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Abstract

Fine-grained access controls for XML define access priv-
ileges at the granularity of individual XML nodes. In this
paper, we present a fine-grained access control mechanism
for XML data. This mechanism exploits the structural lo-
cality of access rights as well as correlations among the
access rights of different users to produce a compact phys-
ical encoding of the access control data. This encoding
can be constructed using a single pass over a labeled XML
database. It is block-oriented and suitable for use in sec-
ondary storage. We show how this access control mecha-
nism can be integrated with a next-of-kin (NoK) XML query
processor to provide efficient, secure query evaluation. The
key idea is that the structural information of the nodes and
their encoded access controls are stored together so the ac-
cess privileges can be checked efficiently. Our evaluation
shows that the access control mechanism introduces little
overhead into the query evaluation process.

1 Introduction

Access controls in relational databases are usually de-
fined at a coarse granularity, e.g. on entire tables. In
contrast, much of the work on XML access controls as-
sumes a fine-grained model in which access controls can
be specified for individual nodes. Fine-grained access con-
trol for XML gives rise to several challenges. First, the ac-
cess rights specification is potentially very large: propor-
tional to both the size of the database itself and the number
of database system users. Thus, there must be a reason-
ably simple mechanism for specifying these rights and there
must a compact way to store them.

Second, access controls must be implemented efficiently,
since processing even a single query may involve many ac-
cess right checks. This is not normally an issue when access
controls are coarse-grained. In relational database systems,
access controls are normally checked once before a query
is processed. If all of the database objects (e.g. relations)
on which a query depends are accessible, then the query is

processed, otherwise it is rejected. In contrast, most fine-
grained access control mechanisms never reject a query.
Each query is answered using that portion of the database
that is accessible to the user that submits the query. As a
result, access controls and query evaluation are very closely
related.

There is a plethora of literature on specifying fine-
grained access controls on XML data using high level lan-
guage for various access control needs. Instead of manu-
ally specifying access control for each XML node,the sys-
tem administrator defines a set of rules and derive access
controls for each node in the XML document through rule-
based propagation and inferences. However, since evaluat-
ing the rules at runtime is costly, it is desirable to the net
effect of these access control rules into incrementally main-
tainable accessibility maps, in which each XML node is la-
beled as either accessible or non-accessible for each subject
under each action mode[12, 5]. The efficient storage and
use of such maps are the problems that we address in this
paper.

Some recent work [10] involves schema-based access
control specifications, which do not require instance-level
accessibility maps. However, schema-based approaches
are not always applicable, since the schema may be non-
existent, of inappropriate for the specification of the desired
access controls. Additional discussion of related work can
be found in Section 6.

In this paper we present a simple scheme called Docu-
ment Ordered Labeling (DOL) for the compact representa-
tion of fine-grained access control information. Like Com-
pressed Accessibility Maps (CAMs) [17], a recently pro-
posed scheme for representing XML access control data,
DOL exploits the structural locality of the access control
data to achieve compression. Unlike CAM, DOL is also
able to exploit correlations among the access rights of dif-
ferent users to achieve a substantial amount of additional
compression in multi-user environments. DOL is a disk-
oriented, multi-user scheme, while a CAM is intended to
store a single user’s access control data in memory.

The DOL access control representation is highly com-
patible with next-of-kin (NoK) pattern matching, which is
an efficient technique for processing XML twig queries
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[19]. NoK query processing uses a compact representa-
tion of document structure to evaluate some kinds of struc-
tural query constraints (e.g. parent/child relationships) very
efficiently. In this paper, we show how to implement se-
cure twig query processing by integrating DOL-based ac-
cess control with NoK query processing.

We have used both real and synthetic access control data
to evaluate the DOL technique. In terms of space efficiency,
our results show that a single-user DOL is somewhat less
compact than a single-user CAM. However, in a multi-user
environment the DOL representation is much more compact
than a set of per-user CAMs. In terms of query process-
ing time, we have found that multi-user secure twig query
evaluation with DOL and NoK is approximately 20% more
expensive in the worst case than unsecured evaluation with
NoK alone.

