
Dynamic Histograms for Non-Stationary Updates

Elizabeth Lam
Equitrac Canada ULC

elizabethl@waterloo.equitrac.com

Kenneth Salem
School of Computer Science

University of Waterloo
kmsalem@uwaterloo.ca

Abstract

In this paper, we address the problem of
incrementally maintaining a histogram in response to
a non-stationary update process. In relational
database systems, this problem can occur whenever
relations model time-varying activities. We present a
simple update model that is general enough to describe
both stationary and non-stationary update processes,
and we use it to show that existing histogram
maintenance techniques can perform poorly when
updates are non-stationary. We describe several
techniques for solving this problem, and we use the
update model to demonstrate that these techniques can
effectively handle a broad range of update processes,
including non-stationary ones.

1. Introduction

Database management systems maintain a variety of
statistics, which are used to characterize the database.
Such statistics are used for query optimization and
other purposes. Histograms are widely used to
characterize data distributions because they are easy to
construct and they do not depend on a priori
assumptions about the form of the distribution.
However, as changes are made to the underlying
database, histograms may become outdated. This
problem can be addressed by periodically rebuilding
histograms from scratch, but that can be expensive as it
involves scanning the underlying data. An alternative
is to incrementally maintain the histograms in response
to updates.

Several incremental histogram maintenance
techniques have been proposed – a brief overview of
these techniques can be found in Section 2. These
techniques have generally been shown to perform well
with respect to stationary update workloads. In a
stationary update workload, the probability that a
particular value will be inserted into or removed from
the underlying data set is stable over time. However,
in some important situations, updates are not

stationary. As an illustration of such a situation,
consider the TPC-C transaction processing benchmark
[13], which includes an ORDER table that contains a
tuple for every customer order that has been entered in
the system. The ORDER table includes an attribute
called O_ENTRY_D, which records the order entry
date. We expect that newer orders will have later dates
than older orders. Thus, as new orders are entered into
the ORDER table, the range of values found in
O_ENTRY_D will gradually increase. This is an
example of a non-stationary update workload. The
ORDER table also includes an order identifier, O_ID.
If order identifiers are correlated with the entry date
(e.g., if the system assigns monotonically increasing
order numbers), then O_ID, too, will experience non-
stationary updates. Finally, consider the TPC-C NEW-
ORDER table, which contains records only for recently
entered transactions – tuples are added to the table as
orders enter the system, and they are removed from the
table as orders are fulfilled. Thus, in NEW-ORDER,
we expect that both the minimum and the maximum
order number will gradually increase over time. This
is an example of a rolling update workload – one
particular class of non-stationary workloads that we
consider in this paper.

These examples are merely illustrations. Similar
examples can be found in many other situations in
which a relational attribute is used to represent time, or
is correlated to such an attribute. We have found that
existing incremental histogram maintenance techniques
may perform poorly when faced with these kinds of
update workloads. In this paper, we consider how to
solve this problem. The main contributions of the
paper are as follows.
• We propose a simple update model that is general

enough to capture both stationary and non-
stationary update processes. We use this model to
generate synthetic update traces that can be used to
test incremental histogram maintenance techniques
under a wide variety of conditions.

• We show that existing incremental histogram
maintenance techniques may not work well when

updates are non-stationary. We propose and
evaluate several possible techniques for solving
this problem. Our work is based on an existing
incremental histogram maintenance algorithm
called DADO [3, 2].

• We use the update model to evaluate our proposed
techniques under a range of update workloads.
Our experiments demonstrate that DADO-VRB,
one of the proposed techniques, can provide
effective incremental histogram maintenance
across a broad range of stationary and non-
stationary update processes.

2. Related Work

Most of the previous work in the literature on space
constrained histograms focus on enhancing histogram
accuracy through the proper placement of buckets or
by considering alternative transformation methods [6,
12, 5, 11, 7]. In large, this work has deferred dealing
with the issues of histogram maintenance. However,
more recently several effective approaches to
maintaining histograms incrementally have been
proposed [4, 1, 3, 7, 2, 10]. In the rest of this section,
we briefly describe the general approaches to
incremental histogram maintenance previously
considered and discuss their limitations with respect to
non-stationary updates.

