
The Presumed-Either
Two-Phase Commit Protocol

Gopi K. Attaluri and Kenneth Salem

Abstract—This paper describes the presumed-either two-phase commit protocol.

Presumed-either exploits log piggybacking to reduce the cost of committing

transactions. If timely piggybacking occurs, presumed-either combines the

performance advantages of presumed-abort and presumed-commit. Otherwise,

presumed-either behaves much like the widely-used presumed-abort protocol.

Index Terms—Two-phase commit protocol, distributed transaction, presumed-

abort, presumed-commit, atomicity.

�

1 INTRODUCTION

COMMIT protocols are used to coordinate the participants in a
distributed transaction so that all agree on the transaction’s
outcome. Presumed-abort and presumed-commit are the two
best-known two-phase commit protocols [7]. Presumed-abort is
widely implemented. It handles aborting transactions efficiently
and requires only a single forced log write at the coordinator in the
common case that the transaction commits. It also handles read-
only transactions efficiently. Presumed commit requires fewer
messages than presumed-abort to commit a transaction, but also
requires an extra forced log write at the coordinator.

In the original paper that described presumed-abort and
presumed-commit, it was noted briefly that the two protocols
might be used side by side, with the protocol choice being made on
a transaction-by-transaction basis [7]. This idea is also the basis of
presumed-either. In presumed-either, the presumed-abort/pre-
sumed-commit choice is based on whether a list of the processes
participating in the transaction can be piggybacked into non-
volatile storage before the commit protocol begins. Like presumed-
abort, presumed-either commits read-write transactions using one
forced write into the transaction manager’s log. Read-only
transactions require none. In addition, presumed-either eliminates
the need for commit acknowledgement messages for those
transactions for which piggybacking succeeds.

2 TWO-PHASE COMMIT

A distributed transaction will be assumed to involve a tree of
processes, as described in [4], [7]. Neighboring processes can
communicate by exchanging messages. Processes are of two types.
Resource managers (RMs), e.g., database management systems, are
at the leaves of the tree and it is at the RMs that the actual work of
the transaction is performed. Processes at internal nodes or at the
root are transaction managers (TMs). TMs participate in the
commit protocol to ensure that all processes agree on the
transaction’s outcome. The protocol is initiated by the TM at the
root of the process tree.

A more general peer-to-peer process model also exists and
commit protocols for it have been described in [5], [6], [8]. The
peer-to-peer model will not be considered further in this paper.

The process hierarchy for a particular transaction may be

formed dynamically as the transaction executes. For example, the

XA interface defined as part of the X/Open distributed transaction

processing standard includes a “Join” method through which a

process notifies a TM that it is a participant in an ongoing

transaction [2]. The details of the mechanism by which processes

join the tree are not particularly important to the correct execution

of the commit protocol, so long as each TM has been made aware

of its children prior to the protocol’s initiation.
Conceptually, each process has associated with it a log, which is

a read/append data structure. Each log is divided into two parts.

The log tail exists in volatile storage and contains the most recently

appended log data. The remainder of the log exists in nonvolatile

storage. A process may fail at any time during the execution of the

transaction or the commit protocol. A failure destroys contents of

that process’ log tail.
A log write operation appends data to the log tail. A forced log

write operation appends data to the log tail and then moves the

contents of the log tail into nonvolatile storage. Data that are

already in the log tail at the time of a forced write are said to have

been piggybacked into the nonvolatile log by the forced write

operation. Since nonvolatile storage is often implemented using

relatively slow block-oriented devices such as disks, forced log

write operations are considered to be expensive, while nonforced

write operations are not.
The primary goal of a two-phase commit protocol is to ensure

that all processes agree on whether a transaction commits or

aborts. This should be accomplished with as few messages as

possible and as few log writes, particularly forced writes, as

possible. The protocol should also allow a participating process to

“forget” a transaction as quickly as possible once it has learned the

transaction’s outcome. This means that the process is free to

discard information concerning that transaction without jeopardiz-

ing the ability of others to learn of the outcome.
Comprehensive descriptions of the presumed-abort and pre-