2 DOL: Access Control Labeling

We model an XML document as a tree in which the
nodes correspond to the document’s elements and the edges
represent parent/child relationships among the elements.
Sibling nodes in the tree are ordered. Our fine-grained ac-
cess control model consists of a set of subjects 1, denoted by
S, a set of access control modes, such as read and write, de-
noted by M, and the set D of nodes in the XML tree. These
nodes are the objects to which access is to be controlled.

We assume that the net effect of an access control policy
over a database instance can be captured by an accessibility
function

accessible :S ×M×D → {true, false}
The accessibility function specifies whether a given subject
can access a given data item in a given action mode. The
accessibility function is often represented as an access con-
trol matrix [14]. For XML data, the accessibility function
for a given action mode can also be represented by associ-
ating each XML node a list of subjects able to access it for
that action mode. We will refer to an XML tree without ac-
cess control labels as a data tree, and to a tree with access
control labels as a secured tree.

Throughout most of the rest of the paper, we will assume
that there is only a single access mode (i.e., |M| = 1).
Please be aware that we impose this restriction for the pur-
poses of presentation only. The approach in this paper can
be easily applied for multiple action modes in a similar way
for multiple users (see more in [?]).

We will first present the DOL scheme for the case of a
single access control subject, and then show how to general-
ize it to multiple subjects. Figure 1(a) shows a secured tree

1In this paper we use subjects to denote both users and user groups, and
we use users to denote individuals trying to access data. The subject hi-
erarchy, which describes group membership, is assumed to be maintained
separately.

for a single subject, and the corresponding DOL represen-
tation of the subject’s access rights. Shaded nodes are ac-
cessible to the subject, unshaded nodes are non-accessible.
We define a transition node to be a secured tree node whose
accessibility is different from its document-order predeces-
sor (i.e., its direct previous node in document-order). As
a special case, the root node of a secured tree is always a
transition node. The DOL corresponding to a given secured
tree is simply a list, in document order, of the tree’s transi-
tion nodes, together with their accessibilities. In the DOL
shown in Figure 1(a), accessible and non-accessible transi-
tion nodes are labeled with “+” and “−”, respectively.

Document order is, of course, one of many possible node
orders on which one could base an access control encoding
like the DOL. We have chosen document order for several
reasons. First, NoK query processing uses a document or-
der encoding of document structure, and we want DOL to
be compatible with NoK. Second, since XML parsers and
other tools process XML data in document order, a doc-
ument order encoding of access rights can be constructed
on-the-fly using a single pass through a labeled XML docu-
ment.

Finally, and most importantly, it allows structural lo-
cality of access controls to be exploited to reduce their
size. The terms “vertical” and “horizontal” locality have
been used to describe locality among parent/child nodes and
among sibling nodes, respectively [17]. Structural local-
ity is encouraged by access control specifications that prop-
agate access rights along the hierarchical structure of the
XML data, and it has been observed in real access control
data [17]. Nodes that are adjacent in document order often
have parent/child or sibling relationships in the document.
Although this is not always the case, we expect that much of
the structural locality that exists in a document’s access con-
trols will translate to locality in document order. Such lo-
cality will reduce the number of transition nodes, and hence
the size of the DOL. In Section 5 we measure the impact

(a) one user (b) two users (c) DOL of two
users

Figure 1. XML data with fine-grained access
control and its DOL
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of this locality on the size of the DOL using several access
control datasets.

2.1 DOL for Multiple Subjects

Aside from the structural locality of access controls for
a single subject, we conjectured that different subjects in
an access control system may exhibit correlated access con-
straints 2. For example, subjects assigned within the same
department may have similar access controls. We wish to
further compress the access control labeling by taking ad-
vantage of such correlations.

Figure 1(b) shows a tree labeled with access rights for
two subjects. In the figure, each node is divided into two
parts, with the left part representing the access rights of one
subject and the right part representing the access rights of
the other. As was the case in Figure 1(a), shading represents
accessibility. For example, node e is accessible to the first
subject but not to the second.

We can encode these access rights in much the same way
as we did for a single user, by recording a list of transition
nodes. With each transition node we record its access con-
trol list. Thus, when several consecutive nodes have the
same access control list, we only record it once. Further-
more, we expect the access control lists for the transition
nodes will reoccur frequently throughout the secured tree.
We can exploit this using dictionary compression: each dis-
tinct access control list that appears in the secured tree is
recorded once in a codebook (dictionary). With each tran-
sition node in the DOL we record a reference to the appro-
priate access control list in the code book, rather than the
access control list itself.

