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Abstract—In database systems that support fine-grained access
controls, each user has access rights that determine which tuples
are accessible and which are inaccessible. Queries are answered
as if the inaccessible tuples are not present in the database. Thus,
users with different access rights may get different answers to
a given query. To process queries efficiently in the presence of
fine-grained access controls, the database system needs accurate

estimates of the number of tuples that are both accessible
according to the access rights of the submitting user and relevant
according to the selection predicates in the query.

In this paper, we present PSALM, a sampling-based cardinal-
ity estimation technique for use in the presence of fine-grained
access controls. Our technique exploits the fact that access rights
are relatively static and are common to all queries that are
evaluated on behalf of a particular user. We show that PSALM
provides more accurate estimates than techniques that do not
exploit knowledge of access rights.

I. INTRODUCTION

Access controls determine which data are accessible to

each database user. Fine-grained access controls allow access

rights to be specified on a per-tuple basis. Under the so-called

Truman model [1], a user’s queries are answered as if the

database includes only those tuples that are accessible to the

user. Variations of the Truman model are commonly used by

systems that support fine-grained access controls, including

Oracle [2], [3], DB2 [4], and SQL Server [5]. For example,

Oracle Private Database customizes each user’s query by

extracting the user’s access control predicates from the user’s

profile and appending the predicates to the where clause of

the query [3]. The access control predicates filter tuples that

are inaccessible to the user.

Suppose that a query includes a predicate PQ(T ) on one of

its input relations, T . PQ(T ) may be a simple or complex pred-

icate. Suppose further that a user’s access rights for relation

T are defined by an access control predicate PAC(T ). Tuples

are accessible to this user if and only if they satisfy PAC(T ).

For our purposes, the form of PAC(T ) is not important. It

may be an actual SQL predicate, as in Oracle VPD [3], or

it may be implemented as an externally-defined function, as

is the case in label-based access control systems [2], [4], [5].

For the purposes of our work, it is only necessary to be able

to evaluate the access control predicate given a tuple from

relation T .

The effect of the fine-grained access controls is to replace

each PQ(Ti) in the user’s query with PQ(Ti)

∧

PAC(Ti), where

Ti is a relation referred in the query. To create efficient query

plans in the presence of fine-grained access controls, a query

optimizer needs accurate cardinality estimates that account for

the effect of the access controls. That is, instead of estimating

the number of tuples that satisfy PQ(Ti), the optimizer must

estimate the number of tuples that satisfy both the query

predicate and the access controls. This paper addresses the

problem of accurately estimating this cardinality. Because

our technique is applied separately to each relation, in the

remainder of the paper, we focus on one relation and use PQ

and PAC rather than PQ(Ti) and PAC(Ti).

There are several ways to estimate the cardinality of con-

junctive predicates like PQ ∧ PAC . For example, one can

estimate the cardinality of of PQ and PAC , and then combine

those estimates. To combine the estimates of the individual

conjuncts, it may be necessary to make assumptions about the

independence of the database attributes involved in the two

predicates. Alternatively, the query optimizer may have infor-

mation about correlations among attributes [6], or perhaps even

a multidimensional histogram [7], [8], [9], [10] characterizing

the joint distribution of all of the attributes involved in the

predicates.

However, none of these techniques exploits an important

characteristic of predicates like PQ ∧ PAC that arise from

fine-grained access controls: the access control predicate PAC

on a given table is the same for all queries issued by a

particular user. A user’s access control predicate is relatively

static over time, as it changes only in response to changes

in the system’s access control policies. We expect that such

changes occur much less frequently than queries. When fine-

grained access controls are used, every predicate in every

query will includes a relatively static component that arises

from the access controls.

In this paper we consider cardinality estimation techniques

that are able to exploit the static nature of PAC in gener-

ating cardinality estimates for PQ ∧ PAC . The techniques

that we consider are based on tuple sampling. Sampling-

based techniques have several advantages for our application.

Sampling works well even for high-dimensional predicates,

i.e. predicates that involve many attributes. This is important

because when access control predicates are applied to a base

query, the number of attributes involved in the query predicates

may increase. In addition, sampling based techniques can be

applied easily even when the access control predicates are

implemented as externally-defined functions that are black

boxes from the perspective of the query optimizer.

The primary contribution of this paper is a sampling-based



TABLE I

SYMBOLS USED IN THIS PAPER

U number of users in the system

PQ query selection predicate

PACi access control predicate for the ith user

N cardinality of the target relation

Ni number of tuples satisfying PACi

Ni,j number of tuples satisfying both PACi and PACj

Ci number of tuples satisfying PQ ∧ PACi

C̃i estimate of Ci

ni number of tuples in ith user’s private sample

ci number of tuples in ith user’s private sample
that satisfy PQ ∧ PACi

ǫi estimation error for ith user

ǫ̂i estimation error bound for ith user

ǫ̂mean mean estimation error bound over all users

∆ confidence level for estimation error bounds

cardinality estimation technique called PSALM (Partitioned

SAmpLing for Multiple users). PSALM leverages the fact the

PAC is fixed for each user and is relatively static. We show that

cardinality estimates produced by PSALM are more accurate

than those that can be produced using multi-dimensional

histograms as well as those produced using simpler sampling-

based approaches. We also show probabilistic bounds on the

accuracy of the cardinality estimates produced by PSALM.

In addition, we show how to extend PSALM to handle

disjunctive access control predicates that arise when access

privileges are inherited by users through role hierarchies or

group hierarchies.

Although fine-grained access controls are our primary mo-

tivation for this work, it is worth noting that PSALM is

applicable in other situations in which frequently-used, static

query predicates arise. One example of this would be a

publish/subscribe system where users express their general

interests using filters [11]. These filters can be treated in much

the same way as access control predicates.