sumed-commit protocols can be found in [7]. Assuming that a

transaction’s process tree consists of a single TM and one or more

RMs and that the transaction commits, the presumed-abort

protocols operates as follows: The TM sends Prepare messages

to each RM, which responds by force writing Prepare records

into its log and then sending a positive vote to the TM. The

Prepare log record indicates that an RM has agreed to not make a

unilateral commit or abort decision and has ceded control of the

transaction to the coordinating TM. Once it has collected all of the

votes, the TM force writes a Commit record into its log and sends a

Commit message to each participant. Each RM then forces a

Commit record into its log and acknowledges the TM’s Commit

message. The RMs can forget the transaction once they have

written their Commit record. The TM forgets once it has received

an acknowledgement from every RM.
The presumed-commit is similar, except that the TM must

force-log a Participant record1 before sending the Prepare

messages and the RMs do not have to force their Commit records

and do not acknowledge the Commit message. The TM can forget

the transaction as soon as it has logged its Commit record and sent

Commit messages to the RMs. The Participant record is needed

in case the TM fails after sending out Prepare messages, but

before it has collected all of the votes and logged a decision. The

TM must abort the transaction in this case and it must obtain

acknowledgements from all of the RMs before forgetting the

transaction. The Participant record contains a list of the RMs

involved in the transaction so that the TM can determine when all

of them have acknowledged.

1190 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

. G.K. Attaluri is with IBM Canada Ltd., 1150 E. Eglinton Ave. Toronto,
Ontario M3C 1H7 Canada. E-mail:gkattalu@hotmail.com.

. K. Salem is with the Department of Computer Science, University of
Waterloo, Waterloo, Ontario N2L 3G1 Canada.
E-mail: kmsalem@uwaterloo.ca.

Manuscript received 18 May 2000; revised 18 Apr. 2001; accepted 19 Apr.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104341. 1. This was called a Collection record in [7].

1041-4347/02/$17.00 � 2002 IEEE

3 THE PRESUMED-EITHER PROTOCOL

In this section, the presumed-either protocol is described under the
assumption that the process tree consists of a single TM and one or

more RMs. The more general case is considered in Section 4.
The main idea behind the presumed-either protocol is simple:

Try to piggyback the list of participating RMs into the TM’s log

prior to the initiation of commit processing, i.e., before the
Prepare messages are sent. If this can be accomplished, the
presumed-either protocol operates like presumed-commit, but
without the need to force an initial Participant record into the

log, since all of the necessary information is already there. If
piggybacking cannot be accomplished, presumed-either operates
much like presumed-abort. This flexibility allows presumed-either

to combine the advantages of presumed-abort and presumed-
commit. Like presumed-abort, presumed-either never requires an
initial forced log write. Like presumed-commit, presumed-either
can avoid acknowledging Commit messages, provided that

piggybacking is successful.
The main difficulty with this idea is that the commit protocol’s

operation may vary from transaction to transaction since piggy-

backing may be successful for some transactions but not for others.
Presumed-either must maintain the distinction between these two
types of transactions to ensure that all transactions are properly

terminated and forgotten. The remainder of this section presents
the presumed-either protocol in more detail and describes how it
accomplishes this.

3.1 Logging Transaction Participants

Under presumed-either, a transaction manager logs Partici-

pant records during the execution of a transaction before commit

processing begins. Specifically, whenever the TM learns that an
RM has joined the transaction, it immediately logs a Partici-

pant record containing the identity of the newly-joined RM. Thus,
each transaction’s participants will, in general, be described by a

set of Participant records rather than a single record as was the
case in the presumed-commit protocol.

The Participant log writes are not forced. As a result, a

failure of the TM may result in the loss of some Participant

records. However, it is also possible that Participant records
may be piggybacked into the nonvolatile log. For example, this

may occur because a log page fills up or because the commit or
abort of some other transaction causes a forced log write.