Figure 1(c) shows the multi-user DOL that corresponds
to the secured tree in Figure 1(b). Each transition node in
the list has a numeric superscript. This is the access control
code (index into the codebook) for that transition node. The
codebook itself contains three entries, because only three of
the four possible distinct access control lists actually appear
in the secured tree. Each codebook entry is an access con-
trol list, which we present as a bit vector with one bit for
each access control subject.

The overall storage cost of DOL includes the distinct ac-
cess control lists (the codebook entries) as well as the tran-
sition nodes. The number of distinct access control lists
and transition nodes depends on the correlations among
subjects’ access controls. Generally speaking, if the ac-
cess controls are not closely correlated, the transition nodes
will be dense and the number of codebook entries will be
large (codebook width grows linearly in the number of sub-
jects). Suppose we have |S| single subject DOLs, each hav-
ing T transition nodes (in reality, each DOL would have a

2There may also exist correlations among action modes, but in this pa-
per we restrict our attention to subject correlations only. We believe our
approach can also exploit correlations among action modes

different number of transition nodes, but we simplify this
here). In the worst case, when subjects access controls are
independent, the number of distinct access control codes in
the combined multi-subject DOL would grow exponentially
with the number of subjects until it reaches the maximum
min(|D|, 2|S|). Meanwhile, the number of non-transition
nodes would be:

|D| × (1 − T

|D| )
|S|

Apparently, as S goes up, the number of non-transitional
nodes shrinks exponentially until each XML node becomes
a transition node.

However, the real access control systems that we have
studied do not exhibit this worst case behavior. We will
see in Section 5 that there do exist strong correlations of
access controls among subjects in these systems that make
the overall size of DOL grow sublinearly with the number
of subjects in the system.

3 Physical Representation of the DOL

In this section we describe our physical representation
of the DOL, which is intended to be incorporated into an
existing query processor framework called NoK [19] to op-
timize secure query evaluation. For this reason, we begin
with a brief overview of NoK query processing.

3.1 NoK Query Modeling and Physical Storage

A NoK query processor accepts twig queries described
by pattern trees and evaluates them against an XML docu-
ment by pattern matching. Each successful pattern match
generates a set of bindings between pattern tree nodes and
data tree nodes. The query result consists of all possible
bindings. For example, the pattern tree in Figure 2 will gen-
erate one match from the data tree.

The NoK query processor first partitions the pattern tree
into NoK subtrees, each containing only parent-child or
following-sibling relationships (the so-called “next-of-kin”
relationships) among its nodes. Then the processor finds
matches for these NoK subtrees from the data tree. Finally
it combines the matched results using structural joins on the
ancestor-descendant relationship. For example, the pattern
tree in Figure 2 would be split into two NoK subtrees, each
matches to a fragment in the data tree. The two fragments
found are thus connected by the ancestor-descendant re-
lationship between nodes a and h.

The NoK query processor uses a physical representa-
tion of the data tree that allows it to match NoK sub-
queries very efficiently. The structure of the data tree is
stored separately from the node values in a compact rep-
resentation. It is encoded by listing the nodes in docu-
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ment order, with embedded markup to indicate where sub-
trees begin and end. For example, the structure of the
data tree of Figure 2 would be encoded using the follow-
ing string3: (a(b)(c)(d)(e(f)(g)(h(i)(j)(k)(l)))), where
the nesting of parentheses captures the nesting of subtrees.
This document-order string is decomposed into blocks for
storage on disk. Each block has a header with meta data for
that page (e.g. the number of nesting parentheses for the
first node in the page).

It can be seen that nodes connected by “next-of-kin”
relationships are clustered in this physical representation
and thus such nodes are more likely to be located in the
same physical block. The net effect is that a NoK query
processor can match a NoK pattern using just a few I/O
operations[19].

3.2 Integrating Access Control Data

Our approach is to physically cluster the access control
data with the NoK structural data. Specifically, our scheme
for physical representation of the access control data con-
sists of the following three components:

• The DOL codebook is maintained in memory for fast
accessibility lookup. If the codebook grows beyond
the capacity of memory, each accessibility lookup may
result in an extra physical page read for loading the
codebook entry. However, our results in Section 5
shows in practice the codebook will be quite small.

