Workload-Aware CPU Performance Scaling for Transactional
Database Systems

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu
University of Waterloo
{mkorkmaz, mkarsten,kmsalem,semih.salihoglu}@uwaterloo.ca

ABSTRACT

Natural short term fluctuations in the load of transactional data
systems present an opportunity for power savings. For example,
a system handling 1000 requests per second on average can ex-
pect more than 1000 requests in some seconds, fewer in others.
By quickly adjusting processing capacity to match such fluctua-
tions, power consumption can be reduced. Many systems do this
already, using dynamic voltage and frequency scaling (DVFS) to
reduce processor performance and power consumption when the
load is low. DVFS is typically controlled by frequency governors in
the operating system, or by the processor itself. In this paper, we
show that transactional database systems can manage DVFS more
effectively than the underlying operating system. This is because
the database system has more information about the workload, and
more control over that workload, than is available to the operating
system. We present a technique called POLARIS for reducing the
power consumption of transactional database systems. POLARIS
directly manages processor DVFS and controls database transaction
scheduling. Its goal is to minimize power consumption while ensur-
ing the transactions are completed within a specified latency target.
POLARIS is workload-aware, and can accommodate concurrent
workloads with different characteristics and latency budgets. We
show that POLARIS can simultaneously reduce power consumption
and reduce missed latency targets, relative to operating-system-
based DVFS governors.

ACM Reference Format:

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu. 2018.
Workload-Aware CPU Performance Scaling for Transactional Database Sys-
tems. In SIGMOD’18: 2018 International Conference on Management of Data,
Fune 10-15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3183713.3196901

1 INTRODUCTION

Servers do not always run at maximum capacity, because workloads
fluctuate and can be bursty [13, 15, 20]. Thus, when load is not
at its peak, server resources are underutilized [11, 29]. Workload
fluctuations occur on many time scales. They may exhibit regular
seasonal, weekly, or diurnal patterns. Workloads can also fluctuate
on timescales of hours or minutes, perhaps due to external events,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06....$15.00
https://doi.org/10.1145/3183713.3196901

news cycles, social effects, and other factors. A variety of techniques
have been proposed for improving the power proportionality of
servers, or clusters of servers, in the face of such fluctuations. We
review some of these techniques in Section 7.

Server loads also fluctuate at shorter, such as second or subsec-
ond, scales. These fluctuations are caused by natural variations in
the arrival rates of work, as well as variations in the service times of
individual requests. Thus, a system that is handling on average 1000
requests per second may see only 500 requests in some seconds,
and 1500 requests in other seconds. These short term fluctuations
present an opportunity for reducing server power consumption
by quickly adjusting the capacity (and power consumption) of the
server to match these fluctuations. This is the opportunity we seek
to exploit in this paper. Techniques designed to address longer-term
workload fluctuations are generally unable to respond to such short
term changes. This is because they rely on relatively heavyweight
mechanisms (such as powering servers down, or migrating pro-
cesses), or on mechanisms (such as feedback control) that take time
to measure load and that adjust power consumption gradually.

The performance and power consumption of a server can be ad-
justed using dynamic voltage and frequency scaling (DVFS), which
is supported by many server processors. DVFS allows a processor’s
voltage and frequency, and hence power consumption, to be ad-
justed on the fly. On modern processors, these adjustments can be
made very quickly, e.g., on sub-microsecond time scales. This is
fast enough to allow server power and performance to be adjusted
on the time scale of individual server requests, even for systems
with request latencies in the millisecond range, such as in-memory
transaction processing systems or key-value storage systems.

DVFS must be managed. That is, something must control the scal-
ing and decide whether and when to adjust voltage and frequency.
Currently, DVFS is commonly managed by low-level governors
implemented in an operating system (OS) and/or directly in hard-
ware. Such governors typically base their decisions on low-level
metrics, such as processor utilization, that are directly available to
the OS. One advantage of these governors is that they are generic.
Since they rely only on low-level metrics, they can be used to save
power across a broad range of applications. However, for specific
applications, they may leave substantial opportunities on the table.

Our central premise is that, for database servers, DVFS can be man-
aged more effectively by the database management system (DBMS).
The DBMS has two main advantages when managing DVFS. First,
the DBMS is aware of database units of work, such as queries and
transactions. It may have valuable information about these units of
work, such as priorities, service level objectives, or the nature of
the work itself. A DBMS can use this information to make better
DVES decisions. For example, a DBMS can slow down the CPU
when executing a request with a low amount of work. Second, the

https://doi.org/10.1145/3183713.3196901
https://doi.org/10.1145/3183713.3196901

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

DBMS can also control its units of work. For example, it can reorder
requests, or reject low value requests when load is high.

In this paper, we focus on the managing DVFS in transactional
in-memory database systems. We consider systems that support
multiple concurrent transactional workloads, each of which may
have distinct characteristics, and each of which may have a dif-
ferent request latency target. For example, a workload associated
with high priority customers may have a lower latency target than
a workload of regular customers. Our objective is to use DVFS
to minimize server power consumption, while ensuring that all
workloads’ latency targets are met. We show that by exploiting
knowledge about transactions and the ability to manage transaction
execution, we can reduce both power consumption and the number
of missed deadlines. For example, for TPC-C, POLARIS is able to
cut power consumption by up to 40 Watts, while missing fewer
deadlines, compared to running the CPUs in performance mode,
i.e., at high frequency.

This paper makes the following technical contributions:

e We present an on-line workload-aware scheduling and fre-
quency scaling algorithm called POLARIS (POwer and La-
tency Aware Request Scheduling). POLARIS controls both
transaction execution order and processor frequency to
minimize CPU power consumption while observing per-
workload latency targets. Many modern in-memory transac-
tion processing systems, like VoltDB [48] and Silo [51], are
architected to execute each transaction from start to finish in
a single thread on a single processor core. POLARIS is a non-
preemptive scheduler, because non-preemptive scheduling
is a good fit for such systems.

e We provide a competitive analysis of POLARIS against
YDS [58], a well-known optimal offline preemptive algo-
rithm, as well as a YDS based on-line preemptive algorithm
(OA [58]). This analysis provides insight into aspects of PO-
LARIS’s behavior, such as the impact of non-preemptiveness
and the importance of transaction scheduling.

e We present a prototype implementation of POLARIS within
the Shore-MT storage manager [28]. Section 5 describes some
of the practical issues that we had to address in doing so.
We use the prototype to perform an empirical evaluation of
POLARIS under a variety of workloads and load conditions,
using in-kernel dynamic DVFS governors as baselines. Our
results show that POLARIS produces greater power savings,
fewer missed transaction deadlines, or both. We also show
how POLARIS’ effectiveness is affected by two key factors:
(1) the average load on the system, and (2) scheduling slack, i.e.,
the looseness of the transactions’ deadlines. Although PO-
LARIS dominates the baselines under almost all conditions,
its benefits are greatest when the average load is neither very
high nor very low. Not surprisingly, greater scheduling slack
increases the advantage of deadline-aware schedulers, like
POLARIS, over deadline-blind operating system alternatives.

2 BACKGROUND: DVFS

DVES and related power-management mechanisms are standard-
ized as the Advanced Configuration and Power Interface (ACPI) [52].

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

ACPI is an architecture-independent framework that defines dis-
crete power states for CPUs and that allows software to control
the power state of the underlying hardware. ACPI defines P-States,
which represent a different voltage and frequency operating points.
Py represents the P-State with the highest voltage and frequency,
and hence the highest performance and the highest power con-
sumption. Additional P-States, P1,. .., Py, represent successively
lower voltage and frequency states, and hence greater tradeoffs
of performance for power reductions. The exact operating point
associated with each P-State varies from processor to processor.
POLARIS works by choosing a P-State for the processor.

ACPI also defines C-States, which represent the processor’s idle
states. Although POLARIS does not directly manage C-states, we
give a brief overview here. C-State C is the processor’s normal
non-idle operating state, in which the CPU is active and executing
instructions. In Cy state, a CPU is running in one of the P-States.
Additional C-States, Cy, . ..,Cm, represent idle states, in which the
CPU is not executing instructions. Higher-numbered C-States rep-
resent “deeper” idle states, in which more parts of the CPU are shut
down. Normally, the deeper the idle state, the lower the power con-
sumption of the idle processor, but the longer it takes the processor
to return to the normal operating state (Co) when there is work to
do. Since C-States are idle states, C-State transitions are normally
managed by the CPU itself.

Like other modern operating systems, Linux utilizes ACPI through
a variety of kernel modules. Among these is the generic CPU power
control module cpufreq, which supports a wide variety of CPU
architectures. The cpufreq driver provides a number of power gov-
ernors in two groups. The first group consists of static governors,
which can be used to set a constant P-State for the processor. The
other group includes dynamic governors, which monitor CPU uti-
lization and adjust the processor’s P-State in response to utilization
changes. The cpufreq driver subsystem is exposed through the
Linux sysfs filesystem. Through that interface, a system adminis-
trator or a privileged user-level application can select a governor,
and can adjust governor parameters.

It is also possible for DVFS to be managed directly by the hard-
ware. One example of this is Intel’s Running Average Power Limit
(RAPL) mechanism [27]. RAPL allows user-level applications to
monitor CPU power consumption. In addition, given a specified
power consumption limit, RAPL can dynamically adjust processor
voltage and frequency levels to keep the CPU’s power consump-
tion within the specified upper bound. Like OS-based governors,
RAPL is unaware of DBMS-level workload information, such as
transaction deadlines.

3 POLARIS

POLARIS is designed to manage DVFS for a transactional database
server. For the purposes of the presentation in this section, we
assume a server with a single single-core processor that supports
DVFS. To manage multiple processors, or processors with multiple
frequency-scalable cores, we can use multiple instances of POLARIS.
In Section 5, we describe the POLARIS prototype architecture that
uses this approach to manage a multi-processor, multi-core server.

POLARIS is workload-aware. A server accepts transaction exe-
cution requests, and each request is assumed to be tagged with a

Workload-Aware CPU Performance Scaling for Transactional Database Systems

workload identifier to indicate which workload it is part of. Each
workload known to POLARIS is associated with a latency target.
POLARIS’s objective is to minimize CPU power consumption while
ensuring that each request is completed within its workload’s la-
tency target.

Workloads are important to POLARIS, since different work-
loads can have different latency targets, e.g., one workload with
a tight latency target for priority customers’ transactions, and a
different workload with a looser target for others. POLARIS also
tracks and estimates request execution times on a per-workload
basis. Many database systems provide sophisticated workload man-
agers [23, 26, 40, 42, 43, 49] that allow incoming requests to be
assigned to workloads based on the properties of the request. For
example, these properties might include the name of the user, ap-
plication, or function that generated the request, the complexity
or estimated cost of the request, the connection over which the re-
quest arrived, and so on. Some workload managers track workloads’
performance or resource consumption, allow priorities or perfor-
mance targets to be associated with individual workloads, and take
action or make recommendations when targets are missed. For
example, IBM DB2 Workload Manager [25] can monitor workloads’
performance, and can adjust priorities and resource allocations or
take other user-specified actions when targets are missed. POLARIS
assumes that incoming requests are assigned to workloads by such
a mechanism. However, POLARIS itself is agnostic with regards
to how this assignment is defined. That is, it neither defines nor
depends on specific policies for workload assignment.