The remainder of the paper is organized as follows. Sec-

tion II presents some preliminaries and defines our terminol-

ogy and notation. Section III presents two simple sampling al-

gorithms, which we use as baselines, to estimate the cardinality

of access control predicates. Section IV describes a general

framework for sampling-based approaches to the cardinality

estimation problem, and Section V presents PSALM, which is

a particular realization of this framework. Section VI presents

an evaluation of the accuracy of the estimates produced by

PSALM, which we compare to multidimensional historgrams

and to the simpler sampling techniques described in Sec-

tion III. Section VII describes an extension of PSALM that

handles disjunctive access control predicates that arise when

access rights are inherited through role hierarchies or group

hierarchies. In Sections VIII and IX we present related work,

and conclude.

II. DEFINITIONS AND NOTATION

Our problem is to estimate the selectivity of query predi-

cates in the presence of access control predicates. We focus

on the problem of estimating the cardinality of the result of

applying the query predicate, PQ, to a single access-controlled

relation. When there are multiple relations, our estimation

techniques can be applied independently to each relation.

We use PACi to denote the access control predicate for

the ith user on the target relation. We use N to denote the

cardinality of the target relation, and Ni to denote the number

of tuples from the target relation that are accessible to the

ith user. That is, Ni is the number of target relation tuples

for which PACi is satisfied. Finally, we use Ci to denote the

number of tuples from the target relation that satisfy PQ ∧
PACi. Ci is the cardinality we wish to estimate, for the ith user

and the query predicate PQ. Table I summarizes our notation.

Given a fixed space budget for cardinality estimation, our

goal is to design estimation techniques with small estimation

error. We use C̃i to denote an estimate of the cardinality Ci.

Following earlier work in this area [12], [13], we define ǫi,

the estimation error for the ith user, to be

ǫi =
|C̃i − Ci|

Ci

This metric characterizes the estimation error relative to the

actual cardinality of the query result. For example, ǫi = 0.3
indicates that the estimate is ±30% of the actual cardinality.

Unlike absolute error metrics such as |C̃i − Ci| or |C̃i −
Ci|/N , our relative error metric reflects the fact that the same

cardinality estimation error may be more significant to the

query optimizer when the true cardinality is small than when

the true cardinality is large. For example, if |C̃i−Ci| = 10000
and C̃i = 100000, the estimation error may have little effect on

the optimizer. However, if |C̃i − Ci| = 10000 and C̃i = 100,

the optimizer may significantly underestimate the cost of a

candidate query plan. One disadvantage of our metric is that

estimation error explodes as Ci → 0. Fortunately, this is not a

serious issue. To avoid the blowup, we simply avoid scenarios

in which Ci is extremely small. Note that our cardinality

estimation techniques do not require any calculations of esti-

mation error, so this problem does not affect their behavior. We

perform these calculations only for comparing the estimation

techniques.

III. SIMPLE APPROACHES

We begin by presenting two simple sampling-based esti-

mation techniques. The first uses a single uniform random

sample to generate a cardinality estimate for any user. That

is, estimates for all users are based on the same sample from

the target relation. We refer to this technique as the single-

sample approach. The second technique partitions the available

sampling space and uses a separate, private sample for each

user. Each user’s cardinality estimations are based on that

user’s private sample. We refer to this technique as the sample-

per-user approach.

A. The Single-Sample Approach

We can estimate the cardinality of PQ ∧PACi, for any user

and any query predicate using a single random sample of n



tuples from the target relation. Such a sample can be built

for the target relation with relatively low cost, using various

techniques [14]. The samples can be stored in the database

catalog, and can be reused for different queries. If desired,

such a sample can be incrementally maintained in the face

of tuple insertions and deletions in the target relation [15].

Alternatively, the target relation can be periodically resampled

as necessary to account for updates.

To obtain a cardinality estimate for PQ for the ith user,

we evaluate PQ ∧ PACi for each sample tuple, and count the

number of tuples for which the predicate is true. An unbiased

cardinality estimate can then be obtained by

C̃i = ci

N

n

where ci is the number of sample tuples matching PQ∧PACi.

Using the Chernoff inequality, the estimation error ǫi of single-

sample cardinality estimates can be bounded, with probability

(1 − ∆), as follows:

ǫi ≤ ǫ̂i =

√

4N

nCi

log
2

∆
(1)

Here, ∆ is referred to as the confidence level of the error

bound ǫ̂i. Note that the estimation error bound is inversely

related to Ci which is the number of tuples that satisfy PQ ∧
PACi. Thus, as either the query predicate PQ or the user’s

access controls PACi become more selective, the estimation

error bound increases.

B. The Sample-Per-User Approach

Another way to estimate the cardinality of PQ ∧ PACi is

to create and maintain a separate sample for each user. Each

user’s sample is of size ni = n/U so that the total space used

for all users’ samples fits within the space budget n.

The sample for the ith user is a simple uniform random

sample of the tuples that are accessible to the ith user. As

was the case for the single-sample approach, we can draw

all U such random samples using a single pass over the

target relation by maintaining U separate reservoir samples

in parallel during a single scan of the target relation. Each

tuple encountered in the scan is considered separately and

independently for inclusion in the sample for each user.

To estimate the cardinality of PQ for the ith user, we

evaluate PQ for each tuple in the ith user’s sample, and count

the number of tuples for which the predicate is true. All other

users’ samples are ignored. An unbiased cardinality estimate

can then be obtained by

C̃i = ci

Ni

ni

where ci is the number of sample tuples matching PQ in the ith

user’s sample. Notice that this estimator makes use of Ni, the

total number of target relation tuples that are accessible to the

ith user. This value can be determined exactly for every user

during the same scan that is used to draw the tuple samples

from the target relation. We can bound, with confidence level

∆, the estimation error as follows:

ǫi ≤ ǫ̂i =

√

4Ni

niCi

log
2

∆
(2)

In this case, the estimation error is inversely related to Ci/Ni,

which is the conditional selectivity of the query predicate PQ,

given that a tuple is accessible to the ith user. Hence, unlike

the single-sample approach, the estimation error of the sample-

per-user approach is independent of the selectivity of the users’

access control predicates.

