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ABSTRACT

A main memory database system holds all data in semiconductor
memory. For recovery purposes, a backup copy of the database is main-
tained in secondary storage. The checkpointer is the component of the
crash recovery manager responsible for maintaining the backup copy.
Ideally, the checkpointer should maintain an almost-up-to-date backup
while interfering as little as possible with the system’s transaction pro-
cessing activities. We present several algorithms for maintaining such a
backup database, and compare them using an analytic model. Our
results show some significant performance diflerences among the algo-
rithms, and illustrate some of the performance tradeoffs that are avail-

able in designing such a checkpointer.
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1. Introduction

The cost per bit of semiconductor memory is decreasing and chip densities are ris-
ing. As a result of these trends, rescarchers have begun to consider database systems in
which all of the data resides in main (semiconductor) memory.! Memory-resident data
can mean large performance gains for database systems. In current systems, much of a
transaction’s lifetime is spent waiting to access data on disks. In addition, much of the

complexity of the database system itself can be attributed to the long delays associated
with the disks.

The simplest way to design a main memory database management system
(MMDBMS) is to borrow the design of a disk-based database manager. A MMDBMS
can be viewed as a disk-based DBMS with a buffer that happens to be large enough to
hold the entire database. One problem with this approach is that it fails to capitalize
on many of the potential advantages that memory-residence offers. For this reason, a
number of researchers have begun to re-examine some of the components of a tradi-
tional DBMS with memory-resident data in mind. Some of the components that have
been  considered are index structures [Lehm85a,DeWi84a, Thom86a),  query
processing [Lehm86a,Bitt87a,DeWig4a], and (primary) memory management [Eich86a].

One component of a DBMS that might be particularly difficult t> transfer from a
disk-based to a memory-resident system is the recovery manager. From the point of

view of the recovery manager, there are several interesting aspects of memory-resident

databases:

° At recovery time, the focus of the recovery manager must be the restoration of the

primary (memory-resident) database, rather than the disk-resident database, to a

t We do not rule out the existence of slow archival storage. One can think of a system as having two
databases (as in IMS Fastpath [Gawl85a] ) one memory-resident that accounts for the vast majori-
ty of accesses, and a second on archival storage [Ston87a). In this paper we focus on the main
memory database since its performance is critical.



consistent state. Since the primary database can be lost during a failure (e.g., a
memory failure or power loss), it must be reconstructed from a backup copy on

secondary storage.

e In a MMDBMS, the transactions’ data requirements can be satisfied without disk
I/O. However, to manage the backup database the recovery manager requires
access to disks (or other non-volatile storage). The recovery manager’s 1/O
requirements should be satisfied without sacrificing the performance advantages
that memory resident data can bring to transaction processing. In particular, this
means that the recovery manager should do as little synchronous I/O as possible.
Such practices as forcing transaction updates to disk before commit, and flushing
dirty pages to disk (while transactions wait) at checkpoint time should probably

be avoided.

° The relative contribution of recovery management to the total cost of executing a
transaction will increase. As a simple example, consider a "typical” transaction in
a disk-based system that costs about 20,000 instructions (without recovery) and
makes 20 database references, half of them updates. In a memory-resident system,
that same transaction may cost only half as many instructions. The savings will
come from such areas as reduced disk I/O cost (if half of the database references
would have caused I/O activity, that alone is a substantial savings at 1000
instructions per I/O), lower concurrency control costs (e.g., fewer lock conflicts,
deadlocks, and rollbacks), and reduced or eliminated buffer management costs.
The recovery manager, on the other hand, must still perform expensive operations
like disk I/O. This implies that the performance of the recovery manager will be
more critical to the overall performance of a DBMS when data is memory resident

than when it is disk resident.

In this paper we will focus on one critical aspect of crash recovery in a MMDBMS,
namely the maintenance on disk of the up-to-date secondary copy of the database. We
term this process checkpointing, although checkpointing may be realized quite differently
in a MMDBMS than in a disk-based DBMS. We will describe a number of possible algo-

rithms for asynchronous checkpointing, and compare them using a simple analytic

model.

An interesting feature of a MMDBMS is that the I/O bandwidth to the backup
database disks should not become a bottleneck for transaction processing since transac-
tions require no access to the secondary database. Similarly, I/O latency should not be
a problem if I/O is done asynchronously, because asynchronous I/O is not likely to be in

the critical execution path of any transaction. Thus evaluating "I/O cost”, as is



commonly done for disk-based systems, is not a good way of measuring the impact of
the checkpointer on transaction processing in a MMDBAIS. This is not to say that the

I/O bandwidth is not important to the system’s performance. As we will see, it affects

recovery time in a number of ways.