• The DOL transition nodes are embedded into the NoK
structural data. Figure 3 shows the embedding for the
secured tree of Figures 1(b) (the page header does not
show NoK meta-data for simplicity). For the purposes

3Actually, the string is further compacted by eliminating all of the open
parentheses, which are redundant.

Figure 2. A Pattern Tree with two NoK trees
matched to data tree

of the illustration, we have assumed that these data are
spread across three disk blocks. In the physical encod-
ing, we treat the first node in each block as if it were
a transition node, regardless of whether it is actually a
transition node. The access control code for this initial
transition node is stored in the block header, which is
described next. These initial transition nodes ensure
that we can determine the access rights of any node
using only the codes in that node’s block.

• For each disk block, there is a small access control
header which contains two items. The first is the ac-
cess control code for the first data node in the block.
The second is a “change” bit which is set if there is at
least one transition node (other than the initial node)
in the block, and cleared otherwise. By keeping all
the page headers in memory (our statistics show we
only need 30Mb to 100Mb as page header for process-
ing 1Tb XML data consisting of 10 billion nodes), the
NoK query processor can implement I/O optimizations
which we shall describe shortly.

3.3 Access Lookup

To check the accessibility of a node d for subject s, the
query processor locates the transition node that precedes
node d (if d is not itself a transition node). Since the first
node in every block is a transition node, the transition node
will be found in d’s block. That transition node’s access
control code is then used to identify an entry in the in-
memory access control codebook. The s-th bit in that code
book entry indicates the accessibility of the node for sub-
ject s. As we will see in Section 4, the NoK query pro-
cessor checks nodes’ accessibility while it matches NoK
query patterns. Provided that d’s disk block has been loaded
(piggy-backed) for query evaluation by the NoK evaluator,
the access control check for d requires no additional I/O.

In some cases, the query processor could make use of
the in-memory DOL page header to avoid unnecessary page
reading: if the starting transition node in the header indi-
cates non-accessible to the user, and the “change” bit in the
header is not set (meaning there is no other transition nodes
in this page), all nodes in that page are non-accessible to the
user. Thus the query processor could avoid load that page.

Figure 3. DOL at physical level
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3.4 DOL Updates

We consider two types of update operations to the access
control representation: accessibility update and structural
update. The first type of update refers to changes in the ac-
cessibility function itself, e.g.,, a change to the accessibility
of a single node (e.g.,, adding read permission for a given
subject), or a change to the accessibility of all of the nodes
in a document subtree. The second type of update occurs
when we modify the structure of the data tree, e.g.,, inser-
tion or deletion of a node or a subtree (we assume the nodes
inserted have access controls already), or moving a node or
a subtree.

We first look at changing accessibility of a single node.
Suppose we are to set the accessibility of a node to “ac-
cessible” for certain subject. We need to locate the nearest
preceding transition node. If that transition node’s access
control code indicates “accessible” for the subject, we stop.
Otherwise, we mark the original node as a new transition
node and update its access control code to be “accessible”
for that subject. We may need to add that access control
code to the codebook if it is not already there. Finally we
need to mark the following node to be a new transition node
with the same access control code as the preceding transi-
tion node’s access control code. All these operations occur
in memory after loading that page(assuming the codebook
is in memory). Thus the cost for update a specific node is a
page read followed by a page write flushing the updates to
disk. However, if we are to set the accessibility of a whole
subtree, the number of page I/O will be much smaller than
updating each of the nodes in the subtree separately. This
is because the physical representation clusters these nodes
consecutively in the pages, and the the pages are logically
consecutive (thus more likely to be physically close to each
other). Suppose each page can hold B nodes, the cost for
updating accessibility of a subtree with N nodes would be
the N/B pages reads (and writes).

It is worth mentioning that all updates to DOL have the
update locality property, i.e., an update to a subtree only
affects the nodes within the pair of transition nodes that sur-
round the subtree. This property guarantees that updates are
confined within a contiguous region of the affected data.