A comparison of Equations 1 and 2 shows that the ith user

will have a tighter error bound under the sample-per-user ap-

proach than under the single-sample approach if ni/Ni > n/N
This says that the ith user is better off with a smaller, private

sample if its sampling rate among the ith user’s accessible

tuples is greater than the single sample’s sampling rate from

the entire target relation. Since ni = n/U , the ith user will

benefit from a private sample if

Ni <
N

U
(3)

For example, imagine a system in which some portion

of data are made accessible to a group of users, and the

data are partitioned among the users by access controls as

equality predicates on the users’ IDs. These users will have

non-overlapping accessible data and many of them will end

up having accessible data of size less than N
U

. In this case,

the sample-per-user approach will be more beneficial to these

users.

IV. A GENERALIZED APPROACH

Our analysis of the simple sampling techniques in Sec-

tion III indicates that in some circumstances it is better to

make users share a sample for cardinality estimation, while in

other circumstances it is better to dedicate a private sample

to a user. This raises some general questions about sampling

for cardinality estimation in the presence of access controls.

First, under what conditions is it beneficial to dedicate a private

sample to a user? Second, if a user is to share a sample, with

which other users should the sample be shared?

In this section we present a general framework for sampling-

based cardinality estimation, within which these questions can

be answered. First, we partition the users into k (1 ≤ k ≤
U ) groups, where U represents the number of users. We use

{G1, G2, . . . , Gk} to denote these groups. Next, we partition

the available total sampling space budget, n, to give a sampling

space budget nGj
for each group. The sampling space budget

is divided such that the sum of the groups’ sampling budgets

is n. For each group Gj , we draw a simple random tuple

sample of size nGj
from the union of the sets of accessible

tuples of each user in that group. Each group’s sample is drawn

independently of the samples for the remaining groups.

To estimate cardinality for User ui in group Gj , we apply

PQ∧PACi to the tuples in Gj’s sample. If ci is the number of

sample tuples that satisfy PQ ∧PACi, we estimate the number



of tuples that satisfy PQ ∧ PACi as follows:

C̃i = ci

NGj

nGj

(4)

where NGj
denotes the cardinality of the union of the sets of

accessible tuples of all users in Gj . The resulting estimates

will give a ∆-confidence error bound of

ǫ̂i =

√

4NGi

nGi
Ci

log
2

∆
(5)

for the ith user.

Both of the simple techniques described in Section III are

special cases of this general framework. The single-sample

technique uses a single group that includes all of the users.

The sample-per-user technique uses U groups, with one user

per group. Our framework allows for many other grouping

possibilities between these two extremes.

A. Sample Design

To apply the framework, we must decide how to partition

the users into groups, and we must determine how much of

the total sample space budget to allocate to each group. We

call this the sample design problem for cardinality estimation

in the presence of access controls.

Definition 4.1 (Sample Design Problem): Given the user

access control predicates PACi and a total sample space budget

of n tuples, partition the users into k groups

{G1, G2, . . . , Gk} and choose a sample size nGj
for each

group such that
∑

1≤j≤k nGj
= n. Choose the groups and

the sample sizes so that the average estimation error bound ǫ̂i

over all users is minimized1.

The sample design problem has two subproblems: grouping

the users and allocating sample budget to each group. We

begin by showing how to allocate the sample budget, given a

particular partitioning of the users into groups.

Theorem 4.1: If the query predicate PQ is independent of

the access control predicates PACi of all users, an optimal

allocation nGj
, 1 ≤ j ≤ k among a given set of user groups

under a total sample budget n is given by the following:

nGj
=

n · H
1

3

j

∑k

j=1 H
1

3

j

where Hj is
∑

(i:ui∈Gj)

NGj

Ni
.

Proof: The total estimation error bound of all users can

be rewritten as follows according to Equation 5:

∑

1≤i≤U

√

4 log 2
∆ · NGi

nGi
· Ni

·
Ni

Ci

1Instead of average estimation error bound, other metrics like maximum

estimation error bound can be tackled in a similar fashion if desired, by
adjusting the formulae in this paper.

Here, Ci

Ni
falls within 0 and 1 for all access controlled query

from User ui. We use Pri(x) to represent the probability

density function for Ci

Ni
in its domain (0, 1]2. The expected

total estimation error bound for all queries for all users is

thus:

X

1≤i≤U

s

4 log 2

∆
· NGi

nGi
· Ni

Z

1

0

r

1

xi

Pri(xi) dxi

Because we have no prior knowledge on the workload

among all users, one reasonable approach is to assume in-

dependence between PQ and PAC . Therefore, the integration

part of the above will be a constant ct for all users. and we

can rewrite the expected total estimation error as follows (we

remove ct from the expression for simplicity):

∑

1≤j≤k

√

√

√

√

4 log 2
∆ · NGj

nGj

·
∑

(i:ui∈Gj)

1

Ni

If we have chosen a user grouping (and thus a fixed G), we

can rewrite the above as

k
∑

j=1

√

4 log 2
∆

nGj

· Hj

where Hj is
∑

(i:ui∈Gj)

NGj

Ni
and is fixed value for a chosen

user-grouping.

Under the constraint
∑k

j=1 nGj
− n = 0, the Lagrange

formula for the minimum average estimation error bound

becomes:

k
∑

j=1

√

4 log 2
∆

nGj

· Hj + λ





k
∑

j=1

nGj
− n





We wish to find a configuration that gives a zero gradient

for λ and each nGj
in the above formula, which gives the

result in the theorem.

From Equation 5, we can determine that the mean estima-

tion error bound under this optimal sample space allocation

from Theorem 4.1 will be given by

ǫ =

√

4 log
2

∆
· n

1

2 ·





k
∑

j=1

H
1

3

j





3

2

(6)

This is the minimum estimation error bound under the as-

sumption (from Theorem 4.1) that the query predicate is

independent of the access control predicates. It is much more

difficult to determine an optimal allocation and corresponding

error bound if this is not the case. However, it is important

to note that this independence assumption is made only for

2the integration domain start from somewhere bigger than zero to avoid
division by zero



the purpose of sample space allocation. The actual estimation

of cardinalities using those samples does not rely on the

independence of query predicates and access controls.