What does appear to be a useful checkpointing performance metric in a MMDBMS
is the processor overhead of the checkpointer, since processors are critical resources
shared by both the checkpointer and transactions. The checkpointer’s processor over-
head is produced by a number of different activities, including the initialization of disk
1/O’s, data movement, and locking or other synchronization with transaction processing
activities. The fact the CPU costs rather than 1/O costs may be the critical perfor-
mance [actors is another interesting aspect of recovery management in a MMDBS, and

1s one of the reasons we believe the model presented here is important.

Several algorithms for asynchronous maintenance of a secondary database copy
have appeared in the literature {De\’\'i84a,EichSGa,HangSa,Leth?a,PuSSa;. The
checkpointing algorithms that we will consider are based on ideas drawn from that
work. Our emphasis in this paper is algorithmic alternatives. We have not considered
checkpointing mechanisms that rely on the existence of special purpose or functionally
segregated processors, nor those that require large quantities of stable primary memory.
However, in Section 4 we will consider the eflect of a stable log tail, i.e., the availability

of enough stable RAM to hold the in-memory portion of the log.

The rest of the paper is organized as follows. In the next section we present our
model of the database, the system architecture, and transactions. Section 3 describes
the various checkpointing algorithms. In Section 4 we present the results of our com-

parisons. Section 5 presents a summary of our results, and some conclusions.

2. System and Load Models

In this section we describe our models of the components of the system that
impact checkpointing. In particular we will describe the system’s hardware resources
(processors and storage) and the structure of the database. We also present a simple
model of the transaction load, and describe the types of failures that will be considered.
Finally, we describe our assumptions about related system activities, such as logging

and storage management. Details of the model can be found in [Sale87a).

The hardware underlying the MMDBMS consists of processors, volatile main
memory, and disks, all linked by one or more data channels. The next several sections

are devoted to descriptions of our models of each of these components.



2.1. Processors

The system includes one or more processing units (CPUs). We model the collection
of processors as a single server which is able to perform certain operations at a cost of
some number of instructions per operation. The basic operations are synchronization,
data movement (within primary memory), I/O initiation, and storage management, i.e.,

dynamic allocation and deallocation of storage.

Table 2a describes the model parameters related to the basic operations, and gives
their default costs. Synchronization is accomplished through locking and log sequence
numbers (LSN) [Gray78a]. C,. is the cost of each lock or unlock operation. G, is the
cost of checking or maintaining a log sequence number (LSN). C,, is charged (under
some checkpoint policies) to update a LSN when a transaction makes an update, and to
check a LSN when the checkpointer flushes data to the backup disks. Storage manage-
ment costs are represented by Cu,., which is charged for the dynamic (de)allocation of
a block of memory. C;, is the processor cost of a disk I/O. We assume that the disk
controllers support direct memory access, so that Cj, is independent of the amount of

data being transferred.

Not shown in the table is the cost of the final operation, data movement. The
cost of data movement is taken to be proportional to the number of words moved, with

constant of proportionality one instruction per word.

symbol parameter default units
Clock (un)locking overhead 20 instructions
Clalloc buffer (de)allocation overhead 100 instructions
C;, 1/O overhead 1000 instructions
Clon maintain LSNs 20 instructions

Table 2a - Basic Operation Costs

2.2. Storage

Primary storage is assumed to be volatile RAM. There is enough primary memory

to hold a complete copy of the database (the primary copy) plus any additional data



structures that are required by the system, e.g., page tables. Secondary storage consists
of magnetic disks, although the system may also use other media, such as tapes or opti-
cal disks, to store archival data. The disks are used to hold the secondary database

copy (and also for logging). Ny is number of disks available.

Disks are modeled as simple servers that can transfer d words of data in time
Tyeek + Tirans d- For simplicity we assume that the transfer bandwidth scales linearly
with the number of disks, i.e., we do not consider interference caused by bus contention
or secondary reference locality. Note that 1/O to the backup disks in a MMDB is likely
to be better behaved than 1/O in a disk-based system since 1/O in a MMDB is done
only by the checkpointer. Thus we might expect seek delays to be somewhat shorter for
a MMDB than for a disk-based system. Table 2b shows the model parameters related
to the disks.

symbol parameter default units
Tyeek 1/O delay time 0.03 seconds
Tirane transfer time constant 3 | pseconds/word
Ny dieke number of disks 20 disks

Table 2b - Disk Model Parameters

2.3. Data Channels

Data movement, in particular the movement of data between various levels of the
memory hierarchy, is important to any computer system. Even for a main memory
database system, /O to sccondary storage is important since the recovery mechanism
relies on it. Too little bandwidth to secondary storage can limit transaction
throughput if log I/O becomes a bottleneck, and can increase recovery time if 1/O to

the backup database is not fast enough.

