ode45, ode23 ode23s, ode23t, ode23tb

multi-step ode113 ode15s

Table 2: Classifying the Matlab IVP solvers

The 7 solution members of the Matlab ODE suite fall into the following categories.
In this course, we will be using and studying the explicit one-step methods of the

Runge-Kutta family (ode23, ode45). In these methods, approximations to Avg(f) are
computed using formulae involving hn, tn, y(n) and evaluations of f(t, z). They can be
viewed as particularly efficient ways to sample f(t, y(t)) in order to approximate Avg(f).

What is the purpose of including all the methods of Table 2 in Matlab? As you
might guess, it is because some types of IVPs can be solved efficiently by one of the
explicit one-step methods, while others are better computed by one of the alternatives.
Note that ‘better’ here means ‘more efficiently’ since the time step selection processes
of all of them provide error control to meet the user set error tolerances as described in
the next subsection. An important property of some IVPs which affects the choice of
suitable method is called ‘stiffness’. Actually, stiffness is a matter of degree. Explicit
methods work very well for IVPs that exhibit little stiffness, but implicit methods are
necessary for very stiff IVPs. Then there is an intermediate range of IVPs for which it
is less clear. As you might expect, the situation is more complicated for IVPs based on
general (nonlinear) systems of differential equations; they can be very stiff for part of
their solution history and not stiff for other times.

9.5.2 Time step control II: extending the Matlab ODE interface

Section §9.4 described the way that pairs of Runge-Kutta methods can be used for
simultaneously advancing the solution and selecting the time step size, as per Step i) of
(9.33). The Matlab command ode23 uses this technique for a pair of methods of order
2 and 3, which requires a minimum of 3 evaluations of f(t, z) per step. Similarly, ode45
uses the Runge-Kutta-Fehlberg methods, of orders 4 and 5, requiring a minimum of 6
evaluations of f(t, z) per step. Because it requires twice as many function evaluations per
time step, ode45 can only be more efficient than ode23 if it can take steps approximately
twice as long (or longer) as those of ode23.

The primary reason for using pairs of methods like these is that it permits estimation
of the local error at each step. If the candidate step size is hcand, and the solution for
each method is computed using it:

y(n+1) computed by the higher order method
y∗(n+1) computed by the lower order method ,

then the local error using step size hcand can be estimated by the m-vector

LocErrest(hcand) = y(n+1) − y∗(n+1) . (9.37)

112

The step size is chosen to ensure that the size of LocErrest is less than a specified error
tolerance. The basic concept is that

if maxk |LocErrest(hcand)k| ≤ tol then
accept hcand as hn

else
reduce hcand and try again

end if

The Matlab ODE suite has three options for customizing this concept for error control,
associated with properties named AbsTol, RelTol, and NormControl. See §8.5.2 for a
discussion of ‘properties’ and options. Here are descriptions of these properties from
“help odeset”.

RelTol - Relative error tolerance [positive scalar {1e-3}]

This scalar applies to all components of the solution vector, and

defaults to 1e-3 (0.1% accuracy) in all solvers. The estimated error in

each integration step satisfies e(i) <= max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol - Absolute error tolerance [positive scalar or vector {1e-6}]

A scalar tolerance applies to all components of the solution vector.

Elements of a vector of tolerances apply to corresponding components of

the solution vector. AbsTol defaults to 1e-6 in all solvers. See RelTol.

NormControl - Control error relative to norm of solution [on | {off}]

Set this property ’on’ to request that the solvers control the error in

each integration step with norm(e) <= max(RelTol*norm(y),AbsTol). By

default the solvers use a more stringent component-wise error control.

Matlab also has several properties that control the form of the output from calling
odeX. Two of these that are of interest to us are named

Refine which takes positive integer values and determines the number of output times
per time step

Stats which take binary values, i.e.’on’ or ’off. This property determines whether odeX
displays a summary of cost statistics for the computation

In these notes, we have use hn = tn+1 − tn as the step size, and implied that the
output vector, T(n), of Matlab’s odeX functions is composed of exactly these time values
tn. So the entire stepsize history would be the vector

h = T(2:length(T)) - T(1:length(T)-1) . (9.38)

However, this is only true if Refine = 1. The default value for Refine is 1 for all
methods except ode45, where its default value is 4. To compute the stepsize history for
ode45 using (9.38), you must use the function odeset to set Refine = 1 (see §8.5.2).