The sample design problem is now reduced to the problem

of finding an optimal grouping of users. The number of

possible groupings of U users is the same as the number of

partitions of U different items, which is known as the Bell

Number [16]. If we use BU to denote the Bell Number of U
items, we have the following recursive representation for BU :

BU+1 =
U

∑

k=0

(

U
k

)

Bk

which has a non-recursive representation as Dobinski’s For-

mula [16]:

BU =
1

e

∞
∑

k=0

kU

k!

Since the number of possible user partitions BU is exponential

in the number of users, a brute force enumeration of all

possible user-groupings is infeasible. Whether there exists a

polynomial time algorithm to identify the optimal partition is

still unknown. However, in Section V we introduce a polyno-

mial time approach which uses heuristics to aggressively prune

the search space. Our proposed technique is not guaranteed

to choose optimal user groups. However, it is guaranteed to

perform at least as well as the simple techniques described in

Section III.

V. PSALM

PSALM is a realization of the generalized sampling frame-

work that was presented in Section IV. Users are partitioned

into groups, and a sample is created for each group. Cardinality

estimates are generated using Equation 4, and they have error

bounds given by Equation 5.

To partition the users, PSALM is guided by two observa-

tions. The first concerns access privilege skew. Systems that

provide access controls may include a mix of high-privileged

users, who have access to most of the data, and low-privileged

users, who have very limited access. For example, in previous

work [17], [18] we studied access controls in several different

systems, including a general purpose university file system and

a content management system. Figure 1(a) shows the number

of files that are accessible to different users in the file system

that we studied. There are two obvious groups of users in the

system, with the high-privilege group having access to almost

ten times as many files as the low-privilege group. Figure 1(b)

shows a similar graph for the content management system.

Here, the picture is more complex, as there appear to be three

distinct types of users in terms of the number of files that are

accessible. However, as was the case for the file system, the

distribution exhibits a significant amount of skew.

The second observation is that there may be strong cor-

relations among the access controls of different users [17].

For example, users that are involved in common activities are

likely to share access to data related to those activities. By
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Fig. 1. Data Accessibility for Different Users in Two Systems

PSALM DESIGN PROC()

PHASE ONE

partition users into two groups, UH and UL:

UH includes high-privilege users

UL includes low-privilege users

choose a sample size n0 for UH

choose a sample size ni for each user ui ∈ UL

PHASE TWO

partition the users in UL into groups based on

access rights correlations

set the sample size of each group to be the sum

of the sample sizes of the group’s members

Fig. 2. Sample Design in PSALM

identifying and measuring these correlations, we can use them

to guide user grouping.

PSALM uses a two-phase approach, based on these obser-

vations, to arrive at a sample design. Figure 2 gives a high-

level overview of PSALM’s approach to sample design. In

Sections V-A and V-B we describe the two phases in more

detail.

A. Phase One: Access Privilege Skew

High-privilege users can profitably share a single sample

for cardinality estimation, since such users will share access

to many of the same tuples. On the other hand, low-privileged

users are better off with private samples of their accessible



PHASE ONE USER PARTITION()

1: Sort the users in ascending order of number of

accessible tuples.

Let ui represent the ith user in this sorted order,

and Ni represent the number of tuples ui can access.

2: Find p from {0, . . . , U} such that

p +

0

@

X

i>p

s

N

Ni

1

A

2

3

is minimized

3: Set UH = {ui : i > p}
UL = {ui : i ≤ p}

4: Return {UL,UH}

Fig. 3. Identifying UH and UL

tuples. To account for this, PSALM separates users into two

categories: high-privilege users and low-privilege users. We

use UH to denote the set of high-privilege users and UL to

denote the set of low-privilege users. PSALM chooses UH

and UL so that the mean estimation error bound ǫ̂mean over

all users is minimized. The mean estimation error bound is

calculated as if sampling were done using the generalized

sampling framework, with

one group consisting of all users in UH ,

one group for each user in UL, and

sample sizes for each group chosen according to Theo-

rem 4.1.

In phase one, PSALM determines which users to place into

UH and which to place into UL so that the estimation error

bound will be minimized. In order to do this, PSALM uses the

algorithm shown in Figure 3. Under this algorithm, PSALM

considers U + 1 possible sets of users to include in UH : the

empty set, the set consisting of the highest privilege user, the

set consisting of the two highest privilege users, and so on.

Theorem 5.1 indicates that the optimal UH will be among

those considered by the algorithm of Figure 3.

Theorem 5.1: The partition (UH , UL) returned by Algo-

rithm 3 minimizes the mean estimation error bound ǫ̂mean

over all possible two-way partitions of the users.

Since both simple cardinality estimation techniques pre-

sented in Section III are special cases of PSALM, we have

the following corollary to Theorem 5.1:

Corollary 1: Cardinality estimation using the UH and UL

produced by Algorithm 3 results in a mean estimation error

bound at least as low as the error bounds achieved by the

single-sample technique and the sample-per-user technique.

Thus, the sample design produced by phase one of PSALM

is sufficient to ensure that PSALM will be at least as accurate

as the simple techniques. By considering access privilege

correlation in phase two, PSALM seeks to further improve

its accuracy by refining the sample design from phase one.

B. Exploiting Access Privilege Correlation

The first phase of the PSALM algorithm paritions the users

into UH and UL. The second phase, described in this section,

combines low-privilege users from UL into groups based on

correlations among the users’ access rights. Grouping low-

privileged users further reduces the mean estimation error

bound of PSALM sampling. In the remainder of this discus-

sion, we assume that the first phase of PSALM has partitioned

the users into UL and UH , and has selected a shared sample

size of n0 for users in UH and a same sample size nL for each

of the users in UL according to Theorem 4.1. Let G ⊆ UL be

a group of low-privileged users. Instead of creating a separate,

private sample for each user in G, PSALM uses a single,

combined sample of size |G|nL that is shared by all users

in G. This shared sample is a simple random sample drawn

from among all tuples that satisfy PACG, defined as follows:

PACG =
∨

i∈G

PACi

That is, we sample from among those tuples that are accessible

to at least one user in the group. To compute an unbiased

cardinality estimate for predicate PQ for User ui ∈ G, we

use Equation 4. The resulting cardinality estimates will have

∆-error bounds given by Equation 5.