POLARIS’s primary objective is to ensure that transactions meet
their workloads’ latency targets. However, because transaction
execution speed is limited by the processor’s highest-frequency
P-state and there are no constraints on the arrival of transactions
or on transaction deadlines, it may not be possible for POLARIS
(or any scheduling algorithm) to ensure that all transactions meet
their deadlines. In such cases, POLARIS will run the processor at
the highest frequency, which will have the effect of completing late
transactions as quickly as possible.

3.1 The POLARIS Algorithm

Execution of the POLARIS algorithm is triggered by the arrival of a
new transaction request, or the completion of a request. In each of
these situations, POLARIS chooses a frequency for the processor,
based on the set of transactions that are running or waiting to
run. It assumes that there is a fixed set of voltage and frequency
configurations in which the processor can run, corresponding to
the processor’s available P-States. Higher frequencies allow the
processor to execute transactions faster, but they also consume
more power. Figure 1 summarizes notation that we use to describe
transactions and processor frequencies.

Figure 2 shows the POLARIS frequency selection procedure, SET-
PRrocEsSORFREQ, which runs each time a transaction request arrives
or is completed. SETPROCESSORFREQ chooses the smallest processor
frequency such that all transactions, including the running transac-
tion and all waiting transactions, will finish running before their
deadlines if the processor were to run at that frequency.

The frequency selection algorithm relies on a transaction execu-
tion time model, which predicts the execution time of a transaction

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

l notation [meaning

Q transaction request queue
to currently running transaction
) running time (so far) of ¢y

w set of workloads
L(c) latency target of workload ¢ € ‘W
c(t) workload of transaction ¢, ¢(t) € ‘W

a(t) arrival time of transaction ¢
d(t) deadline of transaction ¢, d(t) = a(t) + L(c(t))
F set of possible processor frequencies
fi(c, f) | estimated execution time of workload c transac-

tion at frequency f
q(t,f) | estimated queuing time of ¢ at frequency f

Figure 1: Summary of Notation

of a given workload at a given processor frequency. We use fi(c, f)
(in Figure 2) to represent the predicted execution time of a workload
¢ transaction at frequency f. We discuss how POLARIS predicts
execution time in Section 3.2.

In Figure 2, §(t, f) represents the total estimated queueing time
for transaction t € Q, assuming that the processor runs at frequency
f. This is defined as follows:

q4(t,f) = fi(c(to), f) —eo + file(t'). f)

t'eQld(¢')<d(t)

That is, t must wait for the currently running transaction’s remain-
ing execution time, and must also wait for all queued transactions
with deadlines earlier than t’s.

POLARIS also controls transaction execution order. Transaction
requests that arrive while the processor is busy running another
transaction are queued in order of their workloads’ deadlines by
POLARIS. When the running transaction finishes, POLARIS dis-
patches the next transaction (the one with the earliest deadline)
from the queue. As we note in Section 1, each transaction, once
dispatched runs to completion. In Section 4, we relate POLARIS to
YDS, a well known, optimal offline frequency scaling and sched-
uling algorithm. YDS achieves optimality by identifying batches
of so-called “critical” transactions and executing them in earliest
deadline first (EDF) order, since this may allow YDS to run the batch
at a lower frequency than would be possible if transactions ran in
arrival order. POLARIS executes transactions in EDF order for the
same reason.

3.2 Execution Time Estimation

POLARIS requires estimates of the execution time fi(c, f) for trans-
actions of each ¢ € W at each f € ¥ . There is a substantial body
of work on estimating execution times of database queries [2, 16,
18, 21]. This work varies in the assumed complexity of the work-
load, the amount of workload information that is required, and in
the use of black-box vs. white-box modeling. For POLARIS, our
focus is on transactional workloads with many short units of work,
rather than complex SQL queries. However, even in this relatively
simple setting, accurate prediction of individual transactions’ execu-
tion times is challenging, since factors such as resource contention

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

State: Q: queue of waiting transactions

State: t): currently running transaction
State: e(: run time (so far) of #y
State: 504 : current time
1: function SETPROCESSORFREQ()
2: > find minimum freq for current transaction
3: for each f,¢4 in 7, in increasing order :
& if thow + fi(c(t0), fnew) — €0 < d(to) : break
5 > ensure all queued transactions finish in time
6: for each t in Q, in EDF order :
7: if thow + G(t, fnew) + f1(c(t), fnew) < d(t) : continue
8: > fnew is not fast enough for ¢
9: > find the lowest higher frequency that is
10: for each f € F|f > fuew, in increasing order :
11 frew «< f
12: if thow + (¢, f) + fi(c(t), f) < d(t) : break
13: > no further checking once we need highest freq
14: if fnew = maximum frequency in F :
15: set processor frequency to frea
16: return
17: set processor frequency to frew
18: return

Figure 2: POLARIS Processor Frequency Selection

and data contention can affect execution. In addition, workloads
characteristics can change over time.

For POLARIS, we have taken a simple, conservative, dynamic,
black-box statistical approach to estimate execution time. Specifi-
cally, for each combination of workload c and frequency f in WX,
POLARIS tracks the pth percentile of measured execution times
over a sliding window of the S most recent transactions from work-
load ¢ that run at frequency f. The current tracked value is used as
fi(c, f) in POLARIS’s SETPROCESSORFREQ algorithm (Figure 2).

To track these percentiles, we adapted an algorithm of Hérdle
and Steiger [22] for tracking a running median to instead tracking
the pth percentile of the observed execution time distribution. For
all of the experiments reported in this paper, we use S = 1000 and
experimented with percentiles in the range 95 < p < 99.

This approach has several advantages in our setting. First, it is
fast, which is important because we do not want to squander PO-
LARIS’s power savings on estimation overhead. Second, it requires
little space: a few kilobytes per element of ‘W X ¥ . We expect both
W and F to be small; both are less than ten in our experiments.
Third, it can adapt to changing workloads and system conditions,
because of the sliding window. Finally, it requires no information
about each transaction, other than its workload label.

This approach is conservative because we are using tail latencies
to predict the execution time of every transaction. For most of
the experiments presented in this paper, we have used p = 95.
This is important because POLARIS’s primary objective is to meet
transaction latency targets. For example, Figure 3 illustrates the
mean and 95th percentile latencies for the individual transactions
in our TPC-C workload and also, in the last row, the latencies for
the overall combined workload. In this example, the tail latencies

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

Execution Time (us)

Request @2.8 GHz @1.2 GHz
Type Mean Pgs Mean Pos
New Order (45%) 2059 5414 4772 12048
Payment (47%) 301 859 733 2388
Order Status (4%) 250 1682 809 3453
Stock Level (4%) 3435 5106 8062 11495
Combined Workload 1560 4465 3941 13525

Figure 3: TPC-C mean and 95th percentile (Pg5) transaction
execution times at maximum and minimum CPU frequency.
Percentages indicate the transaction mix in the workload.

are 2.5 to 4.8 times larger than the means. The use of lower values
of p = 95 will make POLARIS save power more aggressively, but
also increases the risk of missed latency targets.

4 POLARIS ANALYSIS

In this section we analyze the performance of POLARIS through
a competitive analysis against two existing algorithms YDS [58]
(Section 4.2) and OA [10, 58] (Section 4.3).

We have two objectives in this section. The first is to provide a
theoretical justification for why POLARIS is an effective algorithm.
The second is to establish a connection between the behaviors of
POLARIS and OA under certain settings. We provide our analysis
under the standard theoretical model [7, 10, 58] in which algorithms
can scale the speed of the CPU to arbitrarily high levels and thus
execute every transaction before its deadline. Therefore we focus
only on the energy consumption of algorithms and not their success
rates. We review this standard model in Section 4.1.

Broadly, energy aware scheduling algorithms can be classified
into four categories along two dimensions as shown in Figure 4: (1)
preemptive vs non-preemptive; and (2) offline vs online algorithms.
Offline preemptive algorithms are the most computationally power-
ful algorithms. YDS [58] is the optimal offline preemptive algorithm
and therefore consumes the lowest possible energy among all sched-
uling algorithms. In contrast, online non-preemptive algorithms,
such as POLARIS, are the most computationally constrained ones.

The natural algorithm to compare POLARIS against would be
the optimal offline non-preemptive algorithm, which we refer to as
OPTpp. However, computing the optimal offline non-preemptive
schedule is NP-hard [7], and an explicit description of OPTy, is
not known. Instead, we provide a competitive ratio of POLARIS
against YDS, which also implies a competitive ratio against OPTy,.
As we show in Sections 4.4 and 4.5, we get a competitive ratio of
POLARIS against YDS indirectly through a competitive analysis
against OA, which is an online preemptive algorithm. In doing so
we also meet our second objective of establishing the connection
between POLARIS and OA.

Finally we note that several online non-preemptive algorithms
have been developed in literature for variants of the speed-scaling
problem. Examples include maximizing the throughput [6] or min-
imizing the total response time [4] of transactions under a fixed
energy budget. However, no prior work studies the problem of min-
imizing energy consumption as we do in this section. We refer the
reader to references [3] and [19] for a survey of these algorithms.

Workload-Aware CPU Performance Scaling for Transactional Database Systems

Preemptive Non-Preemptive

Online

Offline

[YDS 04] OPTnp] [POLARIS]

Figure 4: Energy aware scheduling algorithms.

4.1 Standard Model

In the standard model, a problem instance P consists of n transac-
tions, where each transaction ¢ arrives with an arrival time a(t), a
deadline d(t), and a load w(t). w(t) represents the amount of work
that a transaction must perform, which is assumed to be known
accurately. Algorithms can scale the speed of the processor to ar-
bitrarily high levels. When the processor is running at frequency
(speed) f, a transaction t executes in w(t)/f time. The power con-
sumption of the processor is assumed to be f%, where a > 1is a
constant [12], which guarantees that the power-speed function is
convex. We observe that in this model algorithms, including PO-
LARIS, are idealized and can execute every transaction before its
deadline, i.e., achieve 100% success rate. This is because (a) they
know transactions’ loads accurately; and (b) can pick arbitrarily
high speeds to finish any transaction on time.

