CS 370 Fall 2008: Assignment 1

Instructor: Professor Keith Geddes
Lectures: MWF 3:30-4:20 MC 2017
Web Site: UW-ACE
Due: Thu Sep 25, 2008, 5:00 pm, in the Assignment Boxes, 3rd Floor MC

1. Consider the floating point number system $F(2,5,-10,10)$ as defined in the course notes. (I.e., base 2, precision 5 .)
(a) What is the smallest positive normalized floating point number?
(b) What is the largest positive normalized floating point number?
(c) What is the largest value $a \in F(2,5,-10,10)$ such that e^{a} (equivalently, $\exp (a)$) can be represented (by rounding appropriately) without resulting in overflow? Show your work.
2. Consider a fictitious floating point number system composed of the following numbers:

$$
\left.\begin{array}{rl}
S=\left\{\quad \pm d_{1} \cdot d_{2} d_{3} \times 2^{ \pm y}: d_{2}, d_{3}, y=0 \text { or } 1\right. \\
& \text { and } d_{1}=1 \text { unless } d_{1}=d_{2}=d_{3}=0
\end{array}\right\}
$$

I.e. each number is normalized unless it is the number zero.
(a) Plot the elements of S on the real axis. Note, in particular, that successive numbers in S are not always equally spaced.
(b) Indicate on your plot the regions of OFL (overflow) and UFL (underflow).
(c) How many elements are contained in S ?
(d) What is the value of ϵ (machine epsilon)?
3. Carry out a roundoff error analysis to show that, in a floating point number system, if $a b+c \neq 0$ then

$$
\frac{|(a b+c)-((a \otimes b) \oplus c)|}{|a b+c|} \leq \frac{|a b|}{|a b+c|} \epsilon(1+\epsilon)+\epsilon
$$

where ϵ denotes machine epsilon. Justify each inequality that you introduce.
4. Carry out (by hand, with the aid of a calculator) the following computations by simulating the 5 -significant-digit rounded arithmetic of the floating point number system $F(10,5,-10,10)$.
(a) The two roots r_{1} and r_{2} of the quadratic equation $a x^{2}+b x+c=0$ are given by the following well-known formulas:

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} ; \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

Calculate the roots r_{1} and r_{2} using arithmetic in $F(10,5,-10,10)$ for the quadratic equation

$$
\begin{equation*}
x^{2}+111.11 x+1.2121=0 . \tag{1}
\end{equation*}
$$

Compare the computed results with the true roots (to 5 significant digits) which you may calculate on a computer using 10 or more digits of precision. Specifically, what is the relative error in r_{1} and in r_{2} ?
(b) Note that a cancellation problem arises when applying the above formulas for any quadratic equation having the property that

$$
|b| \approx \sqrt{b^{2}-4 a c} .
$$

For an equation with this property, if $b>0$ then the above formula for r_{1} will exhibit cancellation and if $b<0$ then r_{2} will exhibit cancellation.
Show that a mathematically equivalent formula for r_{1} is

$$
r_{1}=\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} .
$$

Hint: Rationalize the numerator (i.e., multiply numerator and denominator of the original formula for r_{1} by an appropriate quantity).
(c) The formula for r_{2} can be manipulated in a similar manner. Deduce a better algorithm for calculating the roots of a quadratic equation and present it in the following form.

Algorithm R.

$$
\text { if } b>0 \text { then } \begin{aligned}
& \\
& \\
& r_{2} \\
& \text { else } \\
& r_{1}=c /\left(a r_{2}\right) \\
& \\
& r_{1}= \\
& r_{2}=
\end{aligned}
$$

(d) Redo the calculation of the roots of equation (1) by applying Algorithm R, using arithmetic in the same number system $F(10,5,-10,10)$. Compare the computed results with the true roots. Specifically, what is the relative error in r_{1} and in r_{2} ? How do the computed results of part (d) compare with the computed results of part (a)?