Grouping users in this way does not change the cardinality

estimates of users outside of G, nor does it affect the accuracy

of those estimates. Thus, any change in the overall average

estimation error bound that results from this grouping will

come from the change in the estimation error bound of the

users in G. By combining Equations 2 and Equation 5, user

grouping will result in a lower mean estimation error bound

among the users in the group if the following inequality holds:

∑

i∈G

√

NG

|G|Ci

<
∑

i∈G

√

Ni

Ci

When there is little overlap among the accessible tuples

of the grouped users, NG approaches
∑

i∈G Ni and there is

little benefit to grouping users. However, if the grouped users

have many accessible tuples in common, then NG is much

smaller and grouping will result in improved estimates for all

users in the group because of the larger size of the group’s

sample. Thus, PSALM identifies users whose access rights are

correlated, and group them together.

To determine which users to group together, we first define

a pairwise similarity function, SIM , over the users in UL. The

similarity between the ith and jth users is defined as follows:

SIM(i, j) = min(
Ni,j

Ni

,
Ni,j

Nj

) (7)

Here, Ni,j is defined as the number of tuples from the

target relation that are accessible to both User i and User

j. This similarity function has properties similar to other set

similarity functions like the Jaccard Coefficient [19], i.e., it

has a value between 0 and 1, and a value close to 1 indicates

a strong similarity, while a value of 0 indicates no similarity.
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Fig. 4. An example of user grouping

Using function SIM , we can define a similarity graph as

an undirected graph with one node for each user in UL.

There is an edge between User i and User j if and only if

SIM(i, j) ≥ θ, where θ is a tunable parameter of the grouping

algorithm. We will describe how to pick θ in Section V-B.1

and in Section VI-C.

To place the users into groups, we attempt to find a minimum

clique partition [20] of the user similarity graph. This identi-

fies a set of non-overlapping cliques that, together, cover the

entire user similarity graph. Each such clique becomes one

of the user groups for which we create a sample. By using

cliques as sampling groups, we ensure that all users in a group

have pairwise-similar access rights. By minimizing the number

of cliques, we minimize the number of separate samples that

are required, thus allowing us to use larger samples while

remaining within the space budget.

Figure 4 illustrates the process of identifying user

groups through a scenario in which there are five users

(u1, u2, . . . , u5) and four tuples (t1, t2, . . . , t4). The matrix

indicates which tuples are accessible to each user, with a

“1” and “0” indicating accessibility and inaccessibility respec-

tively. Using a similarity threshold θ of 0.45, we obtain the

user similarity graph with pairwise connections among u1, u2

and u3, as shown in Figure 4. A minimum clique partition for

this graph is illustrated using dashed lines.

The problem of finding a minimum clique partition is NP-

complete [20]. Thus, we use a randomized greedy algorithm

to partition the graph. The algorithm produces a set of non-

overlapping cliques that cover the user similarity graph. How-

ever, the set is not guaranteed to have minimum cardinality.

The greedy algorithm first finds a maximal clique in the graph

by starting from a random node, finding the clique around

the node, and removing all nodes in the clique and all edges

induced by these nodes. This process continues until there are

no more nodes left. We repeat this greedy algorithm several

times from randomly-selected initial nodes and record the

smallest clique partition that is found.

1) Refining User Groups: Although grouping correlated

users reduces the mean estimation error bound of those users,

some individual users in the group may incur a loss in

estimation accuracy. For example, consider two users ui and

uj from UL. Suppose each user would have a private sample

size of nL tuples without correlation-based grouping. If ui and

uj are grouped based on correlation, they have a total sample

size of 2nL tuples. If we randomly sample 2nL tuples from

the union of their sets of accessible tuples, User ui will have

the following expected number of accessible tuples included

in the sample:

2nL ·
Ni

Ni + Nj − Ni,j

If Nj is much larger than Ni, then according to the above

formula, the expected number of sample tuples for ui will

be less than his original sample quota nL. This means that

ui may have a higher estimation error bound after grouping

with uj . The following lemma describes the conditions under

which users ui and uj can be grouped together so that both

of them will have a lower estimation error bound:

Lemma 5.1: Both User ui and User uj will have lower

estimation error bounds after grouping if Ni,j > |Ni − Nj |,
where Ni,j denotes the number of tuples that are accessible

to both User ui and User uj .

Lemma 5.1 can be extended to group more than two users.

The following theorem is based on the access control similarity

threshhold θ computed from Formula 7.

Theorem 5.2: Suppose users {u1, u2, . . . , u|G|} have access

controls with pairwise similarity above θ as defined in Formula

7. All of these users will have a lower cardinality estimation

error bound after merging all their sample quotas if the

following holds for every user ui, 1 ≤ i ≤ |G|:

θ >

∑|G|
j=1 Nj − |G| · Ni

∑|G|
j=1 Nj − Ni

(8)

To ensure that no user will have a higher estimation error

bound after grouping, we need to verify that Equation 8 is

satisfied for every user in each clique when performing the

greedy clique-partitioning algorithm as described in Section V-

B. If this formula is not satisfied for some users in a clique, we

remove these users from that clique. We keep removing users

until this formula is satisfied for every user in each clique.

VI. EVALUATION

We use synthetic databases and synthetic workloads to

evaluate the quality of the cardinality estimates produced by

PSALM. We compare PSALM’s estimates to those produced

by the two simple techniques described in Section III, and also

to estimates obtained using multidimensional histograms. We

next describe how we generated the database and workloads,

and present the results of our evaluation.

A. Simulation Setup

Our experiments use synthetic data created using an ap-

proach similar to that of Bruno, Chaudhuri and Gravano in

their evaluation of STHoles multidimensional histograms [8].

We first create 500,000 tuples from a data domain of

[0, 1000)d, where dD is a given database dimensionality, i.e.,

the number of attributes in each tuple. We experimente with

two-dimensional, four-dimensional, and eight-dimensional tu-

ples. These tuples are distributed among 100 clusters in the



data domain. We first create 100 evenly distributed tuples as

the center (mean) of each cluster, then, for each cluster, we

randomly create tuples following a Gaussian distribution with

its mean at the cluster center and a standard deviation of 25.