4.2 Yao-Demers-Schenker (YDS)

YDS is the optimal offline preemptive algorithm. Given a prob-
lem instance P, let an interval be the time window between the
arrival time a(t;) of some transaction t; and the (later) deadline
d(tj) of a possibly different transaction ¢; in P. Define the density
of a given interval I to be Zpw(t)/|I|, where the summation is
over all transactions t; such that [a(t),d(t)) is within I. Given
P, YDS iteratively performs the following step until there are no
transactions left in the problem. It finds an interval with the maxi-
mum density, which is called the critical interval. Let CI be the first
critical interval YDS finds. The algorithm schedules the speed of the
processor during CI to the density of CI and schedules execution of
the transactions in CI in EDF order. Then, the algorithm removes
CI and the set of transactions in CI from P, constructs a reduced
problem P’, and repeats the previous step on P’. P’ is the same as P
except any transaction whose arrival and deadline intersects with
CI is shortened exactly by the time it overlaps with CI.

In its final schedule, YDS potentially preempts a transaction ¢
whenever transaction t has an arrival time and a deadline that spans
a critical interval CI that the algorithm has picked at some step.
That is, YDS might run part of t before the start of the CI, preempt
t when CI starts, and resume executing ¢ after CI.

4.3 Optimal Available (OA)

OA is an online preemptive algorithm based on YDS [58]. Each
time a new transaction arrives, OA uses YDS to choose a schedule.
Suppose that a new transaction arrives at time 7. OA runs YDS on
a problem instance consisting of the following transactions:

o The newly arrived transaction, t;ew.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

e The currently running transaction, t,, with its load w(t,)
taken to be the remaining load of t,, and with its arrival time
taken to be 7.

e Any other transactions waiting in the system, with their
arrival times adjusted to be 7.

We make an important observation here. Note that in the prob-
lem instance constructed by OA, all transactions have the same
arrival time 7. Thus, if there are k transactions in the system, there
are exactly k intervals from which YDS chooses the first critical
interval. The first includes just the transaction with the earliest
deadline, the second includes the transactions with the two earliest
deadlines, and so on. Furthermore, the first critical interval will
include the transaction with the earliest deadline, since it is part
of all of the possible intervals. Since YDS schedules transactions
in EDF order, this first transaction must be either t, or te.. Thus,
if d(thew) < d(tr), OA will preempt t, and start running tyeqy. If,
on the other hand, d(t,) < d(tnew), tr will continue running after
thew s arrival, and t,¢,, Will run later. Bansal et al. showed that OA
is a® competitive against YDS [10].

4.4 OA vs. POLARIS

Next, we compare the behavior of OA with that of (idealized) PO-
LARIS . We start by comparing the algorithms under the scenario
in which a newly arriving transaction has a later deadline than the
currently running transaction.

LEMMA 4.1. Suppose that both POLARIS and OA have the same
queue at a point in time, with k total transactions, one running (t,) and
k — 1 waiting, with the exact same loads. Suppose a new transaction
tnew arrives, and that d(t;) < d(tpew). Until the arrival of the next
transaction, POLARIS and OA will execute transactions in the same
order, and with the same processor frequency.

The proof of this lemma is provided in Appendix A. The proof
argues inductively that a) by the observation we made at the end of
Section 4.3, both POLARIS and OA will execute transactions in EDF
order; and b) will have identical processor speeds at any moment.

Next, we consider the situation in which the newly arriving
transaction ;¢4 has an earlier deadline than the running transac-
tion t,. In such a situation, OA will preempt t, and start running
tnew. POLARIS , which is non-preemptive, cannot do this. Instead,
POLARIS will continue to run t,, but will increase the speed of the
processor to ensure that both ¢4, and t, finish by t,,¢+,’s deadline.
This is captured by the following lemma:

LEMMA 4.2. Suppose that both POLARIS and OA have the same
queue at a point in time, with k total transactions, one running (t,) and
the rest waiting, with the exact same loads. Suppose a new transaction
tnew arrives,and that d(tpew) < d(tr). Until the arrival of the next
transaction, POLARIS will execute transactions in the same order, and
with the same processor frequency, as OA would have if d(t,) were
decreased to d(tpew).

The proof is similar to that of Lemma 4.1, and a sketch of it is

given in Appendix B

4.5 Competitive Ratio of POLARIS

We next prove POLARIS’ competitive ratio against OA and YDS both
on arbitrary and agreeable instances. Arbitrary problem instances

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

are those in which transactions can have arbitrary loads, arrival
times, and deadlines. Agreeable instances are those in which trans-
actions have arbitrary loads but their arrival times and deadlines
are such that for any pair of transactions ¢; and t; if a(t;) < a(t;)
then d(t;) < d(t;). Intuitively, agreeable problem instances cap-
ture workloads in which sudden short deadline transactions do not
occur. Throughout the rest of the section, Pow[POLARIS(P)] and
Pow[YDS(P)] denote the power consumed by POLARIS and YDS
on a problem instance P, respectively.

We next make a simple observation about POLARIS’ competitive
ratio on agreeable problem instances.

THEOREM 4.3. Under agreeable problem instances
Pow[POLARIS(P)] < a*Pow[YDS(P)]. Therefore POLARIS has
a% competitive ratio against YDS and therefore OPTyyp.

ProoF. Recall from Section 4.4 that the only difference in the
behaviors of OA and POLARIS is when a new transaction with the
earliest deadline in the queue arrives. Since this never happens in
agreeable instances, POLARIS behaves the same as OA, which has
a competitive ratio of % with respect to YDS [10].]

Next we analyze POLARIS’ competitiveness on arbitrary problem
instances. In the rest of this section, given an arbitrary problem
instance P, we let wy,gx and wy,in be the maximum and minimum
loads of any transaction in P. Let ¢ = (1 + %). Given a problem
instance P = t1,...,ty, let P’ = t{,...,t; be the problem instance in
which each ¢; and tl{ have the same arrival times and deadlines, but
w(t]) = ¢ X w(t;). Essentially P’ is the problem instance where we
keep the same transactions as P but increase their loads by a factor
of ¢. Our analysis consists of two steps.

THEOREM 4.4. Pow[POLARIS(P)] < a®*Pow[YDS(P’)]

ProoF. Our proof is an extension of the proof used by Bansal et
al. to show that OA has an a® competitive ratio against YDS [10],
and is provided in Appendix C. O

We next show that YDS on P’ consumes exactly ¢% times the
power it does on P.

THEOREM 4.5. Pow[YDS(P’)] = ¢*Pow[YDS(P)].

Proor. Since the load of each transaction increases by a factor
of ¢, YDS on P’ will find exactly the same set of critical intervals,
but with ¢ times larger densities. Therefore, YDS’ processor speed
on P’ will be a factor ¢ faster than on P at any moment. Let s(¢) be
the processor speed of YDS on P. Since ft(cs(t))“ = (c¢%) ft s(t)%,
YDS will consume exactly ¢* more energy on P’ than P.]

The next corollary is immediate from Theorems 4.4 and 4.5.

COROLLARY 4.6. POLARIS has a (ca)® competitive ratio against
YDS and therefore OPTpy.

4.6 Discussion

The competitive ratio in Corollary 4.6 has two components: «* and
c%. Recall that (idealized) POLARIS has two disadvantages against
YDS. First, it does not know the future, and second it cannot pre-
empt transactions. Recall that the OA algorithm, which does not
know the future but can preempt transactions, has a* competitive

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

/‘:’ J" i eee®
Worker)| | Worker 3
Corel Core?

Figure 5: Architecture of the POLARIS Shore-MT Prototype

ratio [10]. Thus, one interpretation is that the «® component cap-
tures POLARIS’ disadvantage of not knowing the future. In contrast,
the ¢* component captures POLARIS’ disadvantage of not being
able to preempt. For an example of this disadvantage, consider two
transactions t; and t. t; has load w4, and arrives at time 0 and
has a very late deadline. t; has a load wy,;, and arrives after an
infinitesimally small time after 0, and has a very short deadline.
POLARIS will start ¢; will receive t, and will finish both t; and ¢,
by the deadline of #;. Instead YDS would execute t; first and then
t1. By appropriate choices of the deadlines for ¢; and t, POLARIS
will perform ¢* worse than YDS.

5 POLARIS PROTOTYPE

To test POLARIS, we implemented it in Shore-MT [28]. Shore-MT
is a multi-threaded data storage manager which is designed for
multiprocessors. Shore-Kits [17] provides a front-end driver for
Shore-MT. It includes implementations of several database bench-
marks, including TPC-C and TPC-E. For the remainder of the paper,
we refer to the combination of Shore-Kits and Shore-MT as Shore-
MT.

Shore-MT has multiple worker threads, each with an associated
request queue. Each request corresponds to a transaction of a par-
ticular type, e.g., NewOrder in the TPC-C workload. Each worker
sequentially executes requests from its queue, using the storage
manager to access data.

There are also request handling (RH) threads which handle in-
coming requests from clients and routes them to worker queues.
To simplify our experimental setup, we do not drive the Shore-MT
server using remote clients. Instead, a request handler simulates a
set of remote clients by generating randomized requests and then
handling them as if they had arrived over the network from remote
clients. This architecture is illustrated in Figure 5.

Our test server’s multi-core CPUs allow CPU frequency to be
controlled separately for each core. In our prototype, we fix the
number of workers to match the number of cores in our server, and
pin each worker to a single core. For each core, we run a separate
instance of POLARIS, which manages the request queue of that
core’s worker and controls the core’s execution frequency.

POLARIS requires action when two types of events occur: ar-
rival of a new transaction request, and completion of a request. In
our prototype, POLARIS’s request arrival action is handled by the
RH threads. When a new request arrives, one of the RH threads
enqueues the request to one worker queue and then runs the PO-
LARIS SETPROCESSORFREQ algorithm (Figure 2) to adjust the exe-
cution frequency of that worker’s core. We modified Shore-MT’s

Workload-Aware CPU Performance Scaling for Transactional Database Systems

request queues so that requests are queued in EDF order, as required
by POLARIS. POLARIS’s request completion action is handled by
the worker threads. On completion of a request, workers pull the
earliest-deadline request from their queues and run SETPROCESSOR-
FREQ to set their core’s frequency before executing the dequeued
request. POLARIS’s overhead depends on the length of the request
queue. The longer the queue, the higher the overhead. At high load,
when queues are longest, we measured its execution time at about
10 microseconds, which is one or two orders of magnitude less than
the mean execution times, at peak frequency, of the transactions in
our TPC-C workload.

The POLARIS SETPROCESSORFREQ function requires some means
of actually adjusting a core’s P-State. There are several mechanisms
for doing so. For x86 processors, all of the alternatives ultimately
rely on Model Specific Registers (MSRs) [1, 27]. MSRs contains CPU
related information which can be read and/or written by software,
and which can be used to control some aspects of the processor,
including core frequencies.

One common way to change CPU frequency on Linux systems is
to use the cpufreq driver’s userspace governor. Application code
can specify a core frequency in a special sysfs system file, and
the userspace governor then uses the cpufreq driver to set core
frequency as specified. The driver, in turn, controls frequency using
the MSRs. This interface is relatively simple to use, but we found
that it introduces substantial latency, as was previously observed
by Wamhoff et al. [53]. Since POLARIS adjusts execution frequen-
cies frequently (potentially on each transaction request arrival or
completion), the RH and worker threads in our prototype modify
the MSRs directly via the MSR driver, which is much faster.