In the methods that examine data changes (i.e.,
insertions, modifications, and deletions) to maintain
the histogram, the common approach is to update the
appropriate bucket counter and then consider adjusting
the bucket boundaries based on some chosen error
criteria. Most proposed methods [4, 1, 3, 2] involve
splitting buckets with high errors and merging similar
adjacent buckets. The algorithms mainly differ in the
error criteria used, the number of split-merge
operations performed at a time, and the interval for
considering such repartitioning operations.

Another technique involves keeping an auxiliary
summary of the distribution on disk and updating it
when the data change so that it can be used to maintain
the main histogram. In [4], a uniform backing sample
is used to rebuild the partition-based histogram from
scratch when the split-merge techniques are no longer
within acceptable error allowances. Similarly, in [10],
which discusses the dynamic maintenance of wavelet-
based histograms, both an activity log of updates and
an auxiliary histogram of additional coefficients are
kept on disk and used to maintain the main histogram.
Unfortunately, the methods of [4] and [10] incur not
only overhead storage costs but expensive disk I/O
operations to maintain histograms. In addition, we
note that the Approximate histograms of [4] were
shown to have problems on heavy deletion loads. This

is because numerous deletions deplete the backing
sample rapidly making frequent scans of the relation
necessary to maintain the uniform random nature of the
backing sample.

 The incremental algorithms [4, 3, 2, 10] that
examine data changes are all empirically shown to be
effective on random update processes with varying
degrees of skew. But these incremental histograms
have been shown to have problems on update streams
with heavy deletion loads as well as sorted update
streams. No evidence is available for broader classes
of updates.

The maintenance techniques of [1] do not act in
response to updates, but instead use feedback
information from query execution engines on query
workloads to refine the histograms. These histograms
are referred to as self-tuning (ST) histograms because
they are tuned on query feedback information. The
idea behind such histograms is to finely tune the parts
of the histogram where queries are concentrated.

3. Update Model

We are interested in modeling data distributions that
evolve in response to a stream of updates. A data
distribution is defined over some value domain. For
simplicity, we assume that the value domain consists
of non-negative integers in the range [1,S]. A data
distribution D over such a domain is an S-element
array of non-negative integers, in which D[i] (1 ≤ i ≤
S) represents the frequency of occurrence of value i.
Thus, if we are modeling the values of the age attribute
in an employee table, D[i] indicates the number of
tuples (employees) for which the age is i. We define
the size of a distribution to be the sum of its
frequencies.

We consider two kinds of distribution updates:
insertions and deletions. An insertion INSERT(i)
applied to a distribution D results in a new distribution
D' that is identical to D except that D'[i] = D[i] + 1.
Similarly, an deletion DELETE(i) applied to D results
in D' that is identical to D except that D'[i] = D[i] - 1.
Since frequencies must be non-negative, we say that a
delete operation DELETE(i) is valid on distribution D
iff D[i] > 0. An update stream is a sequence of
INSERT operations and valid DELETE operations.

3.1. Overview of the model

Our update model describes update streams as a
random process characterized by the parameters shown
in Table 1. It is a generative model, meaning that it
describes how to produce the next update in the stream,
given the updates that have already been produced.
The model assumes that the update stream is applied to

a distribution that is initially empty, i.e., a distribution
for which D[i] = 0 for all i in [1,S]. A stream begins
with rinit INSERT operations, which serve to initialize
the distribution. These initialization updates are then
followed by L insertion/deletion cycles, where each
cycle consists of r INSERT operations followed by r
DELETE operations. Thus, the total number of
INSERT operations in an update stream, ninsert, is
given by ninsert = rinit + Lr and the total number of
deletions is given by ndelete = Lr. Furthermore, once
the initialization INSERTs have been applied, the size
of the distribution will cycle between a low of rinit and
a high of rinit + r, with a mean of rinit + r/2. Note that
we can model an INSERT-only update stream by
setting L = 0.

To complete the definition of the model, we must
describe how it determines the specific domain values
that are inserted or deleted for the updates in the
stream. We begin by describing the INSERT
operations.