113

Exercises

1. Suppose a function y(t) is known at three discrete points ti, ti−1, ti−2, where
ti − ti−1 6= ti−1 − ti−2. Use Taylor series arguments to determine a backward
difference approximation to y′′

i , using three values yi, yi−1, yi−2. What is your order
condition?

2. Verify for the following system of equations

Y ′
1 = Y2

Y ′
2 = −x2Y1 − xY2

that Y1(x) = y(x), where y(x) satisfies the second order equation

y′′(x) + x y′(x) + x2 y(x) = 0 .

3. Write the following third order differential equation as a system of three first-order
equations.

y′′′(t) + sin(t)y′′(t)− g(t)y′(t) + g(t)y(t) = f(t)

4. State the following problem in first order form. Differentiation is with respect to
t.

u′′ + 3v′ + 4u + v = t
u′′ − v′ + u + v = cos t

5. Apply both the Forward Euler and the Modified Euler methods to the IVP

{

y′ = 5y
y(0) = 5 .

Show the computation schemes for both methods

6. Suppose you are using an ODE solver to compute an approximate solution to
the equation y′ = F (t, y). At some point ti you have an approximate solution yi.

Using the solver, you compute estimates yh
i+1 and y

h/2
i+1 using steps h and h/2, where

h = 0.01. Note that the second estimate involves applying the ODE solver twice,
first to get to ti+ 1

2
, and then again to get from ti+ 1

2
to ti+1. The method you are

using is a second order method with third order local truncation error. Suppose
yh

i+1 = 3.269472 · · · and y
h/2
i+1 = 3.269374 · · · . That is, ‖yh

i+1 − y
h/2
i+1‖ ≈ 10−4.

Derive an estimate for the local truncation error at the point ti+1. Show carefully
how you arrived at your estimate.

114

Appendix A Conveying Information in Graphs

Figures and graphics can be a powerful way to communicate ideas; they play a key
role for this purpose in scientific computation. However, the use of graphics to enhance
communication requires effort and skill. And while a good graphics package helps, it
is really only a tool. Many other factors play into the successful use of graphics to
convey a message (just as a hammer is a useful tool, but one needs expertise to build a
house). Lets make a comparison with the task of writing a document using text alone
to help explain what is meant by this. Obviously, word processors are a very useful
tool for supporting this task. But the effectiveness of the communication comes from
the combination of the writer’s ability to express themselves and how they use the tool.
The writer needs clarity about what is to be conveyed and how to organize it into prose.
The word processor doesn’t help with this. But creating an effective document can
also be strongly enhanced by an understanding of the variety of options that a word
processor can offer for the task. Success comes from the combination of author’s effort,
word processor functionality, author’s skill with it and the author’s patience, time, and
energy.

The same is true of conveying ideas graphically; graphics systems (MATLAB graphics
included) are indispensable tools for the task. But to use them successfully, one needs

• skill in creating meaningful images,

• understanding of the capabilities of the tool, and

• patience, time, and energy.

In this section, we hope to introduce some of the basics of how MATLAB graphics can be
used to convey ideas effectively by an example based on parametric curve computations.

Figure 34 shows four subplots generated by the MATLAB ‘subplot(2,2,X)’ command.
See the script at the end of this appendix. The plot in the X=1 position (the upper
left corner) shows the curve created using piecewise linear interpolation of the data,
generated using a single MATLAB “plot” command (and, consequently, all the default
image settings for this command). It is not clear what message this plot might be
intended to convey; the default plot settings are simply designed to allow a user to
quickly and easily display a wide spectrum of data on a screen. Some of the weaknesses
of that particular plot for displaying the script letter are:

• The axes are scaled differently, so the figure is distorted.

• The tic mark labelling on the axes would be too small to be readable if the image
is shrunk for printing.

• There is no text (no axis variable labelling, no title line) to guide the reader.

This crude picture would need to be accompanied by a lot of text to explain what its
message is. The other three subplots show figures customized to convey three specific
ideas:

115

0 2 4 6 8 10
0

5

10

15

0 5 10
0

5

10

15
data plus interpolating cubic spline

x

y

0 5 10
0

5

10

15
piecewise linear interpolating curve

x

y

Figure 34: Examples of simple graph customization

subplot(2,2,2) (upper right) The relation of the data to a smooth interpolating para-
metric curve. The accompanying text might explain that this curve is computed
by introducing chord length as a parameter, t, and using two cubic spline interpo-
lations one of (ti, xi) and the other of (ti, yi) to get the parametric curve.

subplot(2,2,3) (lower left) This plot shows the piecewise linear interpolating paramet-
ric curve of the original shape’s data points. It includes grid lines and would be
appropriate for displaying, or checking, the original data.

subplot(2,2,4) (lower right) This plot shows a refined version of the cubic spline in-
terpolator for the script letter. The encapsulated postscript file for this plot could
be useful for an application.