The number of tuples in each cluster is chosen using a Zipfian

distribution with parameter 1.0.

The database workload consists of multidimensional range

queries generated using an approach similar to that of Pagel et

al. [21]. Query predicates are conjunctive range predicates in

dQ dimensions, where dQ is a given query dimensionality. To

generate a query, we choose dQ dimensions randomly and, for

each dimension, choose a random center for that dimension’s

range. The width of the range is fixed to be 100 times the

number of conjunctive range predicates in the query. This

way the query has non-zero selectivity even if the number of

conjuncts goes up. We choose the range centers in one of three

ways: type A ranges have their centers chosen from the center

of the clusters in the data, type B ranges have their centers

following a uniform distribution in the data domain, and type

C ranges have their query centers chosen to be independent

of the data distribution and following a Gaussian distribution.

Similar predicates have been used by Bruno, Chaudhuri and

Gravano [8]. All of the experiments reported here used type B
for query predicates and type A for access control predicates

(described next). Other combinations that we have tested result

in trends similar to the ones reported here.

Our experiments simulate 100 users. For each user, we

create a randomly generated access control predicate PAC.

Like query predicates, access control predicates are multi-

dimensional conjunctive range predicates in dQ dimensions,

and are generated in the same way as the query predicates.

The dimensions of the access control predicates are randomly

chosen to be independent of the query predicates. We run

experiments with access privilege skew and without access

privilege skew. To model access privilege skew, we consider

half of the users to be high-privilege users, and the other half

to be low-privilege users. We give high-privilege users more

access rights by using larger access control predicate ranges

for those users than for low-privilege users. For high-privilege

users, we use an access control range predicate width of 300
in each predicate dimension. For low-privilege users, we use

a predicate width of 80. For the experiments without access

privilege skew, access control predicates for all users have a

width of 100 in each dimension. To simulate access correla-

tion, we generate similar access control predicates among the

low-privileged users. This is done by creating access control

range predicates from the same Gaussian distribution for all

of the low privileged users.

We implemented both the single-sample technique and the

sample-per-user technique described in Section III. We imple-

mented two versions of PSALM, which we call PSALM-1 and

PSALM-2. PSALM-1 includes the first phase of the PSALM

algorithm, but not the second. That is, high-privilege users

share a single sample, but there is no attempt to group low-

privilege users based on access right correlation. PSALM-2 is

the full PSALM algorithm, including both phases. For the test

data we used, it takes on average 5 seconds to build PSALM-

1 samples and less than 1 minute to build PSALM-2 sam-

ples. Finally, we implemented multidimensional histograms.

Our histograms use an equi-width grid-based implementation

similar to that of Aboulnaga and Chaudhuri [7]. All of these

techniques were constrained to operate under the same space

budget which, in all of our experiments, was sufficient to hold

1000 dD-dimensional tuples.

B. Experiments
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Fig. 5. Accuracy of Cardinality Estimates

Each of our experiments is characterized by the values

of parameters dD and dQ. We use “DdDQdQ” to identify

a particular experiment. For example, D4Q2 denotes and

experiment with a 4 dimensional database and 2 dimensional



query predicates and user access control predicates. First,

we generate 100 access control predicates representing the

100 users, and then, we generate 10 query predicates, and

evaluate all cardinality estimation techniques for each query

and for each user. For each experiment, we measure the actual

cardinality of the result and calculated the estimate cardinality

using each of the cardinality estimation techniques. For each

estimation technique, we report the average estimation error

over all queries.

Figure 5 shows a comparison of the mean estimation error

of the cardinality estimation techniques that we considered.

The figure shows results from 3 access control scenarios, one

in which there is neither access control skew nor access control

correlations among the low-privilege users (Figure 5(a)), one

in which there is skew but no correlations (Figure 5(b)),

and one with both access control skew and correlations

(Figure 5(c)). For each scenario, we report results for D2Q2,

D4Q2, and D8Q4.

In the two-dimensional case (D2Q2), multidimensional his-

tograms gives the most accurate estimates. However, PSALM-

2 performs well, and its accuracy approaches that of the

multidimensional histogram in the scenarios with access rights

skew and correlation. In the four- and eight-dimensional

cases (D4Q2 and D8Q4), the accuracy of multidimensional

histograms deteriorate quickly, while PSALM was able to

maintain its accuracy.

When there is no access privilege skew (Figure 5(a)), the

simple single-sampling technique performs approximately as

well as PSALM. However, PSALM’s performance is sig-

nificantly better than that of single-sampling when skew is

introduced (Figure 5(b) and Figure 5(c)). In these scenarios,

the high-privilege users have, on average, access to about

10 times as many tuples as the low-privilege users. PSALM

chooses to use a single sample for the high-privilege users and

separate samples for each low-privilege users.

A comparison of the accuracy of PSALM-1 and PSALM-

2 in Figure 5(c) shows that the second phase of PSALM is

beneficial when there are access privilege correlations among

the users. In each case (D2Q2, D4Q2, and D8Q4), PSALM-2’s

estimation error is about half that of PSALM-1, which does

not exploit correlation.

C. Tuning the Similarity Threshold

One important question is how to determine the similarity

thresholds θ when grouping users with correlated access con-

trols. The higher the threshold, the fewer users can be grouped;

the lower the threshold, the smaller accuracy improvement

from each group. We experimented on access control data

from an OpenText LiveLink3 content management system.

This system has approximately 370, 000 objects and 1584
users. We randomly select sets of users from among all 1584
users, and we apply our user grouping algorithm in Section V-

B to each selected set of users, with different θ ranging from

0.3 to 0.7.

3LiveLink is a trademark of OpenText Corporation.