3.1.1. Modeling Insertions. The value to be inserted
by an INSERT operation is determined randomly using
an underlying probability mass function g: [1, S] → [0,
1], which is defined over the value domain. This can
be an arbitrary probability distribution, which can be
used to model data skew. As discussed below, the
inserted values are chosen in such a way that the
expected number of INSERT(i) operations in the
stream will be given by g(i)ninsert. However,
successive inserted values are not chosen
independently, since we wish to be able to model non-
stationary update streams. Instead, the values to be
inserted are chosen using an insertion window of width
WI, which slides across the value domain. Initially,
the insertion window covers the value range [1,WI].
While the window is in this position, the model
randomly and independently generates INSERT(i)
operations, but only for those i in the range [1,WI].
After a certain number of updates have been generated
with the window in this position, the window is shifted
by one position, so that it covers [2,WI+1]. The model
then randomly generates insertions of values that fall
within this new range. This process continues until the
window reaches its final position, [S-WI+1,S]. It
should be clear that when WI = 1, the model will
generate sorted insertions. Conversely, when WI = S,
the model will generate independent random insertions,
as the window will not slide at all. For values of WI
between 1 and S, the behavior will be between these
extremes.

It remains to specify the number of INSERT
operations that the model should generate for each
position of the window, as well as the manner in which
values are randomly selected from within a window.

Let Nx represent the number of INSERT operations
that the model should generate while the window is in
position [x,x+WI-1]. Let px(i) represent the probability
that the model generates INSERT(i) given that the
window is in that position. We would like to choose
these values so that the following two conditions will
hold:

• ∑ +==
x

initinsertx LrrnN

• For each i, insert
x

xx nigipN)()(=∑

The former condition ensures that the model generates
the desired number of INSERT operations, and the
latter condition ensures that the expected number of
INSERT(i) operations will be determined by the
underlying probability distribution. These conditions
can be achieved as follows:

• k
Wxkx

initx mkgrLrN
I

/)()(
1

∑
−+≤≤

+= (1)

• For each i in the window [x,x+WI-1],
 ∑

−+≤≤

=
1

)()()(
IWxkx

kix mkgmigip (2)

 For each i outside of the window [x,x+WI-1],
 0)(=ip x

where





+−+−
+−≤≤

=
otherwiseWSxS

WSxifWx
m

I

II
x),1,1min(

,11),,min(

3.1.2. Modeling Deletions. Deletions, like insertions,
are controlled by a window that slides across the value
domain. The deletion window is distinct from the
insertion window. It has width WD and it moves
separately from the insertion window. Deletions are
handled somewhat differently from insertions because
we wish to ensure that deletions are valid, i.e., we do
not wish to delete values that do not exist in the data
distribution.

The deletion window starts at position [1,WD] and,
like the insertion window, slides “right”. Suppose that
the deletion window is at position [x,x+WD-1], the
current data distribution is D, and the next update
operation to be generated by the model is a deletion.

Let px,D(i) represent the probability that the model
generates DELETE(i). The probability px,D(i) is
defined as follows:
• For each i in the window,

∑
−+≤≤

=
1

,][][)(
DWxkx

Dx kDiDip

Table 1. Update model parameters
Parameter Description of use Valid values and restrictions

S Size of the underlying value domain S ≥ 1, is an integer

g: [1, S] → [0, 1] g is a probability mass function that represents
the relative frequency distribution for the
insertions

∑
≤≤

=
Si

ig
1

1)(, 0 ≤ g(i) ≤ 1

WI Width of the insertion window WI is an integer such that
1 ≤ WI ≤ S

WD

Width of the deletion window WD is an integer such that
1 ≤ WD ≤ WI

rinit Length of the initial run of insertions rinit ≥ 0, is an integer

r Number of insertions or deletions per cycle r ≥ 0, is an integer

L Number of cycles L ≥ 0, is an integer

• For each i outside of the window,
0)(, =ip Dx

This ensures that the model does not generate
DELETE[i] unless D[i] > 0, so that all deletions are
valid.