6 EVALUATION

We use our prototype to conduct an empirical evaluation of PO-
LARIS. The primary goal of our evaluation is to compare POLARIS
against low-level, OS frequency governors. We want to determine
whether the extra information available to POLARIS leads to greater
power savings than can be achieved with the OS baselines. We test
POLARIS under a variety of load conditions. In addition, we test
POLARIS’s ability to differentiate among concurrent workloads
with different latency targets.

6.1 Methodology

In our experiments, we use Shore-Kits’ TPC-C and TPC-E implemen-
tations. For both benchmarks, Shore-MT’s buffer pool is configured
to be large enough to hold the entire database. For each experi-
mental run, we choose a method for controlling core frequencies
(POLARIS, or one of the baselines), and then run the benchmark
workload against our Shore-MT prototype. Each run consists of
three phases: (1) a warmup phase, during which each worker exe-
cutes 30,000 transactions, (2) a short training phase for warming
up POLARIS’ execution time estimators by filling the initial sliding
window for each frequency level and request type combination, and
(3) the test phase, during which power consumption and system
performance are measured.

The training phase is used only so that we can test POLARIS
in a state in which its estimation model has been fully initialized.
In practice, the execution time estimates for all workloads at all

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

frequencies can be initialized to zero. This will cause POLARIS
to gradually explore and initialize its estimators for unexplored
frequencies, from lowest to highest, as it encounters load conditions
under which the already-explored frequencies are not fast enough
to handle the load. POLARIS performance may suffer as it initializes
these estimators, but this is a transient effect, and the number of
estimators is relatively small (‘W X F).

We change Shore-Kits request generation from a closed-loop
design to an open-loop design, so that we can specify a mean
offered load (transaction requests per second) for the system for
each experiment. Request interarrival delays are chosen randomly
from a uniform distribution with the mean determined by the target
request rate, a minimum of zero, and a maximum of twice the mean.
Thus, the actual instantaneous request rate fluctuates randomly
around the target. We run experiments at three target load levels:
high, medium, and low . High load is 90% of the peak throughput for
our test system, which is about 21250 transactions per second for
TPC-C, and 14900 transactions per second for TPC-E. The medium
and low loads correspond to 60% and 30% of the peak throughput,
respectively.

In addition to these “steady” loads, we use World Cup site access
traces [9] to generate TPC-C workloads with time-varying target
request rates. To do this, we vary the target request arrival rate
between 30% and 90% of the peak TPC-C throughput for our server
to match the observed normalized fluctuations in the World Cup
trace. The target rate is adjusted once per second.

For each experiment, transactions are assigned to one or more
workloads, each with an associated latency target. We use the no-
tion of slack to provide a uniform way of describing the tightness
of the latency targets. We define slack as the ratio between a work-
load’s latency target and the mean execution time of the workload’s
transactions, at the highest processor frequency. For example, for
a TPC-C New Order transaction, which has an average execution
time of 2059 ys (recall Figure 3) at the highest frequency level, a
slack of 20 indicates latency target of 41180 yis. We experiment with
slack values ranging from 10 to 100 to illustrate the effect of the
tightness of latency targets on the algorithm’s behavior.

For each run, we measure the average power consumed by the
server during the test phase. To measure server power draw, we
used a Watts up? PRO [24] wall socket power meter, which has
a rated +1.5% accuracy. We measure the power consumption in
one-second intervals (the finest granularity of the power meter) and
average those over the test duration. We also measure the power
consumption of the CPUs (alone), as reported through the RAPL
MSRs. However, we use the whole server power, as reported by the
Watts up? meter, as our primary power metric.

In addition to the power metric, we also measure performance
during the test phase. In each of our experiments, the mean sys-
tem throughput is fixed and controlled by our open-loop request
generator. Thus, we are primarily interested in transaction latency.
Specifically, we measure the percentage of transactions that do not
finish execution before their deadline, which we refer to as the
failure rate.

We run experiments with POLARIS and with static and dynamic
OS baselines. For the dynamic OS baselines, we use the Linux
cpufreq dynamic governors to manage core frequencies. We exper-
iment with two dynamic governors: Conservative and OnDemand.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

The former favors performance over power savings, while the latter
adjusts core frequencies more aggressively to save power. For the
static OS baselines, we use MSRs to set all cores to run at a fixed
frequency. Under both the static and dynamic baselines, Shore-MT
uses its default transaction scheduler and does not attempt to adjust
core frequencies.

In our experiments, we use a server with two Intel® Xeon® E5-
2640 v3 processors with 128 GB memory using Ubuntu 14.04 with
kernel version 4.2.8, where the cpufreq driver is loaded by default.
For the experiments with in-DBMS power scheduling algorithms
and those with the static frequencies, we disable the CPU ACPI
software control in the BIOS configuration to prevent the cpufreq
driver from interfering with power control. For the experiments
using the dynamic kernel governors, we enable ACPI software
control in the BIOS. To reduce non-uniform memory access NUMA)
effects and get more homogeneous memory access patterns, we
enable memory interleaving in the BIOS.

Each E5-2640 CPU has 8 physical and 16 logical cores (hyper-
threads), thus our system has a total of 16 physical (32 logical) cores.
Each physical core’s power level can be set separately. The CPU
has 15 frequency levels from 1.2 GHz to 2.6 GHz with 0.1 GHz steps,
plus 2.8 GHz. In our experiments, we chose five of the frequency
levels, 1.2, 1.6, 2.0, 2.4 and 2.8 GHz, as the possible target frequency
levels for POLARIS.

For all of our experiments, our Shore-MT prototype is config-
ured to use two Request Handler (RH) threads and sixteen worker
threads. We pin each worker thread to a one logical core (hyper-
thread) in one of the 16 physical cores. The RH threads are free to
run on any of the remaining logical cores, as determined by the
kernel’s thread scheduler. Each RH thread distributes requests to
the workers round robin, regardless of the requests transaction
type or workload. For TPC-C, we set the database scale factor to
48 and for TPC-E, we use a database with 1000 customers and set
the benchmark’s working days and scale factor parameters to 300
and 500, respectively, which are given as their default values in the
TPC-E specification [14]. We use Shore-MT’s default staged group
commit configuration, under which log I/O is forced at least once
per 100 transactions.

6.2 Results: Medium Load

For our initial experiment, we focus on the medium load scenario,
meaning that the overall request rate is about 60% of the server’s
maximum capacity. We consider both TPC-C and TPC-E workloads.
We begin with TPC-C, and present TPC-E in Section 6.2.1. For TPC-
C, we define four workloads for POLARIS, one corresponding to
each of the four TPC-C transactions implemented by Shore-Kits.
For each workload, the target latency is set to slack times the mean
execution time (at high frequency) for that workload’s transaction
type. These mean execution times ranged from about 0.25 millisec-
onds for Order Status transactions to about 3.4 milliseconds for
Stock Level as we show in Figure 3. Thus, when the slack is 50
(for example), the latency target for the Order Status transaction
workload is set to about 0.25%50 = 12.5 milliseconds, and the target
for Stock Level transactions is 3.4 * 50 = 170 milliseconds.

Figure 6 shows the results of this experiment, as a function of
slack. In addition to POLARIS, we report the results for the two

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

0.2

0.1

Failure Rate
(#Failed Trx / #Offered Trx)

0.0
170
M. M. M- Ve
160
g
QO_ ~ 150
< % X SRR R M— N E— S ROORIPORS SRR R S R Hv -+
o0
© % 140 . Y W 3 R 5 RN S R IS R 5 R IS 1S RN A
g *.
< Tk
130 B PSP S Sy Sy
120
10 40 70 100
Slack
--%- POLARIS —> - Conservative 2.8 GHz
—=+- OnDemand <k 2.4 GHz

Figure 6: Performance and power of different power
management schemes under medium load.

Linux dynamic governors (OnDemand and Conservative), as well
as the results for two highest static frequency governors.

In this test, running all cores at the highest frequency (2.8 GHz)
causes the server to consume about 170 watts of power. When
slack is tight, about 15% of transactions exceed their latency targets.
Moving to a lower static frequency (2.4 GHz) results in almost 30
watts of power savings, but at the expense of more missed latency
targets. In this setting, the Linux Conservative governor’s behavior
is similar to that of the static, high-frequency governor. Indeed, the
Conservative governor rarely lowers frequency below 2.8 GHz in
these experiments. The Linux OnDemand governor reduces core
frequencies more aggressively. This produces power savings of
about 25 watts, but at the expense of more missed latency targets
when slack is tight.

POLARIS performs better because it is deadline-aware. With
tight slack, POLARIS lowers power consumption by over 30 watts
relative to consumption at peak frequency. These power savings
do not come at the expense of missed latency targets. Indeed, when
slack is tight, POLARIS cuts the missed deadline rate almost in half
relative to OnDemand. Perhaps surprisingly, fewer transactions
miss their deadlines under POLARIS than under the high-frequency
(2.8 GHz) static governor. This is because POLARIS is able to re-
order transactions and run them in EDF order, which the static gov-
ernors cannot do. When slack is high, POLARIS and the baselines
have similar failure rates. Because of load fluctuations and occa-
sional execution time outliers, a small percentage of transactions
miss their deadlines regardless of how processor speed is controlled.
However, POLARIS is able to take advantage of the higher slack
to slow transactions down and reduce power consumption, which

Workload-Aware CPU Performance Scaling for Transactional Database Systems

0.2

0.1 \\\'\

Failure Rate
(#Failed Trx / #Offered Trx)

" L "
0.0 x oy b3
180
170
g
C‘C_>3?160
o 0
B
5 150
> +)) |) . 1 a4y 4
< + + + + + + + + + +
140 #._‘\: 3 T B TN 3 T IS TR T IS TR v A
B T SV
130
10 40 70 100
Slack
--%- POLARIS —> - Conservative 2.8 GHz
—=+- OnDemand sk 2.4 GHz

Figure 7: TPC-E performance and power of different power
management schemes under medium load.

the baselines cannot do. With increasing slack, POLARIS’ power
savings (relative to 2.8 GHz) climb to more than 40 watts, with no
increase in late transactions. As slack increases, POLARIS produces
greater power savings, since it reduce processor frequencies to take
advantage of the extra slack. The baselines are unaware of slack,
and hence are insensitive to it. In loose-slack settings (slack greater
than 50), POLARIS reduces total server power by about 40 watts
relative to peak frequency, almost twice the reduction achieved by
the OnDemand governor.