Figure 6 shows the number of user-groups after grouping,

with different threshholds θ. We find that the user grouping

algorithm effectively reduces the number of samples. However,

the effect of θ is not that significant. The reason is that while

a lower θ value introduces larger cliques and results in fewer

groups, many users in the cliques do not satisfy Formula 8,

and have to be discarded.
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VII. DISJUNCTIVE ACCESS CONTROLS

Fine-grained access controls are not always explicitly spec-

ified for each user in the system. For example, in role-based

access control systems, an administrator defines several roles

and assigns access rights to these roles. Roles, in turn, are

assigned to users, in which case all access rights of the role

are granted to the user. Roles can also be assigned to other

roles. This defines a hierarchy of users and roles, as illustrated

in Figure 7, in which each user obtains access rights from all

the roles to which he is directly or indirectly assigned. In other

words, the set of tuples accessible to a user is the union of the

sets of tuples that are accessible to that user’s ancestors in the

role hierarchy. For example, the user in Figure 7 obtains access

rights from three roles R0, R1, R2. A similar situation arises

in systems that allow a user group hierarchy to be defined, and

that support the inheritance of group access rights by members

of the group.

R0

R1 R2

user

tuples accessible to roles:

R0 : t1, t4, t6
R1 : t2, t4, t5
R2 : t1, t3, t4

tuples accessible to user:

t1, t2, t3, t4, t5, t6

Fig. 7. A Role Hierarchy

Suppose a user has been assigned k roles, either directly or

indirectly, and that each role Ri has an access control predicate

PACi on a particular target relation. The user’s access control

predicate on the target relation is thus (
∨

i∈{1,...,k} PACi).
Given query selection predicate PQ, we need to estimate



the cardinality of the set of target relation tuples satisfying

PQ ∧ (
∨

i∈{1,...,k} ACi).

A straightforward approach to compute the estimated car-

dinality is to compute the effective access controls for each

user, based on his role assignments, and then use PSALM to

estimate cardinalities. However, the effective access controls

for all users may be costly to compute. Moreover, we ignore

the disjunctive structure of these predicates, and may require

to create one PSALM samples for each user in the worst case.

An alternative is to record an access control predicate for

each role, and to compute cardinality estimates for these

individual role predicates using PSALM. To estimate the

cardinality for a particular user’s access control queries, we

combine the PSALM-generated estimates for that user’s roles

to produce a cardinality estimate that reflects the disjunction of

role predicates for the particular combination of roles to which

that user is assigned. The primary advantage of this approach

is that the number of roles may be much smaller than the

number of users. PSALM’s sample-based cardinality estimates

for a few roles can be more accurate than its estimates for

many individual users would be, since it will be able to devote

more of its fixed sample budget for to each estimate. This

approach is also appealing since it recognizes and exploits the

disjunctive predicate structure that is induced by the role (or

group) hierarchy.

To use this alternative approach, we must have means of

accurately estimating the cardinality of a disjunctive access

control predicate, given PSALM-produced estimates of the

cardinality of the individual disjuncts. We begin by applying

the distributive law to rewrite the access control predicate:

PQ ∧ (
∨

i∈{1,...,k}

PACi) ≡
∨

i∈{1,...,k}

(PQ ∧ PACi) (9)

We use PSALM to accurately estimate the cardinality of

each PQ ∧ PACi(I). A variety of techniques can then be

used to produce a cardinality estimate for the disjunction. In

practice, these often rely on ad hoc formulas or independence

assumptions, which can reduce accuracy. We propose, instead,

to use the Coverage Algorithm [22] to estimate the cardinality

of the disjunctive predicate. This requires that the cardinality

estimate for each individual disjunct be determined using

sampling. However, since we are using PSALM to generate

those estimates, that is exactly what we have.

A. The Coverage Algorithm

The Coverage Algorithm’s time complexity is polynomial

in the number of disjuncts. The algorithm can be used to ac-

curately estimate the size of the union
⋃

i∈(1,...,k) Ci, provided

that [22]:

1) we can accurately estimate the size of each Ci, and

2) we can uniformly sample from each Ci, and

3) we can determine in polynomial time whether a given

tuple belongs to Ci.
The Coverage Algorithm takes as input the sets S =

{Ci, i ∈ {1, . . . , k}} and proceeds as in Algorithm 8. The

COVERAGE(S, n)

1: set counter W = 0;

2: sort sets in S by their sizes in descending order

3: for each Ci ∈ S

4: sample
n|Ci|

P

Ck∈S
|Ck|

tuples uniformly from Ci

5: for each tuple t sampled

6: if t 6∈ Cj , j ∈ {1, . . . , i − 1} W + +;

7: return W ;

Fig. 8. Coverage Algorithm [22]

algorithm starts with a counter W with value zero, and a total

sample size n. It then samples from each of the sets Ci, where

the number of samples taken from Ci is proportional to |Ci|.
For each tuple sampled from Ci, it determines whether the

tuple belongs to any Cj such that j ∈ {1, . . . , i−1}. If it does

not belong to any of these sets, we increment the counter W
by one.

After all of the samples from C1, C2 . . . , Ck have been

checked W is used to compute the estimated cardinality

|C| = |
⋃

i∈(1,...,k) Ci| as follows:

|C| =
∑

i∈{1,...,k}

|Ci|
W

n
(10)

It is possible to bound the accuracy of the cardinality

estimates generated by the Coverage Algorithm, as described

by Theorem 7.1.

Theorem 7.1 (Coverage Algorithm Accuracy [22]): The

sampling procedure in Algorithm 8 and Equation 10 yield an

ǫ-approximation to |C| with (1 − ∆) probability, provided

sample size n ≥ 4k
ǫ2

ln 2
∆ .

B. Applying the Coverage Algorithm

We now show how to apply the Coverage Algorithm for

estimating the cardinality of disjunctive predicates of the form

shown in Formula 9. Given a target relation T , we need to be

able to do the following to apply the Coverage Algorithm:

1) estimate the cardinality of each PQ ∧ PACi(T ), and

2) sample uniformly from each PQ ∧ PACi(T ), and

3) decide whether a given tuple satisfies PQ ∧ PACi in

polynomial time.

The first requirement is met because we are using PSALM
to estimate those cardinalities. The second requirement can

be satisfied by sampling from the samples that is produced

by PSALM for estimating the cardinalities of the disjuncts.

Specifically, to sample from PQ ∧ PACi, we sample from

among those tuples in PSALM’s sample that satisfy PQ ∧
PACi. The third requirement depends on the complexity of

the access control predicates associated with each individual

role.