After generating a deletion, the model considers
advancing the deletion window. The deletion window
is advanced only if D[x] = 0. If the window is moved,
its left edge is moved to the smallest value y such that
D[y] > 0. In addition, the deletion window is
constrained such that is left edge must be equal to or
less than the left edge of the insertion window. If the
deletion window cannot be moved without violating
this constraint, then it is not moved.

3.2. Expressiveness of the model

The proposed update model can generate both
stationary and non-stationary updates. In general,
when one sets WI < S or WD < S, the update model
generates a non-stationary update process. If one sets
WD = WI = S, the update model instead generates a
stationary, random update process. Table 2 shows the
model settings that can be used to generate types of
update streams (of length rtot) that have been
considered in previous evaluations of incremental
histogram maintenance techniques. An entry of “-”
indicates that the parameter may be set to any valid
value.

In addition, the model can generate non-stationary
update streams characterized by having value ranges
that slide over time. We refer to processes exhibiting
such trends as either “rolling” or “fuzzy rolling”. A
rolling process consists of sorted insertions intermixed
with deletions of the older data in sequential order of
insertion. For instance, a rolling process can be used to

model timestamps in a database logs window.
Similarly, a fuzzy rolling process also exhibits the
general trend of the updates sliding across the value
domain over time, but the order among the updates is
more relaxed and not strictly sorted. These update
streams can be found in a wide variety of real world
applications where the recent data is of greater interest.
Table 3 shows the model settings to generate update
streams of length rtot for these types of updates.

Table 2. Parameter settings for common types

of update streams
Stream Type WI WD rinit r L

Random Insertions S - rtot 0 0
Sorted Insertions 1 - rtot 0 0
Random Mixture S S rtot –

2rL ≥ 0
r > 0 L > 1

Random Insertions
followed by
Random Deletions

S S rtot – 2r
≥ 0

r > 0 1

Sorted Insertions
followed by
Sorted Deletions

1 1 rtot – 2r
≥ 0

r > 0 1

Table 3. Parameter settings for additional

types of update streams
Stream
Type

WI WD rinit r L

Rolling
Process

1 1 rtot –
2rL ≥ 0

r > 0 L > 0

Fuzzy
Rolling
Process

1<WI<<S 1<WD≤WI rtot –
2rL ≥ 0

r > 0 L > 0

4. Dynamic Average-Deviation Optimal
 (DADO) Algorithm

The techniques proposed in this paper are
extensions of the DADO algorithm [3, 2], which builds
and maintains a histogram dynamically without
needing to directly access the underlying data on disk.
Instead, the DADO histogram is continuously
updateable in response to changes made to the
underlying data. The goal of the DADO algorithm is
to dynamically approximate the minimization of the
overall sum of absolute values of deviations of
frequencies from their average within each bucket,
which is written as:

∑∑
=

−=
n

i j
iij ff

1

ε (3)

where n denotes the number of buckets, ijf denotes

the frequency of the jth value in the ith bucket and if
is the average frequency in the ith bucket. Here j is
assumed to run over all possible domain values within
the ith bucket. That is, the DADO algorithm uses the
continuous values assumption to approximate the true
values that are in each bucket.

The DADO algorithm cannot directly minimize (3)
because the ijf ’s are unknown short of scanning the
entire relation or storing all the frequencies. Instead,
each bucket is divided into two parts of equal value-
range width, called sub-buckets, each with its own
count. The uniform frequency assumption is applied to
each sub-bucket separately to approximate the
corresponding frequencies by their average.

The DADO algorithm approximates the dynamic
minimization of (3) by using the following split and
merge operations:
• Split operation: A bucket is split along the sub-

bucket border to generate two new buckets. For
each new bucket, the sub-buckets have equal
counts and the sub-bucket border is based on an
equal-width partition of the corresponding original
sub-bucket.

• Merge operation: Two adjacent buckets are
merged to generate a single new bucket. The sub-
bucket counts of the new bucket are calculated
based on the counts and ranges of the original
buckets. The sub-bucket border of the new bucket
is based on an equal-width partition of the
combined value range of the original buckets.

First, the DADO histogram is initialized by loading
the first n distinct points into individual buckets, where
n is the total number of buckets allowed with the
available space. Then on each subsequent update, the
algorithm adjusts the appropriate bucket counter after

which it decides whether or not to repartition the
bucket boundaries. Repartitioning in the DADO
algorithm consists of splitting a bucket with
frequencies that highly deviate from the bucket average
and merging two adjacent buckets that are similar to
each other.