The need to use MATLAB scripts to support graphics
To effectively convey a message using a figure, first you need to be clear about what the
message is. Then you need to create a graphic that is focussed on conveying it. It is
virtually certain that this second step will require customizing the image to the purpose.
So, in MATLAB graphics at least, this means preparing a script to produce the image
that includes the customizations that you want. This script allows you to experiment,
edit your choices, and change some of the details of your computation.

116

Here is the script used to make Figure 34:

% load array named C with basic shape data for script C

% C(:,1) = parameter values; C(:,2) = x values

initC ;

% load array named scriptC with interpolated data for

% plotting script C

% scriptC(:,1) = parameter values; scriptC(:,2) = x values

load scriptC ;

figure

% basic plot using all default properties

subplot(2,2,1),plot(C(:,2)’,C(:,3)’)

% read Hanselman and Littlefield - Handle Graphics, Chapter 30,

%

% simple customization to better inform the viewer

% set ALL future axes labeling to fontsize 14

% first save current defualt size to be restored later

oldSize = get(0,’DefaultAxesFontSize’);

set(0,’DefaultAxesFontSize’,14);

subplot(2,2,2),

plotHndl = plot(scriptC(1,:),scriptC(2,:),C(:,2),C(:,3),’x’);

% the Matlab "help plot" documentation says

% ’ PLOT returns a column vector of handles to LINE objects

set(plotHndl,’LineWidth’,2)

% customize the axes

axis square

axis([-2.5 12.5 0 15])

% label stuff

title({’data plus interpolating cubic spline’})

xlabel(’x’) ;

yHndl =ylabel(’y’);

set(yHndl,’Rotation’,0);

% plot piecewise linear curve, plus grid

subplot(2,2,3),

plotHndl = plot(C(:,2)’,C(:,3)’);

set(plotHndl,’LineWidth’,2);

grid on;

% customize the axes

axis([-2.5 12.5 0 15]);

axis square

title(’piecewise linear interpolating curve’)

117

xlabel(’x’) ;

yHndl =ylabel(’y’);

set(yHndl,’Rotation’,0);

% plot stand alone curve

subplot(2,2,4),

plotHndl = plot(scriptC(1,:),scriptC(2,:));

set(plotHndl,’LineWidth’,2)

% customize the axes

axis square;

axis([-2.5 12.5 -0.2 14.8]);

axis off;

% return to default axes text labeling size

set(0,’DefaultAxesFontSize’,oldSize)

118

Appendix B Review of Complex Numbers

We will denote the set of complex numbers by C. A complex number z ∈ C can be
identified as a pair of real numbers; i.e. z = (a, b). A standard (historical) notation for
z involves the symbol i which may be called “the square root of -1” and identified with√
−1. In this notation z is written z = a + ib and

• i can be identified with (0, 1).

• a is called the real part of z; a = Real(z).

• b is called the imaginary part of z: b = Imag(z).

• In Matlab, the command display(complex(-3,2)) will display
-3.000 + 2.000 i.

• a− ib is called the conjugate of z, sometimes denoted by z̄.

• The size of z is |z| =
√

a2 + b2, also called the modulus of z.

Arithmetic operations are defined for C: let z = (a, b) and r = (c, d) ∈ C

• z + r = (a + c, b + d),

• z × r = (ac− bd, ad + cb). Usually we will just write zr for z × r.

A real number, x, is the same as the complex number (x, 0). Notice that if z = (x, 0)
and r = (y, 0), then the addition and multiplication of z and r are the same as adding
and multiplying in the real number system. In this sense, the complex number system
is “backwards compatible”, so to speak. Thus, we do not need to make any further
distinction between x and (x, 0). You will find that Matlab does not distinguish between
these either; try y = complex(2,0) in Matlab. Some other interesting relations from
the above definitions are z + z̄ = 2 Real(z), and zz̄ = |z|2 = a2 + b2.

We can form a vector of N complex numbers, u = (u1, u2, . . . , uN)t, and

• multiply u by a number p ∈ C.