C. Evaluating the Coverage Algorithm

We evaluated the Coverage Algorithm on top of the PSALM

technique using a data set that describes American household

expenditures 4. This data set consists of 127931 tuples, with

each tuple representing a family’s expenses on insurance,

property tax, electricity, gas, water, and fuel. There is some

correlation among the six attributes.

We simulate users’ access controls by randomly creating

four roles. The access control of each role is a single predicate

PAC on one of the six attributes of the data. We then randomly

assign these four roles to users. Each user may have one to four

roles, and the user’s access control predicate is a disjunct over

the single attribute predicates from his roles. Therefore, there

are altogether 15 distinct access controls from all our users. All

of the disjunctions that we considered in this experiment had

an actual selectivity of approximately 0.25, meaning that each

user has access to approximately one quarter of the tuples.

The reason for this selectivity will be clear later.

Our workload for this experiment consists of one-

dimensional range queries with the same selectivity (0.25) as

the access controls. We generated a series of such queries

and, for each pair of query and user’s access control pred-

icate, calculated both the actual result cardinality and the

estimated cardinality. We compared two approaches for cardi-

nality estimation. The first is the PSALM combined with the

Coverage Algorithm, as described previously. This approach

uses PSALM to generate cardinality estimates for each of

the four roles, and then combines those estimates using the

coverage algorithm to obtain cardinality estimates for user

queries. The second approach is to ignore the disjunctive

structure of the access controls. Instead we treat each user’s

disjunctive predicate as an atomic predicate, and we apply

PSALM directly on these 15 users to estimate the cardinality

of that predicate.

Figure 9 shows the estimation error of the two estimation

techniques, assuming that both techniques are given a sample

space budget of 60 tuples. Each point in the figure represents

a query from a user. The x-coordinate denotes the estimation

error using PSALM directly on all users and the y-coordinate

denotes the estimation error using the Coverage Algorithm

on top of PSALM on the roles. In most cases, the estimates

produced by the Coverage Algorithm are significantly more

accurate than those produced by PSALM directly on users.

VIII. RELATED WORK

There exists a broad literature on cardinality estima-

tion techniques for conjunctive predicates without the at-

tribute value independence assumption. Among them, multi-

dimensional histograms [7], [8], [9], [10], wavelet-based tech-

niques [23] and sampling [24], [25], [26] are the most com-

mon. We focus on sampling-based techniques in this paper.

There are two main approaches to sampling data for cardi-

nality estimation. One is to sample for each query at runtime,

either proactively before executing the query [27], or reactively

4available from http://www.ipums.org
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Disjunctive Predicates

after executing the query [28]. The other approach is to sample

off-line without prior knowledge of the queries. Although

PSALM takes advantage of prior knowledge access controls,

it is closer to the off-line sampling category since it does not

make any assumptions about the users’ queries.

Kolmogorov’s statistics show that a moderately-sized sam-

ple gives accurate selectivity estimation for queries, and that

the required sample size does not depend on the size of the

underlying dataset [29]. However, that evaluation is based on

the relative error of selectivity, rather than the relative error

of cardinality. It is well-known that uniform random sampling

does not provide accurate cardinality estimation when the data

distribution is highly skewed or the query results are very

small. Therefore, instead of specifying a fixed sample size for

all queries, adaptive sampling [25] (also known as sequential

sampling [24]) iteratively samples from data until the accuracy

of the estimation satisfies a stopping rule. This approach falls

into the runtime sampling category.

Another approach for handling skewed data or highly se-

lective queries is to sample without uniformity. This includes

biased sampling [30] or stratified sampling [13], the idea

of which is to partition data into non-overlapping clusters

of different density, and then assign different weights to the

sample tuples from clusters of different density. The density

distributions are either estimated through a pilot sampling

phase, or from prior knowledge of the queries together with

some statistics on the data.

The work by Acharya, Gibbons and Poosala [12] is similar

to our approach. Their sampling mechanism is intended for

efficient approximate answering of aggregation queries, and

their approach is to partition data according to the prior knowl-

edge of grouping attributes, and judiciously assign sample

quota among all the group partitions to minimize estimation

variance. However, their approach, like those of other biased or

stratified sampling techniques for answering group-by queries,

requires the groups be non-overlapping. This is because they

need to sum up estimates from the groups in the end. One

way to apply their approach for our problem is to partition the

whole data into non-overlapping regions according to all users’



access controls, and add up estimates from several regions that

belongs to a user. However, for U users, we may end up having

2U non-overlapping regions to compute. Moreover, groups of

different sizes have different importance in answering a query,

hence Acharya et al.’s work focus on balancing the weights of

groups to minimizing the error from summing estimates from

groups. On the other hand, our goal is not to minimize the

error of the sum of all user’s estimates, but to minimize the

sum of their estimation error bounds.

Some recent work proposes the use of statistics on

views [31] as well as sample views [26], which consist of

a sample of tuples drawn from a particular view. The set of

tuples accessible to a given user from a given target relation

can be thought of as a user-specific view defined by the user’s

access control predicate. From this perspective, the samples

drawn by the PSALM technique are sample views, and could

potentially be exploited by the mechanism described by Larson

et al. [26]. However, their work does not consider the problem

of determining which sample views to define. The sample

view definitions assumed to be given, and the emphasis is

on how to maintain and exploit the sample views. In contrast,

PSALM is about choosing which sample views to define, given

some information about static predicates (the access control

predicates) that appear repeatedly in many queries.

IX. CONCLUSION

In this paper, we have proposed PSALM, which is a

technique for cardinality estimation in the presence of fine-

grained access controls. PSALM exploits knowledge of user

access control predicates to identify a set of samples to be used

to estimate the cardinalities of queries over access-controlled

data. We have shown the PSALM can produce more accurate

estimates than those produced by multidimensional histograms

and those produced by simpler sampling techniques that do not

exploit knowledge of the access control predicates. Although

PSALM is motivated by the need for accurate cardinality

estimates in the presence of fine-grained access controls,

PSALM is potentially applicable in any scenario in which

relatively static and repeatedly used query predicates can be

identified.
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