A number of techniques exist for boosting 1/O bandwidth. Multiple secondary
storage devices can be used to handle several I/O requests in parallel. Alternatively,
secondary storage devices can be interleaved, or striped [Kim86a,Sale86a]. When using
striped disks, several devices service a single request in parallel thus decreasing the ser-

vice time for that request.



Furthermore, it is becoming possible to configure systems to handle the bandwidth
these techniques can achieve. The nominal bandwidths for well-known 32-bit buses
range from twenty megabytes per second for Motorola’s VME bus to over a hundred
megabytes per second for Fastbus and the IEEE Futurebus [Borr85a]. Some systems
support multiple, buffered channel interfaces and device controllers to prevent I/O
bottlenecks. For example, the Convex C-1 can support up to 160 I/O controllers
though five buffered I/O processors onto an eighty megabyte per second bus to the main

memory [Dozi84a).

The bandwidth requirements of a MMDBMS during normal operation are
significant but not outrageous. As a rough estimate, imagine that an entire 1 gigabyte
database is to be checkpointed every 100 seconds (fast), requiring ten megabytes per
second. To this we must add the bandwidth required for logging. Even if every tran-
saction uses one 1024 word log page, then at 1000 transactions per second (and four
bytes per word) logging requires an extra four megabytes per second. Thus, during nor-
mal operation, the bandwidth requirement may be on the order of fifteen megabytes per

second. Similar bandwidth will be required during recovery.

Thus the I/O problem for MMDBMSs, though not trivial, does appear to be
manageable. Because of space limitations, we will assume in this paper that sufficient
bandwidth is available to secondary storage and concentrate instead on CPU overhead.
In particular, we will assume that the time required to execute a series of I/O opera-
tions is inversely proportional to the number of disks that are available. However, we
will make note of those checkpoint algorithms whose bandwidth requirements are higher

than others’.

2.4. Database

The database is assumed to contain Sy words of data, grouped into records of size
Srec- The record is the granule at which the transaction interface operates, i.e. the

primitive actions of a transaction are record reads and writes.

Records are grouped into larger units, called segments, for efficient transfer to the
backup disks. S,,, is the segment size, which can be any multiple of S,... Table 2¢ sum-

marizes the model parameters related to the database and gives their default values.

2.5. Transactions

For simplicity we assume that all transactions running against the database are

identical. They are assumed to arrive at the system at the rate of A transactions per



symbol parameter default units
Sa database size 256 Mwords
Srec record size 32 words
Speg segment size 8192 words

Table 2¢ - Database Model Parameters

second. The model treats the exccution of a transaction, much like a basic operation
The cost of executing a transaction is Cy,. This is the cost of executing the transac-
tion exzclusive of recovery costs, i.e., as if the transaction were running in a failure-free
environment. Each transaction updates N,, distinct records. The update probability 1s
distributed uniformly across all of the database records. Table 2d summarizes the

model parameters related to the transactions.

symbol parameter default units
DN arrival rate 1000 transactions/second
N, number of updates 5 records/transaction
Cirane transaction processor cost 25000 instructions

Table 2d - Transaction Model Parameters

2.6. Other System Components

The checkpointer necessarily interacts with other components of the transaction
processing system, such as the logging mechanism. So that we can study checkpointing

algorithms independently of these other components, we will make several assumptions

about how the other components operate.

Transactions assumed to use a shadow-copy update scheme similar to that

emploved by IMS/Fastpath [Gawl85a). Updates are stored in a buffer local to the



updating transaction until the transaction commits. At that point, updates are
installed in the database by overwriting (copying) the old version of the record with the
new. Transactions use REDO-only logging. UNDO logging (i.e., logging old versions) is
not necessary because old versions are not overwritten in the database unless a positive

commit decision is made for the transaction.

Finally, we assume that two backup databases are maintained on the backup disks
and that a ping-pong update scheme is used. Only one of the two copies is updated dur-
ing a single checkpoint, and successive checkpoints alternate between the two copies.

Thus, there is always a complete checkpoint available after a system failure.

2.7. Failures

There are numerous types of failures that can occur in a transaction processing
system. We will concentrate on recovery from transaction failures and system failures in
this paper. As defined in [Gray78a), a transaction failure occurs when a particular
transaction must be aborted, either because of some internal condition or because of
external intervention. We are particularly concerned with transactions that fail as a
result of actions of the checkpointer. The probability of a checkpoint-induced failure,

Prestart, Will be computed in Section 4 as a function of the checkpoint algorithm.

A system failure results in the halt of the system and the loss of the contents of
volatile memory, followed by system restart. One of the performance measures we con-
sider is the time for recovery from a system failure. The recovery time is discussed in

more detail in Section 3.3.