Updates may also affect the amount of space used to
store access control data by increasing or decreasing the
number of transition nodes. However, the following propo-
sition applies to all of the types of updates that we have
presented, including the subtree updates

Proposition 1 For each of the above operations (accessi-
bility update or structural update), the number of transition
nodes of the new DOL will be at most 2 more than the num-
ber of transition nodes in the original data (and the data to
be inserted). �

In addition to the updates to the XML data, we need to

consider updates to S, the set of access control subjects.
With DOL, it is relatively simple to add a new subject who
has no (initial) access rights, or whose access rights initially
match those of some existing subject. This can be accom-
plished by simply adding an additional column to each entry
in the in-memory codebook. No changes to the embedded
transition nodes and the references are required. Deletion
of a subject can also by accomplished within the codebook.
This may leave unnecessary codes embedded in the struc-
tural data, since the deletion of a subject may decrease the
number of transition nodes. However, any such redundancy
can be corrected lazily.

4 Secure Query Evaluation

Our semantics for secure query evaluation are identical
to those used by Cho et al[7]. Recall that the (unsecured)
evaluation of a twig query Q returns all of the possible sets
of bindings of query pattern nodes to data nodes. Secure
evaluation of Q for subject s eliminates from this result any
sets of bindings that include data nodes that are inaccessible
to s.4 For example, the pattern tree shown in Figure 2 will
return a single set of bindings if nodes a, b, c, h, j, k and
l in the data tree are all accessible to the subject s. It will
return no bindings if any of those nodes are inaccessible to
s. Note that the accessibility of nodes d, e, f, g and i has
no impact on the secure evaluation of the particular query
shown in Figure 2.

4.1 DOL for Secure NoK Pattern Matching

In Section 3.1 we described that a NoK query processor
works by first decomposing a pattern tree into NoK sub-
trees, and then attempting to match each NoK subtree to the
data (by using B+ trees on the subtree root’s value or tag
names to start the matching). One node in the NoK pattern
tree is set as returning node, which means the nodes in the
data tree that matches to this node should be returned as
result of this pattern matching.

The secure NoK pattern matching algorithm is shown in
Algorithm 1. We use unordered XML data (no ordering be-
tween siblings in pattern tree) for ease of presentation only,
though we use ordered pattern tree in real experiments. The
input parameter proot is the current node from the NoK pat-
tern tree, and sroot is the current document node that is be-
ing matched to proot. The third parameter R is set to ∅ ini-
tially and will contain a list of data tree nodes (in document
order) that match the returning node.

To match NoK subtrees, the query processor uses a re-
cursive navigational approach, starting with an initial match

4In practice, the actual access rights of a user may be determined by
combining the access rights of one or more access control subjects from
S. For example, a user’s access rights may include her own plus those any
groups of which she is a member.
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from the data for the root of the NoK pattern tree. It
then proceeds by recursively matching children of proot
to children of sroot 5. The subroutines FIRST-CHILD and
FOLLOWING-SIBLING use the block-oriented physical en-
coding of the document structure to return the first child of
the sroot in document-order, or the next sibling of the cur-
rent node, respectively. The subroutine ACCESS (line 6)
checks the accessibility of the child of the current document
subtree root to be matched. Since a node’s accessibility is
checked immediately after it is loaded (by FIRST-CHILD or
FOLLOWING-SIBLING), and since its access control code
will be found on the same page as the node itself, no ad-
ditional I/O will be required for node accessibility checks.
Note that the pre-condition of Algorithm 1 is the sroot
nodes be accessible. This means before we use Algorithm 1
to recursively match NoK pattern trees, the root of the NoK
data tree should be checked to make sure it is accessible.

According to the query evaluation semantics given early
in Section 4, we can skip the recursion on the child if the
child is not accessible.

After NoK subtree matches are located, they can be
structurally joined based on ancestor-descendant relation-
ships. Since the nodes in the NoK subtrees are already
checked for accessibility, the structural-join algorithm does
not need to check accessibility any more. We have the fol-

5This top-down recursive pattern matching needs only O(|P | × |D|)
time to find all matches, where P is the size of the pattern tree and the D
is the size of the document [19].