In addition, an effective static histogram, the
Successive Similar Bucket Merge (SSBM) histogram,
based on the same merge error criteria as DADO, is
introduced in [3]. The SSBM histogram is constructed
by initially loading all the distinct values and the
empty spaces between them into an exact histogram.
The algorithm then successively merges adjacent
buckets using the same criteria as DADO for best
merge candidates, until the histogram size is reduced to
the space allowed. In their experiments, the SSBM
histogram is used as a measure to evaluate the
performance of the dynamic histograms.

4.1. Performance of DADO

In [3], the DADO histogram is empirically
compared against the Approximate Compressed (AC)
histogram of [4] and shown to consistently outperform
the AC histogram on a variety of update streams. The
types of updates considered correspond to the common
classes of updates listed in Table 2.

In particular, the DADO histogram is shown to be
highly effective in capturing random updates; its
performance approached that of the static SSBM
histogram. However, the DADO algorithm was shown
to have problems on sorted update streams.

We conducted further evaluations of DADO on
several types of non-stationary update streams that
were not considered in the earlier study such as rolling
update streams [8]. We found that DADO has
problems with both sorted insertions and rolling
updates where the data from one end of the value
domain is deleted over time. We also found that the
performance of DADO greatly deteriorates with larger
domain sizes when the updates are in sorted order. The
details of our study are available in [8].

5. New Incremental Histogram
 Maintenance Techniques

The types of non-stationary update processes that
DADO has been shown to perform poorly on include
those with variable value range over time as well as
those with large sparse value domain. In general,
merge operations lose information and so reduce
histogram accuracy. Unfortunately, the frequent
expansion and contraction of the value range, as results
from sorted update patterns, causes frequent merges
involving the end buckets.

In this section, we propose several techniques to
address the problems exhibited by DADO on certain
classes of non-stationary updates. These techniques
could be extended to maintain other types of partition-
based histograms where buckets are repartitioned
based on some criteria in response to updates.

5.1. Adapting to Variable Value Ranges

Methods to enable the histogram to expand and
contract its range dynamically would increase its
ability to capture non-stationary distributions with
variable value ranges over time, such as sorted updates.
We refer to the proposed changes regarding range
expansion and contraction, when applied to DADO, as
the DADO Variable Range (DADO-VR) algorithm.

• Range Expansion: Currently, when an out of
range insertion x occurs, DADO extends the range of
the histogram buckets by temporarily assigning x its
own bucket. However, any empty space between x and
the closest end-point of the histogram is not explicitly
represented. This is a problem because DADO does
not store the maximum value (right border) of each
bucket, but assumes it to be one less than the minimum
value of the right neighboring bucket based on the
continuous values assumption. As a result, any new
empty space generated from an out of range insertion is
implicitly merged with existing values in the original
end bucket. Therefore, additional errors are
introduced, which are further propagated in subsequent
histogram repartitions.

Our approach to the problem is to create an
additional bucket to represent the generated empty
space. We then perform an additional merge. This
method is preferable to DADO’s approach because it
performs two explicit merges based on the least error
criterion. However, this approach may take slightly
more time than the original DADO algorithm because
of the extra merge.

• Range Contraction: Deletions to the underlying
data can contract the range of the data distribution.
Unfortunately, the DADO algorithm is unable to detect
precisely when the range of the underlying data
contracts because the actual data on disk is not directly
accessed. Currently the DADO algorithm does not
permit the range of the histogram to contract for
deletions. This is a problem for update streams where
data from one end is deleted over time. For such
update streams, histogram accuracy deteriorates over
time as space is wasted on approximating the
distribution of values no longer found in the underlying
data.