In our model we do not explicitly consider recovery from media failures [Gray78a].
Provided there is extra memory available, and provided that the failed portion of
memory can be mapped-out transparently to the database system, media failures in pri-
mary memory can be treated like system failures. There are also interesting aspects to
secondary media failures in a MMDBMS. Recovery from such failures may be easier
than in a DBMS because the lost data will be available in primary memory (provided
that a system failure does not occur simultaneously). Dumping of the backup database

(e.g., to tape) may also be easier because of the more predictable disk access patterns of
a MMDBMS. We will not discuss these issues further here.

3. Checkpointing

A DBMS has two components, one that is active during normal transaction pro-

cessing and one that is active after a system failure. Although all of the checkpoint



algorithms we will present in this section affect the design of the former component,
they affect the performance of both components. Checkpointing affects recovery perfor-
mance because it aflects the amount of work that needs to be done at recovery time.
This is one of the more interesting performance tradeoffs in a DBMS: less overhead dur-

ing normal processing results in longer recovery times from system failures.

As we have already described, the task of the checkpointer is the maintenance of
an "almost up-to-date” backup copy of the database on stable storage (the backup
disks). The checkpointer runs repeatedly, each time updating the backup database
according to the algorithm determined by the checkpoint policy.

Checkpoint algorithms can be distinguished along at least two dimensions. For
example, we can consider whether the entire database, or only those portions of the
database that have been updated since the last checkpoint, are backed up on each

iteration. Checkpoints of the first sort are called full checkpoints, those of the latter

sort are called partial.

We will not discuss full vs. partial checkpointing in great detail as it is rather
straightforward. To implement partial checkpoints, database segments can include a
dirty bit which is set by transaction updates and cleared by the checkpointer. Check-
pointers that produce partial backups have the additional overhead of checking the

dirty bit of every database segment, but in general they will flush fewer pages to the

backup disks.

Another distinction among checkpointers can be made according to the level of
consistency of the backup database they produce. Three of the possibilities are fuzzy,
action-consistent (AC), and transaction-consistent (TC). We will only consider fuzzy

and TC checkpointing in our study, for reasons that we will discuss shortly.

In the remainder of this section, we discuss the checkpoint algorithms we have
considered and discuss some of the implementation questions that arise. The algo-
rithms describe how checkpoints are created. At the end of the section we discuss how

the checkpoints are used to recovery from a failure.

3.1. Fuzzy Checkpoints

Fuzzy checkpoints require little or no synchronization with executing transactions.
The backup database produced by such a checkpoint is called fuzzy because it may not
contain an atomic view of database activities (e.g., storage operations such as reading
and writing) that were occurring while the backup database was being produced. For

example, Il a transaction were updating a database records R1 and R2 while a fuzzy
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checkpoint was occurring, the backup database might contain the new value of R1 but
the old (pre-update) value of R2 after the checkpoint completes. Fuzzy checkpoints are

suggested for recovery in main memory databases in [Hagm86a].

A checkpoint begins by entering a begin-checkpoint marker in the log, along with a
list of currently active transactions. Once the marker is in place, the most straightfor-
ward approach to creating the checkpoint is to flush the appropriate segments from
main memory to secondary storage. (By appropriate segments, we mean the dirty seg-
ments if a partial checkpoint is being taken, or all of the segments if a full checkpoint is
being taken.) The checkpointer ignores locks and other transaction activity and simply

flushes the segments.

The biggest problem with this approach is that it may lead to violations of the log
write-ahead protocol [Gray78a) There is no guarantee that records updated by a tran-
saction will not be flushed before the log records for that transaction have been flushed
to the log disks. Therefore, if such straightforward fuzzy checkpoints are taken then
transactions must delay their updates until their log records have been flushed to disk
(an undesirable situation) or stable main memory must be available to hold the log tail.
We will delay further discussion of such checkpoints until the next section, when we will

consider the effects of a stable log on the performance of the checkpointer.

A fuzzy checkpointing scheme which avoids these problems is FUZZYCOPY. FUZ-
ZYCOPY checkpointing is similar to the straightforward fuzzy checkpoint, except that
instead of simply flushing segments to the backup disks, segments are first copied into-a
main memory I1/O buffer. The buffered segment copy is not flushed to the backup data-
base until the log records of any updates that are reflected in the segment have been
flushed to the log disks. The checkpointer can determine when it is safe to flush the

segment copy by using log sequence numbers [Gray78al.