Algorithm 1 ε-NoK Pattern Matching

NPM(proot, sroot, R)
Pre-condition: sroot is accessible

1: if proot is the returning node
2: then LIST-APPEND(R, sroot);
3: S ← all children of proot ;
4: u ← FIRST-CHILD(sroot);
5: repeat
6: if ACCESS(u) = TRUE

7: then for each s ∈ S that matches u with
both tag name and value constraints

8: do
9: b ← NPM(s, u,R);

10: if b = TRUE

11: then S ← S \ {s};
12: u ← FOLLOWING-SIBLING(u);
13: until u = NIL or S = ∅
14: if S �= ∅
15: then R ← ∅;
16: return FALSE;
17: return TRUE;

lowing theorem:

Theorem 1 Algorithm ε-NoK, together with any non-
secured structural join algorithm, securely evaluates XML
twig query �

4.2 Alternative Access Control Semantics

One other secure semantics is defined in [11], which
specifies that a subtree rooted at a non-accessible node can
not provide answers even if it contains accessible nodes.
For example, the pattern tree in Figure 2 will not find any
matches from the data tree if node e is not accessible while
all the remaining nodes are accessible.

Therefore, we not only need to check the ancestor-
descendant (AD) relationship between nodes, but also the
accessibility of all the nodes from the ancestor to the de-
scendant. The join must be aborted if there is one non-
accessible node on the path. However, the nodes between
the ancestors and descendants are not necessarily clustered
on the same physical pages as the NoK subtrees, so this
checking may involve lots of page reads.

In [18] we developed a secure structural join algorithm
based on the widely accepted Stack Tree Desc (STD) algo-
rithm [2]. We demonstrate both theoretically and empiri-
cally that our secure structural join algorithm aggressively
prunes un-secured matches and only load each page once if
necessary, regardless of the accessibility distribution of the
document.

5 Performance Evaluation

We evaluate the DOL technique using both synthetic and
real access control data. We generated synthetic access
controls on XMark benchmarks [1] by randomly choosing
some nodes from the document as seeds, and then labeling
these seeds as accessible or non-accessible. We simulate
horizontal structural locality by randomly setting the seeds’
direct siblings with the same accessibility, provided that the
siblings are not themselves seeds. Then, we simulate ver-
tical structural locality by propagating accessibilities of la-
beled nodes to their descendants using the Most-Specific-
Override policy [12], i.e., a node inherits its accessibility
from its closest labeled ancestor. We always choose the
document root as seed to ensure all nodes be labeled. The
access controls in the data are affected by two parameters.
The propagation ratio determines percentage of nodes that
are seeds while the accessibility ratio determines the per-
centage of seeds that are accessible.

In addition, we used two sets of real multi-user ac-
cess control data. The first data set describes the access
control information from a production instance of Open-
Text LiveLink6, which provides web-based collaboration

6LiveLink is a trademark of OpenText Corporation.
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Figure 4. CAM labels and DOL transition nodes for single subject

and knowledge management services in a corporate in-
tranet. The LiveLink system has 371547 data items in a
tree-structure with an average depth of 7.9 and a maximum
depth of 19. The system has a total of 8639 access control
subjects (users and groups).

The second data set consists of the access control data
from a multiuser Unix file system at the University of Wa-
terloo. This system has 182 users and 65 user groups, and
includes more than 1.3 million files/directories. Although
neither of these systems stores actual XML data, both pro-
vide tree-structured data models and instance-level access
controls. For the purposes of our experiments, we treat
these systems as surrogates for real multi-user access con-
trolled XML databases.

5.1 Compression Ratio

We first evaluate DOL for a single subject. Since CAM
[17] is the state of the art compact labeling for single subject
access controls, we compare DOL with CAM. We first use
an XMark document of 17133 nodes with synthetic access
controls produced by different accessibility and propagation
ratios. Our metric is the ratio of the number of CAM nodes
to the number of DOL transition nodes (the codebook size
is trivial for one subject). Thus, values less than 1.0 favor
CAM and those greater than 1.0 favor DOL.

Figure 4(a) shows the comparisons as the accessibility
ratio varies from 10% to 90%. We tried three propagation
ratios with these different accessibility and the results are
similar. When accessibility ratio is low (few nodes are ac-
cessible), the number of CAM nodes is around 53% of the
number of DOL transition nodes. As accessibility goes up,
this difference becomes smaller. A close look at the test
results (not shown) reveals that CAM’s compression ratio
is asymmetric to accessibility ratio. The number of CAM
nodes reaches maximum at 60% accessibility ratio, but the

number of CAM nodes at 10% accessibility ratio is only
1/3 of CAM nodes at 90% accessibility ratio. On the other
hand, DOL’s compression ratio is symmetric around 50%
accessibility ratio (with the most number of transition nodes
at 50%).