Our approach to contracting the histogram range is
to delete an end bucket whenever a deletion falls in
that bucket and causes it to become empty. Any

recovered bucket allows us to split a non-empty
bucket. Note that only empty end buckets are deleted
to recover space and allow other buckets to be split.
Therefore, the goal of approximating the minimization
of the error quantity (3) is not compromised when an
empty end bucket is deleted to contract the range of the
histogram. However, with this approach it is possible
to have subsequent out of range deletions. This is
possible because the histogram is an approximation
and although its frequency count for a value may be
zero, the underlying frequency may be positive. Such
deletions must be removed from somewhere to
preserve the total mass of the histogram accurately.
An out of range deletion is handled by decrementing
the appropriate sub-bucket counter of the nearest
bucket to the deleted value point.

• Alternative approach to range expansion: An
alternative approach to expanding the range of the
histogram is to simply store the right border of each
bucket as well. However, this method requires more
space per bucket. We refer to this method as the sparse
DADO algorithm. We expect this method to perform
worse than DADO on updates with few out of range
insertions because it results in approximately 25%
fewer buckets than DADO for the same amount of
space.

5.2. Batch Processing of Updates

Update streams from real world applications are
likely to contain insertions or deletions of identical
values that occur in close succession. The updates are
then said to occur in batches. We have seen DADO
perform poorly on batched data such as sorted data.
DADO performs poorly on batched updates because it
adjusts the histogram on each individual update and
hence is slow in recognizing significant trends. This is
a problem for non-stationary batched updates because
the algorithm may perform excessive bucket
repartitions and thus lose a significant amount of
information. We propose to process the updates in
batches instead of individually to improve histogram
accuracy. We refer to the proposed changes when
applied to DADO as the DADO Batch Update
algorithm.

To facilitate histogram adaptation to batched
updates, we track individual recently updated values
separately from the main histogram. From the total
space available, we propose to set aside space
equivalent to k ≥ 1, singleton buckets to track the k
most recent values. The singleton buckets store the
value and a count representing the value’s net
frequency from insertions and deletions. The
corresponding singleton bucket counter is incremented
or decremented by one for an insertion or a deletion of

the value, respectively. We allow the count to become
negative because at all times, we use both the
frequency approximation from the main histogram and
the corresponding singleton bucket count to arrive at
an estimation of the value’s frequency. If the
frequency estimation from the combined information is
negative, the frequency of the value is then
approximated as zero and the outstanding counts are
moved to neighboring buckets.

Since we have a finite number k of singleton
buckets to track recent values, when all k tracking
buckets are in use and a different value occurs, the
least recently updated tracking bucket cLRU is
integrated into the main histogram and the new value is
given its own (singleton) tracking bucket. The
integration of cLRU is accomplished by partitioning the
bucket that contains the tracked value, cLRU.value, into
at most four distinct parts: the sub-bucket values less
than cLRU.value, cLRU.value, the sub-bucket values
greater than cLRU.value and the other sub-bucket that
cLRU.value does not fall within. Each of these
partitions is temporarily given its own bucket. Then
we merge best candidate adjacent buckets until the
histogram size is restored. At most three merges are
required since at most four new buckets are created.

By using a queue of singleton buckets to track a
number of most recent values, the algorithm is able to
see a larger window of changes between successive
bucket repartitions. However, accuracy is not
compromised since at any given time, all the summary
information available in both the main histogram and
the k tracking buckets are used for query selectivity
estimation. In addition, by separating the value that
actually occurred in updates from other values in the
same bucket, the frequency prediction of that value can
be precisely updated. This allows values with high
frequencies to be approximated more accurately and
hence leads to improved histogram accuracy.
However, a drawback of this approach is that fewer
regular buckets are available because some of the
space is used instead to track the k most recent values.
The required space for tracking the k recent values is
roughly equivalent to 2/3 k regular DADO buckets.

6. Experimental Evaluation

We have proposed several techniques to address
existing histogram maintenance problems on certain
classes of non-stationary updates. We combine the
techniques and apply them to the DADO algorithm to
derive the following new dynamic histograms:

• Sparse DADO
• DADO Variable Range (DADO-VR)
• DADO Variable Range Batch Update (DADO-

VRB)

The name of the algorithm indicates which
techniques have been combined. In the rest of this
section, we present and analyze the results of our
empirical evaluation of the proposed dynamic
histograms.

6.1. Experimental Environment

First, we describe the experimental environment of
our empirical study.