3.2. Consistent Checkpoints

The alternative to fuzzy dumps is to produce consistent database backups. As we
have already mentioned, such backups can be action-consistent (AC) or transaction-
consistent (TC). Action-consistent backups are more costly to produce than fuzzy back-
ups, and transaction-consistent backups are more costly than either. However, having
a consistent backup may mean that less log information needs to be retrieved after a
system failure. Another advantage of consistent backups is that they permit the use of

logical logging!.

t Logical logging is also known as transition [Haer83a) or operation logging.
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We will consider only TC checkpoints, not AC, although AC checkpoints may
actually be more practical in a real system. In many ways TC checkpoints can be secu,
as extreme versions of AC checkpoints. Both require some form of synchronization to
ensure that actions are reflected atomically in the checkpoint. The actions are simply
more complex or more abstract in the TC case. Thus, many, but not all, of the com-
parisons we will make between TC and fuzzy checkpoints could be made with qualita-
tively similar results between AC and fuzzy checkpoints. We will consider two general
methods for producing TC checkpoints, and within each of the methods examine two

variations in implementation.

3.2.1. Two-Color algorithms

One way to produce a TC backup database is to treat the checkpointing process
as a (long-lived) transaction. The checkpointer acquires a read lock on each segment
before flushing and holds the locks until it finishes. We assume that this method will
result in unacceptably frequent and long lock delays for other transactions. (At some
point during each checkpoint the checkpointer will have all of the dirty database seg-
ments locked simultaneously.) An alternative, which produces TC backup copies but
requires that locks be held on only one segment at a time is presented in [Pu85a). The
two locking algorithms we will study are variants of the mechanism proposed in that
paper.

The algorithm described in [Pu85a| proceeds as follows. There is a "paint bit” for
each database segment which is used to indicate whether or not a particular segment
has already been included in the current checkpoint. Assuming that all segments are
initially colored white (i.e., paint bit = 0), checkpointing is accomplished by the algo-
rithm in Figure 3.1. To ensure that the checkpointer produces a TC backup, no tran-
saction is allowed to access both white and black records. (A record is the same color
as the segment it is a part of). Any transaction that attempts to do so is aborted and

restarted.

The "processing” of a segment can occur in two ways. One option is to simply
schedule the segment to be flushed to the backup disks. Log sequence numbers are used
to determine when the segment can be flushed (as was done under the FUZZYCOPY
algorithm). If the checkpointing is handled in this fashion we say that the checkpoint
algorithm is 2CFLUSH. 2CFLUSH checkpointing requires that segments be locked for
the duration of a disk I/O operation, plus any delay that might be needed to satisfy the
LSN condition.
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WHILE there are white segments DO
find a white segment that is not exclusively locked
IF there are none THEN
request read (shared) lock on any white segment and wait
ELSE
lock the segment
process the segment
paint the segment black (set paint bit = 1)
unlock the segment

END-WHILE

Figure 3.1 - A Variation of Pu’s Basic Checkpoint

An alternative is to first copy the segment to a special buffer and then to flush the
buffer to the backup disks. (Again, LSNs are needed.) The advantage of this alterna-
tive is that the segment can be unlocked as soon as it is copied. There is no need to
maintain the lock through the disk I/O. However, since copying the segment to the
special buffer is not free, there is a price paid in processor overhead for this advantage.

When checkpointing is handled in this fashion we say that the checkpoint style is
2CCOPY.

3.2.2. Copy-on-Update algorithms

Copy-on-update checkpointing forces transactions to save a TC "snapshot"” of the
database, for use by the checkpointer, as they perform updates. The principal advan-
tage of COU checkpointing is that once the checkpoint has started, it will not cause
transactions to abort, as do the two-color algorithms. However, COU has its own
disadvantages. First, transaction processing must be temporarily quiesced each time a
checkpoint begins. Second, primary storage is required to hold the TC snapshot as it is
being produced. Potentially, the snapshot could grow to be as large as the database
itself. The COU mechanisms we will describe are inspired by the technique described!
in [DeWi84a)|.

t One difference is that the technique in [DeWi84a] is suggested for producing AC, and not TC, back-
up copies. TC backups can be produced by requiring that the system be transaction-quiescent, rath-
er than action-quiescent, when the checkpointing begins. In reality, this could be problematic if
long-lived transactions are common.
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The COU technique works as follows. When a checkpoint is to begin, the system is
first brought into a transaction-consistent state. This can be accomplished by aborting
currently executing transactions, or by simply quiescing the system (i.e., delaying the
start of new transactions until all currently executing transactions have completed).
The checkpoint is assigned a timestamp (7 CH)), a begin-checkpoint record is written to
the log, and the log tail is flushed to stable storage. The TC database state that exists
when transaction processing has been quiesced is the "snapshot” that will be flushed to
secondary storage by the checkpointer. Once the timestamp is assigned and the begin-

checkpoint entry is in the log, transaction processing can begin again.

Transactions are assigned timestamps when they begin, and database segments
are marked with the timestamp of the most recent transaction to update them. When
a transaction wishes to update a datubase segment that has not yet been dumped by
the checkpointer and whose timestamp is less than #(CH), it first copies the old version
of the segment to a special buffer so that the consistency of the snapshot is preserved.

