A2, Question 2
We are to write a Matlab function

$$
[a, b, c]=\operatorname{Myspline}(x, y)
$$

where
x, y - input vectors of $\left(x_{i}, y_{i}\right)$ data $(1 \leq i \leq n)$
a, b,c - output vectors of the coefficients of the natural cubic spline which interpolates (x, y), using the special representation:

$$
p_{i}(x)=a_{i-1} \frac{\left(x_{i+1}-x\right)^{3}}{6 h_{i}}+a_{i} \frac{\left(x-x_{i}\right)^{3}}{6 h_{i}}+b_{i}\left(x_{i+1}-x\right)+c_{i}\left(x-x_{i}\right)
$$

$\left[\right.$ where $\left.h_{i}=x_{i+1}-x_{i}\right], \quad$ for $i=1, \ldots, n-1$.
Schematically,

In order to solve for the coefficients $\left\{a_{i}\right\}_{i=0}^{n-1}$, $\left\{b_{i}\right\}_{i=1}^{n-1}$ and $\left\{c_{i}\right\}_{i=1}^{n-1}$, apply the cubic spline conditions to $p_{i}(x), 1 \leq i \leq n-1$.

We will heed to use the derivative formulas:

$$
\begin{aligned}
& p_{i}^{\prime}(x)=-3 a_{i-1} \frac{\left(x_{i+1}-x\right)^{2}}{6 h_{i}}+3 a_{i} \frac{\left(x-x_{i}\right)^{2}}{6 h_{i}}-b_{i}+c_{i} \\
& p_{i}^{\prime \prime}(x)=a_{i-1} \frac{\left(x_{i+1}-x\right)}{h_{i}}+a_{i} \frac{\left(x-x_{i}\right)}{h_{i}}
\end{aligned}
$$

Interpolation conditions:
(1) $p_{i}\left(\pi_{i}\right)=y_{i} \Longrightarrow \frac{1}{6} a_{i-1} h_{i}^{2}+b_{i} h_{i}=y_{i} \quad$, for $i=1, \ldots, n-1$
(2) $p_{i}\left(x_{i+1}\right)=y_{i+1} \Rightarrow \frac{1}{6} a_{i} h_{i}^{2}+c_{i} h_{i}=y_{i+1}$, for $i=1, \ldots, n-1$

Note that if we know a_{i} 's then we can solve equation (1) for b_{i} and equation (2) for c_{i} :

$$
b_{i}=\frac{y_{i}}{h_{i}}-\frac{1}{6} \alpha_{i-1} h_{i} ; \quad c_{i}=\frac{y_{i+1}}{h_{i}}-\frac{1}{6} a_{i} h_{i} ;
$$

for $i=1, \ldots, n-1$.
$1^{\text {st }}$ derivative conditions

$$
\begin{aligned}
& p_{i}^{\prime}\left(x_{i+1}\right)=p_{i+1}^{\prime}\left(x_{i+1}\right), \text { for } i=1, \ldots, n-2 \\
& \Rightarrow 3 a_{i} \frac{h_{i}^{2}}{6 h_{i}}-b_{i}+c_{i}=-3 a_{i} \frac{h_{i+1}^{2}}{6 h_{i+1}}-b_{i+1}+c_{i+1} \\
& \Rightarrow \frac{1}{2} a_{i} h_{i}-b_{i}+c_{i}=-\frac{1}{2} a_{i} h_{i+1}-b_{i+1}+c_{i+1}
\end{aligned}
$$

Plugging in the above formulas for b_{i} and c_{i} in terms of a_{i} "s we get, after rearranging terms to put terms involving a_{i} 's on the left hand side:

$$
\frac{1}{6} h_{i} a_{i-1}+\frac{1}{3}\left(h_{i}+h_{i+1}\right) a_{i}+\frac{1}{6} h_{i+1} a_{i+1}=r_{i}, i=1, \ldots, n-2
$$

where the right hand side values are

$$
r_{i}=\frac{\left(y_{i+1}-y_{i+1}\right)}{h_{i+1}}-\frac{\left(y_{i+1}-y_{i}\right)}{h_{i}}
$$

CS 370 Fall 2008: Assignment 2

Hint: for Question 3 (continued)

We now have a linear system of $n-2$ equations in the n unknowns $a_{i}, i=0,1, \ldots, n-1$. We must add two boundary conditions before we can solve the system for a unique solution.

Note that the linear system is tridiagonal, and we can maintain this property if we add the two "arbitrary" additional conditions in the following form. Let the first equation be

$$
t_{0} a_{0}+t_{1} a_{1}=r_{0}
$$

and let the last equation be

$$
t_{2} a_{n-2}+t_{3} a_{n-1}=r_{n-1}
$$

where $t_{0}, t_{1}, t_{2}, t_{3}, r_{0}, r_{n-1}$ are constants to be chosen, depending on the desired boundary conditions.
We can now express the $n \times n$ tridiagonal linear system in the form

$$
T a=r
$$

where a is the vector of coefficients $a_{i}, i=0,1, \ldots, n-1$ to be solved for, r is the vector of right-hand-side quantities, and T is a tridiagonal matrix.

Now for Question 3, we are asked to compute the coefficients for the natural cubic spline so you must choose the "arbitrary" parameters in the first and last equations so as to satisfy the so-called natural boundary conditions.

Second derivative conditions: Finally, you should verify that the continuity conditions for the second derivative are satisified.