Error Measure: We use the KS statistic [9] as an
error metric to evaluate the quality of a histogram as is
done in [3]. The KS statistic for two distributions is
defined as

)()(max 21 xPxPt
x

−=
∞<<∞−

 (4)

where)(1 xP and)(2 xP are cumulative distribution
functions.

The KS statistic has an intuitive interpretation for
range predicates. The selectivity of a range predicate
is the fraction of tuples in the relation that satisfy the
range predicate. The selectivity estimate of any range
predicate posed against the histogram rather than the
original data will have an absolute error that is less
than or equal to 2t.

Relative Insertion Distributions: Past
experimental work [4, 1, 3, 10] has used permuted Zipf
[14] distributions to evaluate proposed histograms.
The Zipf distribution is widely used because many
real-world data appear to follow Zipf laws. In our
experiments we also used permuted Zipf distributions
to determine the underlying data distribution g of our
model. Specifically, the set of frequencies and values
are chosen independently using Zipf, and then the
frequencies are randomly mapped to the values.

• Frequency Sets: The frequencies are
generated following a Zipf distribution with z
= 1 (i.e., skew of 1).

• Value Sets: The values are determined from
the individual spreads, which are the
distances between successive values. The
spreads are generated following a Zipf
distribution with z = 1 (i.e., skew of 1) and
then randomly reordered to obtain the values.

Update Streams: We used the update model to
generate the update streams tested on. Full details of
the parameter settings used are available in [8]. Unless
otherwise noted, the number of distinct values |V| is
fixed at 1000.

Methodology and Histogram Settings: We
compare the performance of the dynamic histograms
not only against each other, but against the statically
built SSBM histogram. All the dynamic histograms
are initially empty and are populated entirely based on

the updates. The SSBM histogram is built on the final
data distribution after all the updates are applied to the
underlying distribution. After the entire update stream
is processed, each histogram is compared to the real
(net) distribution using the KS statistic as an error
metric. Every test configuration was generated
multiple times (by starting from a different random
seed for the random number generators used in
generating the update streams) and evaluated based on
the average of the measured KS statistics.

For fair comparison, all histograms were given the
same amount of memory. In our experiments, the
default amount of space given to each histogram is 1
KB, which is the same default used in [3]. For the
DADO-VRB histogram, the default amount of space
allocated for tracking individual recent values is 5% of
the total amount of space available. This corresponds
to six singleton buckets in our experiments.

6.2. Experimental Results

In our experiments, we varied S to study the effect
of spreads on histogram performance and varied WI
and WD to evaluate how well the histograms perform
on updates that fall in between the extremes of random
and sorted orders.

Performance on Sorted Updates: For sorted
updates, we are interested in studying the effect of
spreads (i.e., distances) between values on histogram
performance. Figure 1 shows results for insertions
only. The results for mixtures of sorted insertions and
deletions are similar and available in [8].

In the experiments depicted in Figure 1, we fixed
the number of distinct values to 1000 and varied S
from 5000 to 40000. Since the number of distinct
values is fixed, by varying S we vary the magnitudes
of the spreads. From the results, it is clear that the
accuracy of DADO deteriorates greatly as S increases.
In contrast, the accuracy of the other dynamic
histograms just modestly degrades with increasing S.
We note that DADO-VRB not only significantly
outperforms the other dynamic histograms, but it also
comes close to the performance of the statically built
SSBM histogram (on the final data distribution) at
every magnitude of S tested. Clearly, the proposed
batching and variable range techniques are highly
effective for capturing sorted updates.

Performance on Fuzzy Updates: We study the
effectiveness of the dynamic histograms for capturing
non-stationary updates that fall in between the
extremes of random and sorted orders by varying WI
and WD, the window widths for generating insertions
and deletions, respectively. In our experiments, we set
WI = WD and varied their values as percentages of S,
the maximum domain value. Random updates

correspond to WI = WD = 100% of S, while strictly
sorted updates are achieved as the window size
approaches zero. Figure 2 shows results for insertions
only. The results for mixtures of insertions and
deletions are similar and available in [8].