A pointer in the segment is set to point at the newly-created old copy in the buffer.

The algorithm requires a main-memory buffer to hold old copies of those segments
that are updated while the checkpointer is running. In addition, each segment S has
pointer p(S) that can be used to point at an old copy of the segment and a timestamp
7(S).! For ease of presentation, we also assume that database segments are ordered and
the checkpointer backs up segments to secondary storage in this order. CUR_SEG indi-
cates the segment that has most recently been backed up. The process for a transac-

tion T to update a record R in segment S is summarized in Figure 3.2.

As usual, the checkpointer sweeps through the database checking for dirty seg-
ments to flush. If some segment has been dirtied since the checkpoint began, then an
old copy of that segment will exist and that copy will be flushed by the checkpointer.
Segments that are dirty, but that have not been dirtied since the checkpoint began, do
not have old copies. In this case, the checkpointer has the same two options it had
under the locking algorithms. It can either lock the segment while it flushes it to the
backup disks, or it can lock the segment long enough to copy it to a special buffer and
then flush the buffer. In the former case we say that the checkpointing is COUFLUSH,
in the latter COUCOPY. Figure 3.3 summarizes the checkpointing process under a
COU algorithm. In the figure, the timestamp of the previous checkpoint is remembered

to ensure that dirty segments are not flushed more than once unless they are dirtied

i For simplicity we assume that p(S) and 7{S) are stored and locked with S. However, storing and
locking p(S) and 7(S) separately from S may provide better performance in a real implementation
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lock S (and R) (exclusive)

IF (S > CUR_SEG) AND (7(S) < 7(CH)) THEN
allocate buffer for S
copy S to buffer (including timestamp)
set p(S) to point at buffer

set 7(S) = /(T

unlock S

update R

Figure 3.2 - Transaction Updates under COU

again.

Note that under the COU algorithms, LSNs need not be maintained to ensure that
the write-ahead log protocol is observed. Any updates seen by the checkpointer must
have occurred before the checkpoint began. Thus their log records are already in stable

storage.

3.3. System Failure Recovery

After a system failure, the recovery manager has at its disposal a backup copy of
the database and a transaction log on stable storage. In a disk-based system, the log is
used to bring the stable database copy to a consistent state. In a MMDBMS, the stable
database copy and the log are used to recreate a consistent primary database copy in

main memory.

The recovery procedure is to first read the backup database into main memory,
and then to apply the log to the new primary database to bring it into an up-to-date
consistent state. Applying the log to the database means several different things.
First, the log must be scanned backwards until the begin-checkpoint marker of the most
recently completed checkpoint is found in the log.! In the case of FUZZYCOPY check-
points, the log must be scanned backwards even further, until the beginning of the earli-
est transaction in the active transaction list (stored with the begin-checkpoint marker)
is found. Then the log is scanned forwards, and new values of modified records are

written in place primary memory.

t This can be determined by placing explicit end-checkpoint markers in the log during normal opera-
tion of the system, or by skipping the first begin-checkpoint marker encountered during the back-
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set CUR_SEG = first segment
quiesce transaction processing
log begin-checkpoint record and flush log tail
save timestamp of last checkpoint as 7 OLDCH)
assign new timestamp 7{ CH) to checkpoint
WHILE (CUR_SEG < number of segments in database) DO
lock CUR_SEG (exclusive)
IF ((CUR_SEG) < 7{CH)) THEN
IF ({CUR_SEG) > f(OLDCH)) THEN
lock CUR_SEG (shared)
IF (COUCOPY checkpoint) THEN
copy CUR_SEG to special buffer
unlock CUR_SEG
flush special buffer to backup disks
ELSE
flush CUR_SEG to backup disks
unlock CUR_SEG
ELSE
follow p(CUR_SEG) to old copy of segment, OLD_SEG
unlock CUR_SEG
IF ({OLD_SEG) > f(OLDCH)) OR (full checkpoint) THEN
flush old copy of segment to backup disks
END_WHILE

Figure 3.3 - COU Checkpointing

Checkpointing affects recovery time by affecting the bulk of the log. The effective
log bulk per transaction is increased by checkpointing algorithms (such as 2CCOPY and
2CFLUSH) that cause frequent transaction failures and restarts. The total log bulk is
affected by the checkpoint duration. Delays in checkpointing result in a larger log to be

processed at recovery time.

ward scan at recovery time
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4. Performance

In this section we consider the performance of the various checkpoint algorithms
that were presented in the last section. The performance metrics that we will consider

are processing overhead and recovery time (from system failures).