The TM maintains a flag that controls how the commit protocol

operates. There is a separate flag for each transaction. When the
TM is ready to begin the commit processing for a transaction, it

must choose one of two values, PA or PC, for that transaction’s flag.
If the TM desires to commit the transaction and all of that
transaction’s Participant records have been successfully pig-
gybacked, the TM chooses PC as the flag value. Otherwise, it
chooses PA. The TM can use log sequence numbers [2] to
determine whether or not a transaction’s Participant records

have been piggybacked.

3.2 Committing and Aborting Transactions

Commit processing under the presumed-either protocol is illu-

strated in Fig. 1 and Fig. 2. Fig. 1 illustrates the scenario in which
all RMs vote to commit the transaction. Fig. 2 illustrates the
scenario in which some RM votes to abort it. The TM’s interaction
with a single RM is shown and that RM is assumed to have cast a
positive vote in both scenarios. Similar interactions occur between
the TM and the remaining RMs. In both figures, the notation

condition?:action is used to describe a conditional action.
The execution of those portions of the protocol that are drawn
using dashed lines is conditional, depending on the state of the
protocol flag.

As shown in Figs. 1 and 2, the flag value that has been chosen
for the transaction is communicated to each participating RM by
including it in the Prepare messages. Each RM includes the flag
in the Prepare log record that it forces to nonvolatile memory
before sending its vote to the coordinator. The TM itself does not

log the flag value.2

When the flag is set to PC, the second phase of presumed-either
is similar to the presumed-commit protocol’s second phase. That
is, the TM requires acknowledgments for the transaction if it is

aborted, but does not require them if the transaction commits. If
the flag is set to PA, presumed-either is similar to the presumed-
abort protocol, and only Abort messages need to be acknowl-
edged.

Both scenarios shown in Figs. 1 and 2 assume that the TM
wishes to commit the transaction. In some cases, the TM may
desire from the outset to abort the transaction. In that case, the first
phase of the protocol can be skipped. The TM sets the flag to PA,
regardless of whether the transaction’s Participant records are
in stable storage. It then executes the second phase of the protocol.

That is, it sends Abort messages to all participants and then
forgets the transaction. Upon receiving the Abort messages, the
RMs write unforced Abort records into their logs. This behavior is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002 1191

Fig. 1. The presumed-either protocol commit scenario.

2. A similar mechanism was suggested in [7] to allow different
transactions to use different protocols. In that case, however, the protocol
flag was to be logged at the TM as well as the RMs.

identical to that of the presumed-abort protocol in the same

situation.
The tables in Fig. 3 summarize the costs of the presumed-either

protocol for the two scenarios shown in Figs. 1 and 2. Two costs for

each protocol are tabulated: the number of forced log writes and

the number of messages sent. Fig. 3 also shows the costs of the

presumed-abort and presumed-commit protocols.
The costs for presumed-either depend on the TM’s success at

piggybacking Participant records. Like presumed-abort, pre-

sumed-either always requires a single coordinator log force to

commit a transaction. Unlike presumed-abort, however, pre-

sumed-either can avoid acknowledgement messages when piggy-

backing is successful. Presumed-either always requires fewer log

forces than presumed-commit, though it may require an acknowl-

edgement message that presumed-commit does not. The more

effective piggybacking is, the closer presumed-either will come to

matching presumed-commit’s message count.

3.3 The Presumed-Either Flag Revisited

In Section 3.2, it was stated that the TM sets the protocol flag to PC

when it wants to commit a transaction whose Participant

records have been piggybacked and to PA otherwise. In fact, the

TM has some additional leeway in making this decision. The rule is

that the TM may choose a flag value of PA for any transaction and it

must choose a flag value of PA if at least one of the transaction’s

Participant records has not been piggybacked.
Fig. 3 shows that presumed-either can commit a transaction

most efficiently if it chooses a flag value of PC and can abort a

transaction most efficiently if it chooses a flag value of PA. If the

TM wants to commit the transaction and if the most likely outcome

of the commit protocol is that the transaction will, in fact, commit,

then it makes sense for the TM to set the flag to PC whenever the

flag rule allows it to do so. However, if the TM has some advance

knowledge that a transaction is likely to be aborted because of a

negative vote from an RM, the TM can and should choose a flag

value of PA, even if piggybacking is completely successful.