• add two complex vectors together. In fact, we can make linear combinations of
them. i.e. for two complex vectors u and v (of the same size and shape) and two
complex numbers e and f , eu + fv is also a complex vector.

• take the inner product of two complex vectors u and v using

(u, v) =

N
∑

j=1

uj v̄j . (B.1)

119

We denote the set of complex N vectors by CN .
In the study of the discrete Fourier transform, the following formula for the expo-

nential function with a pure imaginary argument plays a major role.

eia = (cos(a), sin(a)) = cos(a) + i sin(a) (B.2)

esin(a)

cos(a)

a

ia

e
ia

= sin(a)cos(a) + i

The figure adjacent to (B.2) shows the unit circle9 in the complex plane and the complex
number eia. It shows how a can be identified with the angle at the origin (measured in
radians). An a-value of 2π represents one full revolution, returning back to the complex
number 1. From this, it can be seen that eia is a periodic function of a, i.e. ei(a+2πk) = eia

for any integer k.
This exponential function retains the usual properties of exponentials, connecting

addition and multiplication
ei(a1+a2) = eia1 eia2 . (B.3)

Also, the complex conjugate corresponds to simply reversing the sign of the exponent:

If u = eia, then ū = e−ia . (B.4)

Appendix B.1 Roots of Unity

Let W be the complex number
W = e2πi/N (B.5)

for some integer N . Notice that
W N = 1 . (B.6)

Any complex number v such that vN = 1 is called an Nth root of unity. For example,
eπi/4 is an 8th root of unity. So is e−πi/4. In general, if v is a root of unity, so is v̄ (the
conjugate of v). According to (B.6), W is an Nth root of unity. Then so is e−2πi/N = W̄ .
The complex number i = eπi/2 is a 4th root of unity.

It is helpful to see that these roots of unity correspond to equally-spaced points on
the unit circle in the complex plane. For example, the number eiπ/4 is an 8th root of

9circle of radius 1

120

unity. The corresponding angle is π
4
, which is the same as 45◦. Taking steps of 45◦

around the unit circle, we find the numbers eiπ/2 (which is equal to i; try plugging a = π
2

into (B.2)), ei3π/4, . . ., ei7π/4, all of which are 8th roots of unity. Figure 35 plots these
values on the unit circle in the complex plane.

e
0
or e

i2π

e
i7π/4

e
i5π/4

e
i3π/2

e
i3π/4

e
iπ/2

e
iπ

e
iπ/4

Figure 35: The 8th roots of unity plotted on the unit circle in the complex plane.

Exercises

1. Show that e2πk i/N is an Nth root of unity for every integer, k.

2. Despite the result in part B.1, the set of all Nth roots of unity is finite. Why? Hint:
Find two integers k1 and k2 such that

e2πk1 i/N = e2πk2 i/N .

3. How many different complex numbers are Nth roots of unity?

Appendix B.2 Orthogonality Property

For any z ∈ C and z 6= 1, we have the following formula for the sum of a geometric
series:

1 + z + z2 + · · ·+ zN−1 =
zN − 1

z − 1
. (B.7)

If z = 1, then the above sum is simply equal to N . This leads to an important mathe-
matical basis for the usefulness of Fourier transforms. Let W be the Nth root of unity
defined by (B.5). Define W (k) ∈ CN to be the complex N -vector of the powers of W k,
for 0 ≤ k ≤ N − 1, as

W (k) =
(

1, W k, W 2k, . . . , W (N−1)k
)t

. (B.8)

121

Then, the jth element of W (k) (where j ∈ {0, . . . , N − 1}) is W (k)j, which equals W kj.
The inner product of two complex vectors W (k) and W (l) is

(W (k), W (l)) =

N−1
∑

j=0

W (k)jW (l)j

=
N−1
∑

j=0

W (k−l)j.

Note the bar above W (l)j, indicating the complex conjugate of W (l)j. If k = l, then
(W (k), W (l)) = N . Otherwise, by formula (B.7),

(W (k), W (l)) =
W (k−l)N − 1

W k−l − 1
= 0

because the numerator is zero and the denominator is nonzero (be sure to prove this to
yourself). To summarize, the inner product evaluates to

(W (k), W (l)) =

{

0 if k 6= l
N if k = l.

(B.9)

In other words, W (k) and W (l) are orthogonal complex vectors when k 6= l.

122