6.2.1 Medium Load, TPC-E. For the TPC-E medium load exper-
iment, we define ten POLARIS workloads, each corresponding to
one TPC-E request type. Mean execution times for requests range
from 0.06 to 2.3 milliseconds at peak frequency. We use slack to as-
sign a latency target for each workload. We use the same estimator
parameter settings as for TPC-C.

Figure 7 shows the results of the TPC-E experiment, which are
similar to those for TPC-C. POLARIS reduces power consumption
by about 40 watts relative to peak frequency execution. As was
the case for TPC-C, the power savings are greater with greater
slack, although the effect is not as strong. The OnDemand governor
does better (relative to POLARIS) than it did for TPC-C, but it still
consumes more power and misses more transaction deadlines than
POLARIS.

One difference between the TPC-E and TPC-C results is that, for
very tight slack, POLARIS’s rate of missed latency targets is higher
than that of the Conservative governor. However, this is achieved
at the cost of about 35 watts.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

0.2

0.1

Failure Rate
(#Failed Trx / #Offered Trx)

Average Power
(Watt)

10 40 70 100
Slack

--%- POLARIS —> - Conservative
—=+- OnDemand wke 2.4 GHz

2.8 GHz

Figure 8: Performance and power of different power
management schemes under low load.

6.3 Results: Effect of Load

To investigate the effects of system load on POLARIS, we repeat our
medium-load TPC-C experiment under low and high load condi-
tions. Low load and high load mean an average request arrival rate
of 30% and 90% of the systems peak sustainable load, respectively.

Figure 8 shows the results of this experiment under low load.
POLARIS results in power savings of about 40 watts, relative to
execution at peak frequency. This is similar to the savings that
were achieved at medium load. In this setting, the Conservative
governor is able to achieve the same power savings as POLARIS,
but it does so at the expense of significantly higher rates of missed
latency targets when slack is tight. The OnDemand governor has
in-between performance, and is dominated by POLARIS.

A comparison of the medium and low load experiments (Figures 6
and 8) shows that the two baseline dynamic governors switch roles
in these two settings. At medium load, the OnDemand governor
results in lower power consumption but more missed latency tar-
gets than Conservative, which rarely leaves the highest frequency.
However, at lower load, it is the Conservative governor that results
in greater power savings but more missed latency targets. This illus-
trates the challenges of relying on low-level metrics, like processor
utilization, to achieve latency targets. POLARIS, in contrast, has
stable behavior in both settings.

Finally, Figure 9 shows the results of the high-load experiments.
This is a challenging setting for both POLARIS and the baselines,
as there is little opportunity for power optimization under such an
intense workload.

All of the methods, including POLARIS, have higher rates of
missed latency targets, especially when those targets are tight. This

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

o
~

o
w

o
-

Failure Rate
(#Failed Trx / #Offered Trx)
(=]
oD

0.0
19
i A e e N e g PR
g 180
O ~
o E
o 8
)
2 e T . e s SIS
S g0 ¥ *x
3
160
10 40 70 100
Slack
--%- POLARIS —> - Conservative wope 2.8 GHz

—=+- OnDemand

Figure 9: Performance and power of different power
management schemes under high load.

is simply because there are periods when requests come in too
fast for the system to handle, even at peak frequency. Under high
load, both POLARIS and the OnDemand governor are able to reduce
power only by about 10 watts (relative to peak frequency), although
POLARIS does so with fewer missed latency targets.

As we noted in Section 1, real systems may experience both long
term and short term load fluctuations. Our results with low, medium,
and high load experiments suggest that POLARIS can function
effectively as load fluctuates over longer time frames. When load
is in the low or medium range, which is common, POLARIS can
reduce power substantially without compromising latency targets.
During windows of peak load there is little opportunity for power
savings, but POLARIS performs at least as well as running the
processors at peak frequency in that setting.

6.4 Results: Time-Varying Load

In our previous experiments, we test with workloads that exhibit
random fluctuations around a steady average request rate. In our
next experiment, we consider a workload in which the average
request rate fluctuates to match the request trace of a real appli-
cation. We use a World Cup trace [9] to generate the request rate
fluctuations. Specifically, we vary the target TPC-C request rate
in the range from 6400 transactions per second to 19440 requests
per second. (These rates correspond to our steady “low” and “high”
workload levels.) We set a new target rate every second, according to
the (normalized) request rate from the World Cup trace. Otherwise,
the experimental configuration is identical to the configuration we
used for the steady load TPC-C experiments.

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

100 4

80 1

60 1

40 1

Consumption

20 1

Normalized Load and Power

04

0 50 100 150 200 250

Time (sec.)
Load e OnDemand
—=== POLARIS —-=— Conservative

(a) World Cup Trace Timeline for Normalized Load Level and power
consumption, bins of 5 seconds.

Baseline Avg. Power (Watt) Failure Rate
Conservative 168.9 0.09
OnDemand 152.9 0.13

POLARIS 139 0.07

(b) Average Power consumption and failure rate of baselines.

Figure 10: World Cup Trace - Normalized.

Figure 10(a) illustrates the normalized request rate we generated,
as well as the power consumption of POLARIS and the Conserva-
tive and OnDemand baselines. Power consumption is normalized
to the minimum and maximum consumption (of any algorithm)
observed during our experiments, so that the reported values are
comparable across algorithms. Figure 10(b) summarizes the average
power consumption and failure rate (percentage of transactions
that missed latency targets) over the entire experiment. As was the
case in the steady load experiments, POLARIS results in both lower
power consumption and fewer missed latency targets than either of
the OS baselines. All of the algorithms adjust power consumption
in response to the load changes, but POLARIS’s adjustments tend
to be sharper and deeper.

6.5 Results: Workload Differentiation

In this experiment, we focus on how POLARIS and the baselines
react when the are multiple similar workloads with different latency
targets. For this purpose, we define two TPC-C workloads, each
consisting of all four types of TPC-C transactions, in the standard
proportions. Requests for each workload are generated at half of our
medium TPC-C workload rate, so that the total load (on average) is
equivalent to our TPC-C medium load. For one workload, which
we refer to as gold, we set a latency target of 7.5 milliseconds. For
the other, which we refer to as silver, we set a latency target of 37.5
milliseconds. We track the failure rate (late transactions) separately
for the gold and silver workloads.

Figure 11 shows the failure rate for each workload, under PO-
LARIS, the Linux dynamic governors, and the high frequency static

Workload-Aware CPU Performance Scaling for Transactional Database Systems

¢ []

170 1
g v
2 160 1
B}
2 45
£ 150 1
L
&
£ 1401
z

130 1 X+

0.00 0.;]2 0.‘04 ().;JG (].‘()8 [].‘10
Failure Rate
<+ POLARIS-Gold P> OnDemand-Silver B 28GHzGold

A Conservative-Gold ’ 2.8 GHz-Silver

WV Conservative-Silver

X POLARIS-Silver
<« OnDemand-Gold

Figure 11: Per-Workload Performance for Gold and Silver
TPC-C Workloads

governor. Each failure rate is plotted against the total power con-
sumption for that run, as we cannot separately attribute power to
individual workloads. Non-POLARIS managers have a large gap
between the failure rates of gold and the silver, as they are not able
to take SLA into account. Thus, gold requests fail more because of
their tighter latency target. POLARIS, because it is deadline aware,
produces similar failure rates for both workloads. Gold transac-
tions are much less likely to miss their latency targets, while silver
transactions are slightly more likely.

6.6 POLARIS Component Analysis

In our final experiment, we evaluate the importance of differ-
ent aspects of POLARIS by comparing it to two variants. The
first, POLARIS-FIFO, is identical to POLARIS but runs transac-
tions in FIFO order, rather than EDF. The second, POLARIS-FIFO-
NOARRIVE, runs transactions in FIFO order and adjusts frequency
only on transaction completion, not on arrival. Figure 12 shows the
power and performance of POLARIS and the variants for TPC-C
under medium load. The results show that both EDF and frequency
adjustment on arrival are important for achieving latency targets
when slack is tight. The latter allows POLARIS to react quickly to
the arrival of new transactions by increasing frequency when nec-
essary. This is why POLARIS-FIFO has fewer missed transactions
than POLARIS-FIFO-NOARRIVE, at the cost of some additional
power consumption. The results also show that EDF contributes to
power savings, because it allows POLARIS to meet latency targets
with lower frequencies.

7 RELATED WORK

In this section, we discuss related work in several broad categories.
We first consider cluster-level techniques that are designed to op-
erate across multiple servers, and then single-server techniques.
Finally, we consider techniques that have been specifically targeted
at database systems.

7.1 Cluster Level Energy Efficiency

Some approaches for improving data center energy efficiency oper-
ate at the scale of a cluster or data center as a whole. One technique

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

0.3
®
SR
3 N
@502
EET N
L
53 W
B L
‘-'-301 < b\\\‘\
£ e Pl
£ R R S = NN
===z —#—.—:.—_M
0.0
150
3 >
140 <
R T
e R
PR
$3
g 130
120
10 40 70 100
Slack
--%- POLARIS -%-- POLARIS-FIFO -<¢- POLARIS-FIFO-NOARRIVE

Figure 12: Performance POLARIS and Variants

is to shut down servers when they are idle [35, 36]. Another is
to focus on energy-efficient virtual machine placement across the
cluster [33, 56]. Facebook controls server power consumption to
prevent data center power overloads [54]. These techniques typ-
ically operate at much longer time scales (e.g., minutes or hours)
than POLARIS, typically because the actions used to control power
consumption, such as placing or migrating virtual machines, or
powering servers up and down, are relatively time consuming. PO-
LARIS is complementary to some of these techniques. For example,
it can be used to manage DVFS on servers that are not shut down
by a cluster-level manager.

7.2 Server-Level Energy Efficiency

Another body of work targets single server energy efficiency,
like POLARIS. Spiliopoulos et al. [47] propose an operating sys-
tem power governor which uses memory stalls as an input and
tries to optimize CPU energy efficiency accordingly. Sen and
Wood [46] propose an operating system governor that predicts the
system power/performance Pareto optimality frontier and keeps
the power/performance at this frontier. Like the Linux DVFS gov-
ernors we have used as baselines in Section 6, these do not take
advantage of application-level workload information.

PAT [55] and PEGASUS [37] apply feedback control to manage
processor DVFS. PAT uses a control mechanism to maintain a target
system throughput as the I/O intensity of the workload fluctuates.
However, this may be difficult to apply in a system in which the
intensity of the offered load is fluctuating. PEGASUS, like POLARIS,
targets request latency in so-called on-line data intensive (OLDI)
applications. PEGASUS assumes a homogeneous workload, with
a target request latency. Unlike POLARIS, which operates at the
timescale of individual transactions and tries to ensure that ev-
ery transaction meets its deadline, PEGASUS tries to ensure that
mean transaction latency over a sliding time window (say, 30 or

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

60 seconds) is less than the specified target. Thus, it takes time
for PEGASUS to observe system state and adjust to fluctuations.
PEGASUS is intended to react to changes over longer time scales
(minutes, hours, days). PEGASUS is also not easily generalized to
handle multiple concurrent workloads, as a single control setting
applies to all transactions in a time window.