3.4 Failure Recovery

The TM and the RMs may fail at any time while presumed-either is

being used to terminate a transaction. Recovery from RM failures

is straightforward. For any unresolved (prepared but neither

committed nor aborted) transaction, the RM may send a Query

message to the TM. This message carries the flag value that was

logged with the transaction’s Prepare record. If the TM has not

forgotten the transaction, it can respond with a Commit or Abort

message, as appropriate. Otherwise, the TM uses the Query’s flag

value to determine its response: it sends Commit if the flag is PC
and Abort if the flag is PA.

Recovery at the TM is less straightforward because the
coordinator does not log its flag value. As usual, the recovering
TM checks its log to determine which transactions were in progress
at the time of the failure. For some transactions, the TM may find a
Commit record but no End. In this case, the transaction’s flag must
have been PA. Furthermore, since Participant records will have
been piggybacked by the forced Commit record (if not sooner), the
TM will be able to determine the complete set of participants from
the log. In this case, it simply redoes the second phase of the
protocol by sending Commit messages to the participants and
waiting for acknowledgements. For transactions for which the TM
finds an Abort record but no End, the situation is similar. In that
case, the flag must have been PC, which implies that all
Participant records had been piggybacked prior to the start
of the commit protocol. The TM sends Abort messages to the
participants and awaits acknowledgements.

A more difficult situation arises if the TM finds transactions
with Participant records but no Abort or Commit record. The
TM must abort the transaction, however, there are several
problems. The TM does not know whether the list of logged
participants is partial or complete; some Participant records
may not yet have been piggybacked to the disk at the time of the
failure. The TM may or may not have chosen a flag value before
the failure and sent it to one or more RMs in Prepare messages.
Since the flag value is not logged at the TM, this value, if any, is
unknown. Furthermore, there may be RMs that are in doubt about
the transaction’s outcome.

How should the TM recover? There are two scenarios to
consider:

1. All Participant records may be in the log.
2. Participant records for some RMs may be missing from

the log because they were still in the log tail at the time of
the failure.

The following procedure correctly handles both cases. The TM
chooses a flag value of PC, sends Abort messages containing this
flag to all known participants, and awaits acknowledgements.
When all known participants acknowledge, the TM logs End and
forgets the transaction. This works in the first case because all
participants are known. Once all participants have acknowledged,
the transaction can safely be forgotten because it will have been
resolved at all participants. In the second case, it works correctly
for all known participants for the same reason. If the transaction
remains in doubt at any unknown participants, those participants

1192 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

Fig. 2. The presumed-either abort scenario. Fig. 3. Summary of logging and message costs of presumed-either, presumed-

abort, and presumed-commit.

must have logged a flag value of PA. This is because the TM cannot

have chosen a flag value of PC if some Participant records had

not been piggybacked into nonvolatile storage. If such an unknown

participant attempts to resolve the transaction, its Query will

therefore carry a PA flag. Thus, even if the Query arrives after the

TM has forgotten the transaction, the PA flag it carries will cause

the TM to respond properly with an Abort message.
Normally, the flag value carried in an Abort or Commit

message will match the flag value logged by an RM when it

prepares a transaction. However, failures may cause them to differ.

In particular, if the TM elects to use a PA flag and then fails before

making a commit or abort decision, it will send Abort messages

containing a PC flag when it recovers. For this reason, an RM’s

response to a Commit or Abort message is based on the flag value

carried in that message and not on the flag value logged with the

RM’s Prepare record.