The performance data presented in this section were obtained from the analytic
performance model described in [Sale87a). Briefly, the model calculates processor over-
head by calculating synchronous overhead (i.e;, work done on behalf of a particular tran-
saction), and asynchronous, or checkpointing, overhead. Synchronous overhead arises
from activities such as writing data into the log, initiating log I/O, and copying seg-
ments before update (assuming COU checkpoints are being used). Asynchronous over-
head arises from activities of the checkpointer, such as flushing segments to the backup
disks. Overhead costs are calculated in terms of the costs for basic operations. Note
that in this paper we only consider overhead that is directly related to checkpointing.
We do not include the other recovery costs, such as data movement for the creation of

the log, which are covered by the model in [Sale87a).

To combine synchronous and asynchronous costs into a single measure, the asyn-
chronous cost is divided by the number of transactions that run during the duration of
the checkpoint and then added to the synchronous cost. (The checkpoint duration is
the time from the beginning of one checkpoint to the beginning of the next.) The
minimum possible checkpoint duration is a function of the bandwidth to the backup
disks and the rate at which transactions dirty database segments. The former is
estimated using model parameters, and the latter with model parameters and an
assumption that record update probability is distributed evenly across all records in the
database. The actual checkpoint duration may be made longer than the minimum by
inserting a delay between the completion of a checkpoint and the initiation of the next.
Thus, the actual checkpoint duration is a model parameter which can be set to any

value greater than the calculated minimum.

The checkpoint duration is also used to determine recovery time, the other perfor-
mance metric. Recovery time has a number of different components. The failure must
be detected, the disks must be spun-up (if power failed), the backup database and the
log must be read in ofl of the disks, and communications must be restored [Hagm86a].
We will consider only the restoration of the database from the backup and the log in
our measure of response times. The other components, while possibly introducing

significant delays, are not likely to be affected by the transaction processing system.
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We have not modeled the recovery process itself in detail, as we assume that
recovery time is dominated by 1/O time. In pa rticular, we take the recovery time to be
the time necessary to read the backup database copy into main memory, plus the time
to read the appropriate portion of the log. The time to read in the backup copy is
determined by the size of the database and the bandwidth to the backup disks. As
described in the last section, the checkpointer does affect the log reading time by

aflecting the volume of log data that must be read.

Figure 4a shows processor overhead and recovery time for each of the checkpoint-
ing algorithms. The data were obtained assuming that the checkpoints duration was as
short as possible (no time between checkpoints) and using the basic operation costs

given in Section two.

[ COUFLUSH [ ]
[ CoucoPY | ]
[ Fuzzycopy [ ]
[ 2CFLUSH ]
L 2CCOPY |
[ [ [ i I I !
200 100 0 0 5000 10000 15000
Recovery Time (Seconds) CPU Overhead (Instr./Trans )

Figure 4a - Processor Overhead and Recovery Time

Several points are apparent from Figure 4a. Most obvious is the relatively high
cost of the two-color checkpoint algorithms. Most of the cost comes from rerunning
transactions that are aborted for violating the two-color restriction. The figure also
shows that generating a transaction consistent backup with a COU algorithm is no
more costly than generating a fuzzy backup. Recovery times seem to vary little from
among the algorithms. The slightly longer times for the two-color algorithms arises

from the added log bulk of transactions aborted by the two-color constraints.

Although recovery times do not vary significantly with changes in the checkpoint
algorithm, they can be made to vary by controlling the checkpoint duration. In fact,
for a given checkpoint algorithm there is a trade-off between processor overhead and
recovery time than can be controlled by varying the checkpoint duration. This trade-
off is illustrated in Figure 4b for two of the checkpoint algorithms, COUCOPY and
2CCOPY. The two solid curves represent the trajectory of the 2CCOPY and
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Figure 4c - Effect of Varying Transaction Load

COUCOPY algorithms through the processor overhead/recovery time space as the
checkpoint duration is varied. The checkpoint duration is smallest at the left end of
each curve and increases to the right. Thus, by increasing the checkpoint duration, it is

possible to drive processor overhead down at the cost of increased recovery overhead.
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The dotted lines in the figure represent the same experiment except that the
bandwidth from primary memory to the backup disks has been doubled (by adding
more disks). The dotted lines extend further to the left than their solid counterparts
because the higher bandwidth permits a lower minimum checkpoint interval. Thus,
greater bandwidth allows the designer of a memory-resident database system greater

range of processor overhead/recovery tradeofl.

It is also interesting that the increased bandwidth is much more beneficial to
2CCOPY than to COUCOPY. This is because of reductions in the number of transac-
tions that must be rerun because of violations of the two-color constraints. As the
bandwidth increases, the checkpointer requires less time to update the backup copy. As
a result, an incoming transaction is less likely to encounter an ongoing checkpoint and,

consequently, a two-color constraint violation.