There are a few techniques designed to respond to very short
term load fluctuations, like POLARIS. Both LAPS [32] and Ru-
bik [31] manage DVES on the time scale of individual transaction ar-
rivals. Rubik uses statistical models to try to predict the tail latency
of the response times of all queued transactions, and uses DVES to
try to ensure that they hit latency targets. However, this approach
does not extend to multiple workloads, since the response time
prediction must be done periodically, offline, and it assumes that all
requests have identical service time distributions. Both techniques
are limited to controlling DVFS, and do not reorder transactions like
POLARIS. LAPS adjusts frequency only on transaction completion,
and does not define a specific technique for estimating transac-
tion execution times. In Section 6.6, we considered two variants
of POLARIS that are similar to Rubik (POLARIS-FIFO) and LAPS
(POLARIS-FIFO-NOARRIVE). These variants execute transactions
and set processor frequency like Rubik and LAPS. However, both
variants use POLARIS’ execution time estimation technique.

Several studies explore the use of C- States for energy efficiency.
These studies show that using C-states is challenging either because
workloads are rarely idle enough to exploit sleep states [37, 38]
or because processors consume a lot of energy to recover from
deep sleep states [29, 45]. Therefore, some work encourages deeper
C-States by extending sleep periods [5, 39]. In contrast, we focus
only on P-states in this work.

There is also work on DRAM energy efficiency. Appuswamy et
al. [8] show that large-memory servers can consume a substantial
amount of power and illustrate the potential for memory power
saving. Karyakin et al. [30] demonstrate that memory power con-
sumption in-memory database systems is not proportional to sys-
tem load, and is also not proportional to database size. They point
to DRAM low-power states as the key to memory power savings.

7.3 Energy Efficiency in DBMSs

Several studies describe techniques for improving energy efficiency
through query optimization and query operator configuration.
Tsirogiannis et al. [50] investigate servers equipped with multi-core
CPUs by studying power consumption characteristics of parallel
operators and query plans using different numbers of cores with
different placement schemes. Their findings suggest that using
all of the available cores is the most power-efficient option for
DBMSs under enough load and parallelism, while different CPU
core frequencies may allow further power/performance tradeoffs.
Unfortunately, this does not provide guidance on how to improve
energy efficiency in the common case of systems that are not
100% loaded. In the same direction, Psaroudakis et al. [44] take
CPU frequency into account along with core selection. They show
that different CPU frequency levels can be more energy efficient
for execution of different relational operators. Both Xu et al. [57]
and Lang et al. [34] explore possibilities of energy aware query
optimization in relational DBMSs. For this, they propose a cost

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

function having both performance and power as the objective.
They show that DBMSs can execute queries according to specific
power/performance requirements. Mithlbauer et al.[41] show that
heterogeneity-aware parallel query plans can save power while
having better performance in emerging heterogeneous multi-core
CPUs. These techniques are complementary to POLARIS.

8 CONCLUSION & FUTURE WORK

In this paper, we have presented a workload-aware frequency scal-
ing and scheduling technique for transactional database systems,
and related it to other well-known offline and online algorithms.
Unlike operating system power governors, POLARIS is aware of
per-transaction latency targets and takes advantage of them to keep
processor execution frequency, and hence power consumption, as
low as possible. On our server, POLARIS was able to reduce power
consumption substantially, with no increase in missed transaction
deadlines. Operating system governors, in contrast, either save little
power or save power at the expense of missed deadlines. Through
comparison of several variations of POLARIS, we showed that it is
necessary for POLARIS to control transaction execution order and
processor frequency to achieve this performance.

Our target for POLARIS is in-memory transaction processing
systems. However, POLARIS is potentially applicable to a broader
class of systems. The most important requirement for POLARIS is
that units of work (transactions) are executed non-preemptively. In
addition, POLARIS will work best when the execution times of units
of work are relatively short. Other kinds of systems, such as search
engines and key-value databases, have these properties, and may
also be good targets for POLARIS. Another interesting direction
to explore is the use of POLARIS-like algorithms in virtualized
environments, such as clouds. Here, key issues include how the
physical processors are shared by virtual machines, and whether to
implement POLARIS-like functionality as part of the virtualization
layer, or within each virtual machine.

One challenge faced by POLARIS is the need to estimate transac-
tion execution times at different processor frequencies. The power
savings achieved by POLARIS in our experiments were achieved us-
ing a conservative estimator that can track time-varying workloads.
Thus, perfect estimation is not necessary for in-DBMS workload-
aware frequency scaling to be effective. However, better estimates
would allow POLARIS to reduce processor frequency more aggres-
sively, and further reduce power.

On multi-socket, multi-core servers, there may be opportuni-
ties for reducing power consumption beyond what is achievable
by POLARIS. POLARIS controls transaction execution order and
speed independently on each core, and request handling threads do
round-robin assignment of requests to workers. By controlling how
transactions are distributed to workers, we can obtain additional
power savings by allowing some workers (and their cores) to idle
and move into low-power C-states. The same technique can be
applied at the package level. We are currently exploring extensions
to POLARIS in this direction.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

Workload-Aware CPU Performance Scaling for Transactional Database Systems

REFERENCES

[1] Advanced Micro Devices(AMD). 2017. Architecture Programmer’s Manual: Vol-
ume 2: System Programming. 24593 (2017).

[2] M. Akdere et al. 2012. Learning-based Query Performance Modeling and Predic-
tion. In Proc. ICDE. 390-401.

[3] S. Albers. 2011. Algorithms for dynamic speed scaling. In STACS, Vol. 9. 1-11.

[4] S. Albers and H. Fujiwara. 2007. Energy-efficient algorithms for flow time mini-
mization. ACM TALG 3, 4 (2007).

[5] H. Amur et al. 2008. Idlepower: Application-aware management of processor
idle states. In Proc. Workshop on Managed Many-Core Systems, Vol. 8.

[6] E.Angel et al. 2016. Throughput maximization in multiprocessor speed-scaling.
Theoretical Computer Science 630 (2016), 1-12.

[7] A. Antoniadis and C. Huang. 2013. Non-preemptive speed scaling. Journal of
Scheduling 16, 4 (2013), 385-394.

[8] R. Appuswamy et al. 2015. Scaling the memory power wall with dram-aware
data management. In Proc. DaMoN.

[9] M. Arlitt and T. Jin. 2000. A workload characterization study of the 1998 world
cup web site. IEEE Network 14, 3 (2000), 30-37.

[10] N. Bansal, T. Kimbrel, and K. Pruhs. 2007. Speed scaling to manage energy and
temperature. J. ACM 54, 1 (2007).

[11] L. A. Barroso and U. Hélzle. 2007. The case for energy-proportional computing.
IEEE Computer 40, 12 (2007).

[12] D. M. Brooks et al. 2000. Power-aware microarchitecture: design and modeling
challenges for next-generation microprocessors. IEEE Micro 20, 6 (2000), 26-44.

[13] Y. Chen, S. Alspaugh, and R. Katz. 2012. Interactive Analytical Processing in Big
Data Systems: A Cross-industry Study of MapReduce Workloads. Proc. VLDB
Endow. 5, 12 (2012), 1802-1813.

[14] Transaction Processing Performance Council. 2015. TPC BENCHMARK E-
Standard Specification-Version 1.14.0. (2015).

[15] C. Delimitrou and C. Kozyrakis. 2014. Quasar: Resource-efficient and QoS-aware
Cluster Management. ACM SIGPLAN Not. 49, 4 (2014), 127-144.

[16] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. 2011. Performance
Prediction for Concurrent Database Workloads. In Proc. SIGMOD. 337-348.

[17] EPFL. 2012. EPFL Official Shore-MT Page, Shore-Kits. https://sites.google.com/
site/shoremt/shore-kits. (2012). Accessed: Feb. 2017.

[18] A.Ganapathi et al. 2009. Predicting Multiple Metrics for Queries: Better Decisions
Enabled by Machine Learning. In Proc. ICDE. 592-603.

[19] M.E.T. Gerards, J. L. Hurink, and P. K. F. Holzenspies. 2016. A survey of offline
algorithms for energy minimization under deadline constraintsa. Journal of
Scheduling 19, 1 (2016), 3-19.

[20] D. Gmach et al. 2007. Workload analysis and demand prediction of enterprise
data center applications. In IEEE IISWC. 171-180.

[21] H. Hacigumus et al. 2013. Predicting Query Execution Time: Are Optimizer Cost
Models Really Unusable?. In Proc. ICDE. 1081-1092.

[22] W. Hardle and W. Steiger. 1995. Algorithm AS 296: Optimal median smoothing.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 44, 2 (1995),
258-264.

[23] Hewlett Packard Enterprise. 2017. HPE Global Workload Manager 7.6. https:
//support.hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908. (2017). Accessed:
Oct. 2017.

[24] J. M. Hirst et al. 2013. Watts Up? PRO AC Power Meter for automated energy
recording: A product review. Behavior Analysis in Practice 6, 1 (2013), 82.

[25] IBM Corporation. 2013. DB2 Workload Management Guide and Reference.
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.
db2 luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html. (2013).
Accessed: Jan. 2018.

[26] IBM Corporation. 2017. DB2 Workload Manager. https://www.ibm.com/support/

knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.

ibm.db2.luw.admin.wlm.doc- gentopicl.html. (2017). Accessed: Oct. 2017.

Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer’s

Manual.

[28] R.Johnson et al. 2009. Shore-MT: a scalable storage manager for the multicore
era. In Proc. EDBT. 24-35.

[29] S.Kanev, K. Hazelwood, G. Wei, and D. Brooks. 2014. Tradeoffs between power
management and tail latency in warehouse-scale applications. In IEEE IISWC.
IEEE, 31-40.

[30] A.Karyakin and K. Salem. 2017. An analysis of memory power consumption in
database systems. In Proc. DaMOoN. 2.

[31] H. Kasture et al. 2015. Rubik: Fast Analytical Power Management for Latency-
critical Systems. In IEEE/ACM MICRO (MICRO-48). 598-610.

[32] M. Korkmaz et al. 2015. Towards Dynamic Green-Sizing for Database Servers. In

ADMS@VLDB. 25-36.

Gregor V. L. et al. 2009. Power-aware scheduling of virtual machines in DVFS-

enabled clusters, in. In Proc. IEEE Int’l Conf. Cluster Computing. 1-10.

[34] W. Lang, R. Kandhan, and J. M. Patel. 2011. Rethinking Query Processing for
Energy Efficiency: Slowing Down to Win the Race. IEEE Data Eng. Bull. 34, 1
(2011), 12-23.

[27

[33

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

[35] W.Lang and J. M Patel. 2010. Energy management for mapreduce clusters. Proc.
of the VLDB Endow. 3, 1-2 (2010), 129-139.