4 MULTILEVEL PRESUMED-EITHER

So far, presumed-either has been presented under the assumption

of a two-level process tree in which each transaction involves a

single TM. Like other commit protocols, presumed-either can also

operate in a multilevel process hierarchy. A TM at an internal node

acts as an RM to its parent TM and as a TM to its children. Each

process is normally aware only of the processes immediately above

and below it in the tree.
In multilevel presumed-either, the root TM and the RMs behave

exactly as shown in Figs. 1 and 2. Fig. 4 illustrates the behavior of

an internal TM during the first phase of the presumed-either

protocol. In the multilevel protocol, all TMs, including internal

ones, write Participant records to their logs during transaction

execution. The Participant records written by a TM describe

only its immediate children. Each internal TM has its own per-

transaction flag, which it sets to PA or PC depending on whether its

own Participant records have been piggybacked at the time it

receives the Prepare message. Thus, it is possible that some TMs

in the hierarchy will set their flags to PA while others choose PC.
As shown in Fig. 4, when an internal TM logs its Prepare

message it includes the flag value sent by its parent TM and not its

own flag. In Fig. 4 (and Fig. 5), flag1 refers to the flag value

chosen by the parent TM (TM1) while flag2 refers to the flag

chosen by the child, TM2.
Fig. 5 illustrates the second phase of the multilevel presumed-

either protocol. The four scenarios illustrate the possible behaviors

that may arise depending on the coordinator’s choice of flag value

and its commit decision. Essentially, an internal TM acts as a TM to

its children and as an RM to its parent. However, note that an

internal TM need only force write its Commit/Abort log record if

its parent requires an acknowledgment. Unlike the root TM, it

need not force the record prior to forwarding the transaction’s

outcome to its children.
Fig. 6 summarizes the costs of multilevel presumed-either

for the two extreme cases in which all TMs choose the same

flag value. When different TMs choose different values,

performance will fall between the extremes. Fig. 6 also shows

the costs of multilevel presumed-abort and presumed-commit.

When piggybacking is successful, presumed-either can commit

a transaction in an n-process tree with one forced write per

process.

4.1 Read-Only Transactions

An RM is a read-only participant in a transaction if it has not made

any changes to its local data on behalf of the transaction. A TM is

read-only if all of its subordinate TMs and RMs are read-only. To a

read-only participant, it makes no difference whether a transaction

commits or aborts.
In the presumed-abort protocol described in [7], a read-only

process that receives a Prepare message votes Read-Only to its

parent TM. It performs no logging and does not participate at all in

the second phase of the protocol. Similarly, a TM that receives

Read-Only votes from all of its children votes Read-Only to its

parent (if it has one) and avoids the second phase of the protocol.

In the event that all participants in a transaction are read-only, the

entire second phase of the protocol is avoided. The net effect is that

no logging at all is required to terminate a completely read-only

transaction using presumed-abort [7], [8]. Since read-only transac-

tions are common in many systems, this is a very desirable

property.
The same technique can be applied to the PE protocol. As is the

case for read-only presumed-abort, read-only presumed-either

requires no logging at all during the execution of the commit

protocol itself. This is true whether the TMs set the protocol flag to

PA or to PC. However, under presumed-either, TMs attempt to log

Participant records while the transaction is still active, in the

hope that they will be piggybacked before the commit protocol

begins. Assuming that a transaction is not known to be read-only

until the end of the first phase of the commit protocol, TMs will

still log Participant records for read-only transactions under

presumed-either. Thus, it is more accurate to say that, for read-

only transactions, read-only presumed-either requires no forced

log writes at the TMs, while read-only presumed-abort requires no

logging at all.

5 FURTHER OPTIMIZATIONS

A number of further optimizations of presumed-abort and

presumed-commit have been described. This section presents

several of the major ones and and their relationships to presumed-

either.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002 1193

Fig. 4. Multilevel presumed-either protocol, phase one.