We also compare single user CAM and DOL for
LiveLink data. The LiveLink system supports ten different
access modes. For each of the ten access modes we sam-
ple a number of users and built CAM and DOL for each
single user. The number of DOL labels/CAM nodes for an
average user is shown in Figure 4(b), with the ten access
modes shown on the horizontal axis. In the worst cases,
DOL had 20-25% more nodes than CAM. In other cases,
the two schemes performed about the same.

Our performance metric implicitly assumes that CAM
nodes and DOL transition nodes are the same size. In prac-
tice, however, the DOL nodes are likely to be much smaller.
This is because CAM stores the access rights separately
from the data. As a result, each CAM node must include
a reference to a document node and pointers to the node’s
children in the CAM, in addition to the access control infor-
mation itself. In contrast, DOL, which piggybacks access
control information into the document encoding, stores only
an access control code per transition node. Thus, although
CAM may have fewer nodes than DOL, the total space re-
quired for CAM may be greater.

5.1.1 Multiple User Environment

We used our two real data sets to evaluate the space effi-
ciency of DOL in multi-user environments. To get a sense
of how the codebook size might vary as a function of the
number of subjects, we selected a number of subjects ran-
domly and computed DOL codebooks for the selected sub-
jects only. In Figures 5(a) and 5(b) we have plotted the num-
ber of codebook entries as a function of the cardinalities
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Figure 5. Codebook entries for multi-subjects

of these subsets. If subjects’ access controls were uncor-
related, we would expect to see exponential growth in the
number of codebook entries as subjects increased. How-
ever, our results show that the growth is much slower in
practice. With all 8000+ subjects, the LiveLink system re-
quired around 4000 codebook entries. At 1000 bytes per
codebook entry (one bit per subject for all 8000 subjects),
the complete LiveLink codebook would occupy only about
4MB of memory. The Unix system required about 855
codebook entries for 247 subjects, with an overall size of
only 25KB.

The other major storage concern is the number of DOL
transition nodes. Figures 6(b), 6(a) show the numbers of
transition nodes required for the LiveLink and Unix sys-
tems as the number of subjects increases (using the same
methodology that was used for Figures 5(a) and 5(b)). Fig-
ure 6(a) shows a close to linear trend in the growth of transi-
tion nodes. For over 8000 subjects, the number of transition
nodes is only about 4 times larger than the number for a
single subject. For Unix file system, we see a similar situa-
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Figure 6. Transition nodes for multi-subjects

tion in Figure 6(b), in which the number of transition nodes
of 247 subjects is only twice as many for 50 subjects. Re-
call that the total number of nodes in the LiveLink system
is 371547, and the total number in the Unix system is about
1.3 million. Thus, the density of transition nodes is less
than 1 in 10 for both systems (for all the subjects). These
results indicate that the access rights for different subjects
are highly correlated in real world.

To compare the overall storage cost between DOL and
CAM, we first look at a single subject in LiveLink (under
action mode 1): DOL needs about 6000 transition nodes
while CAM needs 4500 labels. However, for all 8639 sub-
jects in the same system under the same action mode, DOL
needs 18800 transition nodes while CAM needs 8639 ×
4500 labels, a difference of three orders of magnitude. As-
suming each DOL transition node requires a 2 byte ac-
cess control code (for the 4000 codebook entries), and each
CAM label takes 2 bits for its accessibility encoding, and
(unrealistically) only 1 byte for node pointers, the DOL’s
total space requirement will be a 4MB codebook plus a triv-
ial 40KB embedded transition nodes, while CAM’s will be
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Q1 /site/regions/africa/item[location][name][quantity]
Q2 /site/catetories/category[name]/description/text/bold
Q3 /site/categories/category/name[description/text/bold]

Q4 //parlist//parlist
Q5 //listitem//keyword
Q6 //item//emph

Table 1. Queries

46.6MB. For the Unix file system the situation is similar.
Clearly, correlation among the subjects contributes substan-
tially to compression effectiveness.