[36] J. Leverich and C. Kozyrakis. 2010. On the Energy (in)Efficiency of Hadoop
Clusters. ACM SIGOPS Oper. Syst. Rev. 44, 1 (2010), 61-65.

[37] D.Lo etal. 2014. Towards Energy Proportionality for Large-scale Latency-critical

Workloads (IEEE ISCA). 301-312.

D.others Meisner. 2011. Power management of online data-intensive services. In

IEEE ISCA. 319-330.

[39] D. Meisner, B. T. Gold, and T. F. Wenisch. 2009. PowerNap: Eliminating Server

Idle Power. ACM SIGARCH Comput. Archit. News 37, 1 (2009), 205-216.

Microsoft Corporation. 2017. Microsoft SQL SERVER resource governor.

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/

resource-governor. (2017). Accessed: Oct. 2017.

[41] T. Miihlbauer et al. 2014. Heterogeneity-Conscious Parallel Query Execution:

Getting a better mileage while driving faster!. In Proc. DaMoN. 2.

Oracle Corporation. 2017. Managing Resources with Oracle Database Resource

Manager. https://docs.oracle.com/database/121/ADMIN/dbrm.htm. (2017). Ac-

cessed: Oct. 2017.

Pivotal Corporation. 2017. Greenplum Workload Manager. https://gpcc.docs.

pivotal.io/220/gp-wlm/topics/gpwlm-docs.html. (2017). Accessed: Oct. 2017.

L. Psaroudakis et al. 2014. Dynamic Fine-grained Scheduling for Energy-efficient

Main-memory Queries (Proc. DaMoN). 1-7.

[45] R.Schéne, D. Molka, and M. Werner. 2015. Wake-up latencies for processor idle

states on current x86 processors. Computer Science-Research and Development 30,

2 (2015), 219-227.

R. Sen and David A. Wood. 2017. Pareto Governors for Energy-Optimal Comput-

ing. ACM TACO (2017), 6:1-6:25.

V. Spiliopoulos, S. Kaxiras, and G. Keramidas. 2011. Green governors: A frame-

work for continuously adaptive dvfs. In IEEE IGCC. 1-8.

[48] M. Stonebraker and A. Weisberg. 2013. The VoltDB Main Memory DBMS. IEEE

Data Eng. Bull. 36, 2 (2013), 21-27.

Teradata Corporation. 2017. Teradata Workload Manager. http://www.teradata.

com/products-and-services/workload-management. (2017). Accessed: Oct. 2017.

[50] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. 2010. Analyzing the Energy
Efficiency of a Database Server. In Proc. SIGMOD. 231-242.

[51] S.Tu et al. 2013. Speedy transactions in multicore in-memory databases. In Proc.
ACM SOSP. 18-32.

[52] Unified EFI Inc. 2016. Advanced Configuration and Power Interface Specification.
http://www.uefi.org/sites/default/files/resources/ ACPI_6_1.pdf. (2016). Accessed:
Feb. 2017.

[53] J. Wambhoff et al. 2014. The TURBO Diaries: Application-controlled Frequency
Scaling Explained. In Proc. USENIX ATC. 193-204.

[54] Q. Wu et al. 2016. Dynamo: Facebook’s data center-wide power management
system. In JEEE ISCA. 469-480.

[55] Zichen X., Xiaorui W., and Yi cheng T. 2013. Power-Aware Throughput Control
for Database Management Systems. In Proc. ICAC. 315-324.

[56] J. Xu and J. A. B. Fortes. 2010. Multi-Objective Virtual Machine Placement in
Virtualized Data Center Environments. In PRoc. IEEE/ACM GreenCom & CPSCOM.
179-188.

[57] Z.Xu, Y. C. Tu, and X. Wang. 2010. Exploring power-performance tradeoffs in
database systems. In Proc. ICDE. 485-496.

[58] F.Yao, A. Demers, and S. Shenker. 1995. A Scheduling Model for Reduced CPU
Energy. In Symposium on Foundations of Computer Science.

[38

[40

[42

[43

[44

[46

[47

[49

APPENDIX
A PROOF OF LEMMA 4.1

First, we consider execution order. By definition, POLARIS will
finish running ¢, and then run the remaining transactions in earliest-
deadline-first (EDF) order. Since ¢, has the earliest deadline, this
amounts to running all transactions in (EDF) order. OA identifies a
critical interval, schedules the transactions in that interval in EDF
order, reduces the problem instance by removing the critical interval
and its transactions, and repeats on the reduced instance. However,
because all transactions have the same arrival time, all transactions
in the first critical interval chosen by OA will have deadlines earlier
than all remaining transactions. Since the resulting reduced problem
instances all have the same structure as the original instance, each
successive critical interval’s transactions’ deadlines will be later
than those of previously selected intervals, and earlier than those of
subsequently selected intervals. Thus, by scheduling each critical

https://sites.google.com/site/shoremt/shore-kits
https://sites.google.com/site/shoremt/shore-kits
https://support.hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908
https://support.hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.oracle.com/database/121/ADMIN/dbrm.htm
https://gpcc.docs.pivotal.io/220/gp-wlm/topics/gpwlm-docs.html
https://gpcc.docs.pivotal.io/220/gp-wlm/topics/gpwlm-docs.html
http://www.teradata.com/products-and-services/workload-management
http://www.teradata.com/products-and-services/workload-management
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

interval in EDF order, OA will execute all transactions in EDF order,
like POLARIS.

Second, we consider processor speed. Let CI; represent the ith

critical interval chosen by OA. Let P; represent the original problem
instance considered by OA, and let P; represent the reduced problem
instance under which CI; (i > 1) is chosen. Since both algorithms
agree on EDF execution order, we show by induction on the number
of transactions that POLARIS and OA agree on the processor speed
used to execute each transaction.
Base Case: Consider the transaction with the earliest deadline in
the original, non-reduced problem instance, P;. OA will run this
transaction first, using frequency den(CI;). Now consider POLARIS.
When tp,¢4 arrives, POLARIS will use SETPROCESSORFREQ (Figure 2)
to set the processor frequency. SETPROCESSORFREQ iterates over
the transactions present in the system, including ¢, and te4. After
iterating over all k + 1 transactions in the system, the selected
frequency will be

max den(I;)
1<j<k+1 /

where I represents the interval consisting of the j earliest-deadline
transactions. Thus, after considering all k + 1 transactions, the fre-
quency chosen by POLARIS will correspond to that required by the
interval with the highest density, i.e., the frequency of the critical
interval. Thus, POLARIS , will set the processor speed to den(CI;),
the same speed chosen by OA. Since POLARIS only adjusts pro-
cessor speed when transactions arrive or finish, it will remain at
den(CI;) until the transaction completes.

Inductive Step: Suppose that the nth transaction is finishing exe-
cution under POLARIS, and that POLARIS has run it and all pre-
ceeding transactions at the same frequencies that were chosen by
OA. Consider the n + 1st transaction. There are two cases:

Case 1: Suppose that the nth and n + 1st transactions belong to the
same critical interval under OA. Suppose it is the mth critical in-
terval, which implies that both transactions ran at speed den(CI,,)
under OA. By our inductive hypothesis, the nth transaction also
ran at speed den(CI;;,) under POLARIS. When the nth transaction
completes, POLARIS will run SETPROCESSORFREQ. The set of trans-
actions over which it runs will be exactly those in Pp,, minus those
transactions in CIy, that have already finished executing, including
the nth transaction. When POLARIS runs SETPROCESSORFREQ, the
highest density interval it finds will be CI,;,, but shortened to ac-
count for transactions from that interval that have already finished.
The density it finds for this interval will be exactly den(CI,;,), since
the work of the already-completed transactions in CI,;, was done at
rate den(ClI,,). Thus, POLARIS chooses den(CI,;,) as the execution
frequency for transaction n + 1.

Case 2: Suppose than the nth transaction belongs to CI,;, and the
n + 1st belongs to CI;;+1. In this case, when transaction n finishes
and POLARIS runs SETPROCESSORFREQ, the set of transactions re-
maining at the processor is exactly those in Pp,+1. Furthermore,
transaction n+ 1 has the earliest deadline of all transactions in Py, 1.
Thus, by the same argument used in the base case, both OA and
POLARIS choose den(Clp,+1) as the processor speed for transaction
n+1.

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

B PROOF SKETCH OF LEMMA 4.2

In the modified problem instance in which the deadline of t, is
reduced, no other transactions have deadlines earlier than ¢, and
tnew-. Thus, there are two possibilities for CIj, the first critical
interval chosen by OA. Either it includes only ¢, and tpew, or it
includes t, tpew, and some additional transactions. In the former
case, den(Cl) = (W(ty) + W(tnew))/d(tnew). In the latter case, it is
higher.

Now consider POLARIS. When tye,, arrives, POLARIS keeps
executing t, since it is non-preemptive. However, it runs SET-
PROCESSORFREQ to adjust the processor frequency. Because of the
definition of §(t, f), the miminum frequency identified for each
transaction includes the (remaining) time for ¢,, even if ¢, has a
later deadline. Thus, SETPROCESSORFREQ will identify frequency
(w(tr) + w(tnew))/d(tnew) when it checks tye4y, and will set this
frequency if CI; includes just t, and tpey. If CI; includes more
transactions, SETPROCEsSSORFREQ will find den(CI;) when it checks
the last transaction in CIj.

C PROOF OF THEOREM 4.4

We assume w.l.o.g., that P and therefore P’ are contiguous. In other
words, for each time t € [0,d(t,) = d(t;,)] there is a transaction ¢;,
such that a(tj) <t < d(t;). If the P and P’ are not contiguous, we
can break it into a finite number of contiguous parts and analyze
POLARIS competitiveness in each part and get the same result. We
let sp(t) and sy (¢) be the speed of POLARIS’s and YDS’s processors
at time t when executing P and P’, respectively. There are three
types of events that will happen at any point of time. Either a new
transaction arrives, POLARIS or YDS completes a transaction, or an
infinitesimal dt amount of time elapses. We use the same potential
function ¢(t) as in reference (defined momentarily). We will show
that:

(1) @(t) is 0 at time ¢ and at the end of the final transaction.

(2) ¢(t) does not increase as a result of a task arrival or a com-

pletion of a task by POLARIS or YDS.
(3) Atany time t between arrival events the following inequality

holds: d6(0)
t
sp(H)* + g(bi_t < a%sy (1)
Note that if these conditions hold, integrating equation 1 between
each arrival events and summing gives:

Pow[POLARIS(P)] < a®*Pow[YDS(P")].