Figure 4c describes the effect of transaction load on processor overhead. The gen-
eral trend is for decreasing per-transaction cost with increasing load, because the cost
of a checkpoint is distributed over a greater number of transactions as the load
increases. However, the eflect is not uniform across checkpointing algorithms. In par-
ticular, 2CFLUSH is the least costly low-load alternative, yet i1s one of the most costly
at high loads. The reason for this is that 2CFLUSH is the only algorithm which never
requires segment copying in primary memory. Segment copying is expensive at lower

transaction rates, since the cost of copying cannot be spread over many transactions.
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(Instr/Trans) 5000 - SCCOPY COUCOPY
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Figure 4d - Effect of Varving Segment Size
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We have already seen that checkpointing overhead can be controlled by varying
the checkpoint interval. Figure 4d describes the effect on checkpointing overhead of
another parameter, the segment size. (Recall that segments are the units of transfer to
secondary storage.) Two curves are plotted for each of three of the checkpoint algo-
rithms. The dotted curves represent the case in which the checkpoint interval is held
constant at 300 seconds as the segment size varies. The solid curves represent the case
in which checkpoints are allowed to run as quickly as possible given the particular seg-

ment size.

Normally, bandwidth is greater, and thus checkpoints can complete more quickly,
when segments are larger. Thus if the checkpoint duration is held constant while seg-
ment size increases, the fraction of each checkpoint interval during which the check-
pointer is actually active decreases. One effect of this is that fewer transactions will
need to be aborted for violating two-color restrictions. This effect is responsible for the
decrease in the overhead of the 2CCOPY and 2CFLUSH algorithms (dotted curves).
Under similar circumstances, COUCOPY (dotted curve) shows only minor variations

with segment size.

Another effect of increasing the segment size is to decrease the number of segments
in the database, resulting in decreased per segment overhead costs such as disk 1/O ini-
tiation. However, when checkpoints are allowed to run as quickly as possible (solid
curves), the cost of the whole checkpoint must be shared by fewer transactions when
segments are bigger. These conflicting tendencies affect the algorithms differently.
Algorithms with costly copy overhead, namely 2CCOPY, COUCOPY, and FUZZY-
COPY (not shown) suffer from the latter tendency and show higher overhead as seg-
ment sizes increase. 2CFLUSH, which never copies data, actually exhibits lower over-

head with bigger segments.

With our final figure we consider how the availability of stable main memory to
hold the log tail aflects the cost of checkpointing. As we mentioned in Section 3,
straightforward fuzzy checkpointing (without violation of the log write-ahead protocol)
is possible when the log tail is stable. The straightforward algorithm flushes dirty seg-
ments to disk without first copying them to a special buffer; we shall term this the
FASTFUZZY algorithm here. The other algorithms change only in that log sequence
numbers are no longer needed to synchronize the checkpointer with the logging mechan-
ism.

Figure 4e shows the recovery overhead of the algorithms assuming a stable log
tail. (Checkpoints are taken as quickly as possible.) Clearly, FASTFUZZY is an

appealing algorithm in this case. The cost of maintaining the backup is only a few



21

FASTFUZZY
COUFLUSH
COoUCOPY

M

FUZZYCOPY

2CFLUSH

2CCOPY |

[ | |
5000 10000 15000

CPU Overhead (Instr./Trans )

S —

Figure 4e - Processor Overhead with Stable Log Tail

hundred instructions per transaction. The costs of the other algorithms are nearly
identical to those from Figure 4a, since the savings in log synchronization costs is not

significant.

5. Conclusions

We have presented a performance model for an important aspect of crash recovery
in memory-resident databases. We have used the model to compare five checkpointing
algorithms. Our results indicate that there may be significant differences in perfor-

mance among them algorithms.

In general, the copy-on-update algorithms can produce consistent backups for
about the same cost as a fuzzy backup, while the two-color algorithms are more costly.
If stable memory is available to hold the log tail, faster fuzzy dumps are possible. How-
ever, by considering the eflects of such variables as transaction load and the checkpoint
interval, we have shown that the absolute and relative performance of checkpointing
algorithms is not an intrinsic property of the algorithm. An algorithm’s performance

depends on the system and environment of which it is a part.

We have considered checkpoint algorithms independently of the other components
of the transaction processing system. In [Sale87a], we explore the interactions between
the checkpointer and some of the other components, namely logging and storage
management of both primary and secondary storage. In some cases, more expensive
checkpointing algorithms may actually prove to be beneficial because they can be used

in conjunction with less costly logging or storage management techniques.



22

We are currently implementing a testbed with which we will be able to experimen-
tally evaluate the algorithms presented here, as well as other aspects of crash recovery
in memory-resident databases. We hope to able to measure synchronization and other
delays using the testbed, as well as to verify the processor overhead and recovery time

models used here.
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