5.2 Query Evaluation

Since DOL is the only disk-oriented access control
model for secure XML data evaluation, we compare its per-
formance with the non-secured NoK query processor for
fairness. We implement both ε-NoK, ε-STD, and the non-
secure versions of the NoK and STD algorithms using Java
1.5. All of the experiments were conducted using a PC with
a Pentium III 997MHz CPU, 512MB RAM, and 40GB hard
disk running Windows XP.

Our test data is a 50Mb XMark instance (832911 ele-
ment nodes) with synthetic access controls. The data is
stored on disk with each page at 4K bytes. The benchmark
queries are shown in Table 1. The top three queries repre-
sent three classes of NoK pattern trees: those with branches
at the end (Q1), in the middle (Q2), or a single path (Q3).
The bottom three queries are for ancestor-descendant struc-
tural joins and represents those having descendants located
closely (Q4), medium distantly(Q5), distantly(Q6) from the
ancestors.

Figures 7(a),7(b) and 7(c) show the performance of ε-
NoK algorithm. The two lines in each figure depict the ratio
of processing time and answers returned between the ε-NoK
and non-secure NoK algorithms. In most situations the the
processing time of the ε-NoK algorithm is only around 20%
more than the non-secure NoK algorithm, and does not de-
pend on the accessibility ratio. This is still true when ma-
jority of the document is accessible (thus most answers of
the original NoK algorithm are returned, and nodes in these
answers are all checked). The reason is that accessibility
checking does not require extra I/O for ε-NoK algorithm.
Only when the accessibility ratio filters most of the answers
that are originally returned by the non-secure NoK algo-
rithm, the secured NoK algorithm could save some page I/O
by checking the in-memory DOL page headers, and thus
works faster than the non-secure NoK.

6 Related Work

Jajodia et al [12] and Bertino et al [5] define models that
are capable of describing a wide spectrum of access control
policies such as positive and negative authorization, propa-
gation policies, conflict resolving, closed versus open world
assumptions. The IBM XACL project [13] proposed a
XML access control language for authorizing access (read,
write, create, delete) to fine-grained XML data. It is capable
of defining propagations, conflict resolving and provisional
authorization. Bertino et al [6] proposed a model that is
capable of describing various access control policies. Their
model also addresses the problem for “push” queries, which
is for massive distribution of data to subscribers. Damiani
et al[8] proposed access control query modeling specific
for XML documents to facilitate secure information flow
for the Web. A similar framework is implemented in the
Author-X project [4]. Gabillon and Bruno [11] define view-
based semantics for secure query evaluation. They define a
secured view for each user group, and queries are applied
against the secure views. However, their approach prunes
all subtrees with a non-accessible root, regardless whether
there are accessible nodes in that subtree or not. Cho et al
[7] define a more relaxed pattern-matching based seman-
tics. This semantics allows answers to come from a subtree
whose root is non-accessible. They use schema informa-
tion to rewrite queries to optimize query evaluation time.
Stoica et al [16] use secured views and secure data schema
(both generated from original data schema and access con-
trol policies) for answering XML queries. Similarly, Fan
et al [10] uses secured views generated from DTD schemas
and access control rules for secure query evaluation. The
access control rules in these two approaches are based on
the data schema, which must exist. However, instance-
based access control is necessary when there is no schema,
or when the desired access controls cannot be described by
schema level specifications. Lee et al [15] propose a se-
cure XML evaluation framework in which access controls
are specified on the XML model but enforced in an under-
lying relational database. However, the XML data instance
needs to be first sliced into the relational model. There
is also work [3, 9] on efficient dissemination of sensitive
XML data using pattern matching. The DOL approach can
be similarly used for dissemination of XML data to multi-
ple users. The difference is that DOL works on arbitrarily
fine-grained sensitive data at instance level.

7 Conclusion

Our paper presents a compact XML access control label-
ing scheme called DOL that supports efficient secure query
evaluation. Our labeling scheme exploits both access con-
trol structural locality within the XML data and correlations
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Figure 7. Performance between ε-NoK and NoK as a function of node accessibility

between users’ access rights. Physically, access controls are
embedded into the representation of the document structure.
The physical layout makes it easy to embed into streaming
XML data as control characters and many one-pass algo-
rithms on streaming XML data can be made secure. Our
experiments demonstrate its storage compactness in multi-
user environments and its ability to support secure query
evaluation efficiently.
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