We next define ¢(t) and prove that all three conditions hold.
Let spyq(t) (for POLARIS no arrival) denote the speed at which
POLARIS would be executing if no new tasks were to arrive after
the current time. By Lemma 4.1 we proved that when no tasks
arrive POLARIS’ behavior is identical to OA, which simply executes
YDS on the transactions on its queue. Note POLARIS may have
modified its queue to be T or T” in the latest arrival event prior to
current time but after it finalizes its queue, it simply executes YDS
on the transactions on its queue (recall Lemma 4.1). Throughout
the proof we denote the current time always as ty. Let CI1, ...,CIx
be POLARIS’s current critical intervals (note that k will change
over time) and let ¢; be the end of critical interval CI;. Let wp(¢,t)
and wy (t,t’) be the unfinished work that POLARIS and YDS have

Workload-Aware CPU Performance Scaling for Transactional Database Systems

on their queue at ty with deadlines in interval (¢,¢']. Therefore,
assuming that no new tasks arrive, at time ¢, where t; < t < tj41,

POLARIS has a planned speed spp,4(t) = den(CI;) = % In
particular note that sp,,(t;) is the planned speed of POLARIS at
time t; when critical interval CI; begins and the processor speed
remains the same until CI; 41 begins.

We next make a simple observation about spp,(t). Since PO-
LARIS runs YDS on the transactions of its queue by considering
their arrival times as the current time, the density of each criti-
cal interval is a non-increasing sequence. That is, when no new
transactions arrive, POLARIS has a planned processor speed that
decreases (or stays the same) over time, i.e. spypq(ti) = spna(ti+1)
for all i. We refer the reader to reference [10] for a formal proof of
this observation (proved for OA).

The potential function we use is the following:

$(1) = @) spnalt)® " (wp (ti,tiv1) — awy (ti,tis1))
i>0

We next show that claims (1), (3), and (2) are true, in that order.
Proof of claim (1): First observe that at time 0 and after the final
transaction ends (call ¢,,4x), both algorithms have empty queues
so all wp and wy values are 0 so ¢(0) and @(tmax) are 0, so claim
(1) holds.
Proof of claim (3): This part of the analysis is identical to the
analysis presented by Bansal et al [10] for OA.

We need to show that when no transactions arrive in the next dt
time equation 1 holds. Notice that when no transactions arrive in
the next dt time, sp, 4 (t;) remains fixed for each i and YDS executes
at the constant speed of sy (tp). Therefore:

d
spna(to)” — a%sy(to))* + d_t(¢(t)) <0 @)
Let’s first analyze how % changes in the next dt time. Notice

that POLARIS will be working at one of the transactions in interval
(to,t1] at speed sppq(to), so wp(to,t1) will decrease at rate spyq
and other wp(t;,t;4+1) remain unchanged. YDS will be running one
transaction typs at speed sy (tp). W.lo.g., let typs be in interval
(tgstrs1]. So wy (tg, tr41) will decrease at rate sy (fp) and all other
wy (t;,ti+1) will remain the same. Therefore d‘g(tt) is decreasing at
a rate:
d9(t)
dt

= a(spna(to)* " (=spna(to)) — aspna(ty)® (=sy(to)))

2 -1
= —aspna(to)” + a”spna(tx)* (sy (to))
Substituting this into equation 2 and recalling the observation
we made above that sp,4(t;) are a decreasing sequence, gives us:

(1= @)spna(to)® + a?sppa(te)* sy (t)) —a® < 0

Let z = Si’%t(oto). Note we assumed w.l.o.g. that P and P’ are con-
tiguous so both POLARIS and YDS will always be working on a
transaction, so z > 0. Substituting z into the above equation gives
us:

fl@)=(1-a)z% + a2 —a% <0

By looking at the value f(0), f(co) and the derivative of f, one
can show that f(z) is indeed less than or equal to 0 for all z > 0.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

completing the proof. We refer the reader to reference [10] for the
full derivation.

Proof of claim (2): We analyze the changes to ¢(t), sp(t) and sy ()
under two possible events:

Completion of a transaction by YDS and POLARIS: This part
of the analysis is the same as the proof in reference [10]. Notice
that the completion of a transaction by YDS has no effect on the
spna(ti), wp(ti,ti+1), and wy (¢, t;+1) for all i, so does not increase
¢(t). Similarly the completion of a transaction by POLARIS has no
effect on spp4(ti), wp(ti,ti+1), and wy (¢, ti+1), it merely shifts in
the index in the summation of ¢(¢) by 1. This proves partially that
claim (2) holds.

Arrival of a new transaction: Suppose a new transaction fyeqy
arrives to POLARIS and #},,,, arrives to YDS’s queue. Recall that
cw(tnew) = w(t,ew). Suppose t; < d(tpew) < ti+1. Here our proof
differs from the proof in reference [10] in two ways. First we need
to consider two cases depending on whether tj¢4y is the earliest
deadline transaction or not. If ¢4, has the earliest deadline then,
POLARIS’ adds two transactions to its queue and removes one
from its queue. This behavior does not occur in OA so does not
need to be argued when comparing OA to YDS in reference [10].
Second transactions added to POLARIS’s queue and YDS’s queue
are different. The proof in reference [10] needs to consider only
arrival of same transactions.

We note that the case when t,¢. does not have the earliest
deadline is similar to the argument in reference [10]. Below we
slightly simplify the proof in reference [10].
tnew does not have the earliest deadline: Note that t,.,, may
change POLARIS’s critical intervals but we think of the changes to
the critical intervals a sequence of smaller changes. Specifically, we
view the arrival of tpe,y and t},,,, initially as arrivals of new trans-
actions e, and tr’l o With deadlines d(tpew) and workload of 0.
We then increase t¢q,’s and t;l e S Workloads in steps by some
amount x < w(tpew), where the increase of t,,¢,,7’s workload by x

increases the density of one of POLARIS’s critical interval CI; from
wp(tj,tjv1) , wp(tj,tj+1+x)

(tj+1-15) (tj+1-15)
critical intervals!. In addition, after we increase t/,,,,’s workload
by x, optionally, one of two possible events occurs:

but does not change the structure of the

(1) Interval CI; splits into two critical intervals with the same
increased density of CI;..

(2) Interval CI; merges with one or more critical intervals with
the same increased density of CI;.

In each step we find the minimum amount of x that will result
in this behavior, and recurse on the remaining workload of tesy.
We argue that in each recursive step the potential function does
not increase. Once tye,,’s workload becomes equal to w(tpew), we
have a final step where we add a workload of w(t/,¢,) — W(tnew)
tot! , and again argue that this does not increase the potential
function.

Recursive step: This analysis is the same as the recursive step
from reference [10]. We start by noting that after the increase in
the density of CIj, the splitting or merging of critical intervals have
no effect on ¢(¢) because it just increases or decreases the number

!Note that YDS’s critical intervals are irrelevant for our analysis because ¢(¢) is
defined in terms of POLARIS’s critical intervals.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

of indices in the summation but does not change the value of ¢(t).

So we only analyze increasing the density of CI; by amount of x. In
wp(tj,tj+1)

this case, spnq(tj) (or the density of CI;) increases from ——--
(tj+1 tj)

o (wp(2j,tjr1)+x))
(tj+1—15)

(wp(tj,tjr1) +x)
(tj+1 =)

(wp(tj,tj+1))

(tjr1 — tj)
Let g = wp(tj,tj+1), 6 = x and r = wy(tj,tj+1) and rearranging
the terms we get:

t
) (wp(tj,tjs) +x) — a(wy (8, tj+1) +x))—

) N (wp(tj,tjs1) — a(wy (tj,tj11)))

a((q+8)* g —ar—(a—1)8) —q* (g —ar))
)a—l

(tjir1 =t
which is nonpositive by Lemma 3.3 in reference [10] when g,r, > 0
and o > 1.
Final step: Note that at the end of the recursive step, we added only
W(tpew) workload to t/ . so there is still a workload of w(t;,,,) -
W(tnew) tobe added to ¢, ., to replicate the addition of ¢;,,,,. Note
however that this can only decrease the potential function because
increasing the weight of ¢/ _, has no effect on the final spj,q and
wp(tj,tj+1) values and will only increase the wy (tj,¢j+1) value for
the final critical interval CI; (after the recursive steps) that t¢4
now falls into.
tnew has the earliest deadline: In this case POLARIS changes its
queue by adding tpeyy, 4y, and removing tcy,r. YDS changes its

queue by only adding t/,,,,. Note that e, and t/,,, can be seen

. Thus the potential function changes as follows:

Mustafa Korkmaz, Martin Karsten, Kenneth Salem, Semih Salihoglu

as one transaction because they have the same deadline and their
total weight is less than w(t},,,,). That is because:

WmaxW(tnew)
W(tnew)+w(téur) < W(thew) +Wmax < WUnew)'*’M
Wmin
Wmax ’
<(1+ YW(tnew) = cw(tnew) = W(tyey)

Wmin

Therefore by the same analysis we gave above we can argue that
the addition of tpeq and ¢/, to POLARIS’s queue and ¢;,,,,’s to
YDS’s queue does not increase ¢(t). We next need to argue that the
removal of t¢,,, from POLARIS’s queue also does not increase ¢(t).
The argument is similar to the argument we made when breaking
the addition of tye and t},,,, in recursive steps. We can view the
removal of a transaction in recursive steps in which we decrease the
workload of ¢y, by some amount of x that decreases the density of
some critical interval CI; by x. Optionally, after this decrease, CI;
can split into two critical intervals with the same decreased density
of CI; or merge with one or more critical intervals with this same
density. Note that the merging or splitting has no effect on the value
of ¢(t) because it just increases or decreases the number of indices
in the summation but does not change the value of ¢(t). These
operations only change the indices in the summation of ¢(t). Note
also that decreasing the density of CI; cannot increase ¢(t) because
it can only decrease sppq(tj), decrease wp(tj,tj+1) and does not
change the other wp(t;,¢;4+1)’s. Similarly it does not change any of
wy (ti,ti+1) because we are not altering YDS’s queue, completing
the proof.

	Abstract
	1 Introduction
	2 Background: DVFS
	3 POLARIS
	3.1 The POLARIS Algorithm
	3.2 Execution Time Estimation

	4 POLARIS Analysis
	4.1 Standard Model
	4.2 Yao-Demers-Schenker (YDS)
	4.3 Optimal Available (OA)
	4.4 OA vs. POLARIS
	4.5 Competitive Ratio of POLARIS
	4.6 Discussion

	5 POLARIS Prototype
	6 Evaluation
	6.1 Methodology
	6.2 Results: Medium Load
	6.3 Results: Effect of Load
	6.4 Results: Time-Varying Load
	6.5 Results: Workload Differentiation
	6.6 POLARIS Component Analysis

	7 Related Work
	7.1 Cluster Level Energy Efficiency
	7.2 Server-Level Energy Efficiency
	7.3 Energy Efficiency in DBMSs

	8 Conclusion & Future Work
	Acknowledgments
	References
	A Proof of Lemma 4.1
	B Proof Sketch of Lemma 4.2
	C Proof of Theorem 4.4