5.1 Presumed Commit with Bulk Transaction Resolution

Lampson and Lomet have developed a presumed-commit optimi-

zation that retains that protocol’s main advantage (no Commit

acknowledgments) while eliminating its main disadvantage (two

log forces required at the coordinator) [3]. They point out that, for a

transaction that is aborted due to a failure at a TM, the first

presumed-commit log force at the TM serves two purposes at crash

recovery: It identifies the transaction as an aborted transaction for
which acknowledgments are required and it identifies the
participants that must acknowledge the abort decision. The
optimized protocol addresses these two functions differently. It
assumes that the transaction identifiers assigned to new transac-
tions increase monotonically. At any time, the set of available
transaction identifiers is confined to a fixed range and all
identifiers within that range are implicitly logged. In the event of

1194 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

Fig. 5. Multilevel presumed-either protocol, phase two.

a failure, the TM resolves any transaction within that range as
aborted and in need of acknowledgement, unless it has a Commit
or End entry in the log. Because the participants in these aborted
transactions cannot be determined (from the log or otherwise), the
coordinator cannot demand acknowledgments from them. The
coordinator cannot forget such transactions. Therefore, their
identifiers are recorded in nonvolatile storage and are retained
indefinitely.

What Lampson and Lomet achieve using monotonic and

persistent transaction identifiers, the presumed-either protocol

attempts to achieve by piggybacking Participant records into

the log. The performance of the optimized presumed-commit

protocol is the same as that of presumed-either when piggybacking

is successful. Both require a single log force at the TM and neither

requires commit acknowledgements. Ideally, the overall perfor-

mance of presumed-either will approach that of optimized

presumed-commit. However, when piggybacking fails, pre-

sumed-either requires Commit acknowledgements that the opti-

mized presumed-commit does not. On the other hand, presumed-

either does not require that transaction identifiers increase

monotonically, nor does it require that certain transaction

identifiers be retained indefinitely in nonvolatile storage.

5.2 Rooted Multilevel Presumed Commit

The rooted multilevel presumed commit protocol is an

optimized multilevel presumed-commit protocol that eliminates

some forced log writes for TMs at internal nodes in the process

tree [1]. Like presumed-either and the optimized presumed-

commit described in the previous section, rooted-presumed-

commit seeks to eliminate the forced logging of the Parti-

cipant record that occurs in presumed-commit. The approach

taken by the rooted-presumed-commit protocol is to use the

root TM to log the identities of all processes in the tree so that

internal TMs need not log Participant records.

In rooted-presumed-commit, the root TM’s forced Partici-

pant record includes the identities of all other processes in the tree

and not just its immediate descendants. In addition, every other

process in the tree must include a list of all of its ancestors in its

Prepare log record. Rooted-presumed-commit also differs from

multilevel presumed-commit during failure recovery. When an

internal TM receives a Query from a subordinate about a

transaction that it has forgotten, it does not simply respond with

a Commit message, as would be the case in multilevel presumed-

commit. Instead, it must pass the Query up to its own parent,

which may or may not remember the transaction.
By eliminating forced log writes at internal TMs, the rooted-

presumed-commit protocol can commit a transaction in an

n-process tree using nþ 1 log forces. This may be substantially

less than the nþ c log forces required by regular multilevel

presumed-commit and it is only one more than the number

required by presumed-either in the best case, when all TMs choose

a flag value of PC. The extra forced log write occurs at the root TM,

where rooted-presumed-commit requires two forced log writes

and presumed-either requires one.

A rooted-presumed-either protocol would also be possible. In

such a protocol, the root TM would behave much as it does in

presumed-either, while the remaining processes would behave as

they do in rooted-presumed-commit. All processes in the tree

would propagate their identities to the root TM as in the rooted-

presumed-commit protocol. If the root TM is able to piggyback the

identities of all processes into its log before the commit protocol

begins, it may choose its flag value to be PC, otherwise it must

choose PA. Internal TMs would not choose flag values. Instead, the

root TM’s flag value would be propagated down the tree to the

RM. Such a protocol would be able to commit a transaction using

n forced log writes if the root TM chooses a presumed-commit flag

and nþ 1 forced log writes if it chooses PA. Thus, the worst-case

number of forced log writes would be the same as the number

required by rooted-presumed-commit. However, the rooted-PE

protocol would also inherit some of the disadvantages of rooted-

presumed-commit. In particular, the root TM must be aware of all

other processes in the tree.

5.3 Other Optimizations

The “last agent” optimization allows the root TM to transfer

responsibility for the commit/abort decision to a subordinate [8]. It

may improve performance by eliminating a message when only a

single subordinate is involved or when communication with one

subordinate is more costly than communication with others. Tree

flattening optimizations may be applied to multilevel protocols.

Flattening allows the root TM to communicate directly with the

leaf RMs, bypassing intermediate TMs. In the flattening optimiza-

tion described in [8], the identities of the leaf RMs are propagated

to the root TM during the first phase of the commit protocol.

Flattening is then applied during phase two. The restructured

presumed-commit protocol described in [1] assumes that the

RM identities are propagated to the root TM during transaction

execution, so communication is flattened during both phases of the

commit protocol. The application of any of these optimizations to

presumed-either is straightforward.

6 CONCLUSION

Most two-phase commit protocols, such as presumed-abort and

presumed-commit, handle all committing transactions uniformly.

In contrast, the presumed-either protocol uses a dynamic strategy.

Transactions which can be resolved efficiently using presumed-

commit are resolved that way. For other transactions, presumed-

abort is used. Presumed-either exploits the fact that transactions

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002 1195

Fig. 6. Summary of logging and message costs of multilevel presumed-either,
presumed-abort, and presumed-commit. There are n processes in the tree,
including c TMs and n� c RMs.

are processed concurrently and that log records for one transaction
may be piggybacked into the log by log writes generated by others.

Presumed-either offers a potential performance gain with little
risk. In the worst case, committing a transaction using presumed-
either is no more costly than committing under the widely-
implemented presumed-abort protocol. Furthermore, presumed-
either has the attractive property that it is likely to perform best in
high-performance systems that flush log pages frequently to stable
storage.

ACKNOWLEDGMENTS

The authors would like to thank C. Mohan for a very useful
discussion about two-phase commit protocols.

REFERENCES

[1] Y. Al-Houmaily, P. Chrysanthis, and S. Levitan, “An Argument in Favor of
the Presumed Commit Protocol,” Proc. Int’l Conf. Data Eng., pp. 255-265,
1997.

[2] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1992.

[3] B. Lampson and D. Lomet, “A New Presumed Commit Optimization for
Two Phase Commit,” Proc. Int’l Conf. Very Large Data Bases, pp. 630-640,
1993.

[4] B.G. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, and R.A. Yost,
“Computation and Communication in R*: A Distributed Database
Manager,” ACM Trans. Computer Systems, vol. 2, no. 1, pp. 24-38, 1984.

[5] C. Mohan, K. Britton, A. Citron, and G. Samaras, “Generalized Presumed
Abort: Marrying Presumed Abort and SNA’s LU 6.2 Commit Protocols,”
Technical Report RJ 8684, IBM Research Division, Mar. 1992.

[6] C. Mohan and D. Dievendorff, “Recent Work on Distributed Commit
Protocols, and Recoverable Messaging and Queueing,” Bull. IEEE Technical
Committee on Data Eng., vol. 17, no. 1, pp. 22-28, Mar. 1994.

[7] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction Management in the
R* Distributed Database Management System,” ACM Trans. Database
Systems, vol. 11, no. 4, pp. 378-396, 1986.

[8] G. Samaras, K. Britton, A. Citron, and C. Mohan, “Two-Phase Commit
Optimizations in a Commercial Distributed Environment,” Distributed and
Parallel Databases, vol. 3, pp. 325-360, 1995.

1196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