In Figure 2, we notice that all the dynamic
histograms perform significantly better on the random
update streams than on the non-stationary fuzzy update
streams (i.e., updates that fall in between the extremes
of random and sorted orders) tested. However, the
performance of each dynamic histogram does not
appear to vary significantly across the intermediate
sized window widths (i.e., window widths from 10% -
80% of S). We also note that for smaller window
widths, DADO-VRB clearly outperforms the other
dynamic histograms because of batching.

Figure 1. Error vs. Domain Size

Sorted insertions, Value range = [1, S], |V| = 1000,
Stream size = 100K, Memory = 1 KB

Figure 2. Error vs. Window Widths

Insertions, S = 20000, Value range = [1, S], |V| = 1000,
WI = WD, Stream size = 100K, Memory = 1 KB

Histogram performance over time: In Figure 3,
we measured the KS statistic of each proposed
dynamic histogram at different fractions of the update
stream loaded. We can see that the performance of
each dynamic histogram degrades as more updates are
processed. However, for all the dynamic histograms
the rate of decline in accuracy appears to stabilize.

Figure 3. Error vs. Fraction of stream loaded

Fuzzy insertions and deletions, S = 60000, Value range
= [1, S], |V| = 3000, WI = WD = 0.01S, Stream size =
500K, Memory = 1 KB

Other Experiments: In other experiments, we
observed that on random updates the performances of
the proposed dynamic histograms did not vary
significantly from that of DADO. We also varied the
amount of tracking space for DADO-VRB and found
that its performance initially improves when the
amount of tracking space is increased from low levels,
but eventually it worsens with increased levels because
of the trade-off of having fewer regular buckets. More
details are available in [8].

7. Conclusions

In this paper, we introduced several techniques for
capturing broader classes of non-stationary updates and
applied them in effective ways to the DADO
algorithm. In addition, we introduced a general but
still realistic update model for database changes. Our
experimental results show that the proposed dynamic
histograms offer greater accuracy than DADO for
capturing broader classes of updates than were
considered in previous studies. In particular, the
DADO-VRB histogram is shown to consistently
outperform the others.

8. References

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning
Histograms: Building Histograms Without Looking at
Data. In Procreedings of the 1999 ACM SIGMOD
International Conference on Management of Data,
pages 181-192, 1999.

[2] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan.
Dynamic Histograms: Capturing Evolving Data Sets. In
Proceedings of the 16th International Conference on
Data Engineering, page 86, 2000.

[3] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan.
Dynamic Histograms: Capturing Evolving Data Sets.
Technical Report CS-TR-99-1396, University of
Wisconsin-Madison, 1999.

[4] P. B. Gibbons, Y. Matias, and V. Poosala. Fast
Incremental Maintenance of Approximate Histograms.
In Proceedings of the 23rd International Conference on
Very Large Databases, pages 466-475, 1997.

[5] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V.
Poosala, K. Sevcik, and T. Suel. Optimal Histograms
with Quality Guarantees. In Proceedings of the 24th
International Conference on Very Large Databases,
pages 275-286, 1998.

[6] R. P. Kooi. The optimization of queries in relational
databases. PhD thesis, Case Western Reserve
University, September 1980.

[7] J. H. Lee, D. H. Kim, and C. W. Chung. Multi-
dimensional Selectivity Estimation Using Compressed
Histogram Information. In Procreedings of the 1999
ACM SIGMOD International Conference on
Management of Data, pages 205-214, 1999.

[8] E. Lam and K. Salem. Dynamic Histograms for Non-
Stationary Updates. Technical Report CS-2005-18,
School of Computer Science, University of Waterloo,
May 2005.

[9] F. J. Massey. The Kolmogorov-Smirnov test for
goodness-of-fit. Journal of the American Statistical
Association, 46: 68-78, 1951.

[10] Y. Matias, J. S. Vitter, and M. Wang. Dynamic
Maintenance of Wavelet-Based Histograms. In
Proceedings of the 26th International Conference on
Very Large Databases, pages 101-110, 2000.

[11] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based
Histograms for Selectivity Estimation. In Procreedings
of the 1998 ACM SIGMOD International Conference on
Management of Data, pages 448-459, 1998.

[12] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J.
Shekita. Improved Histograms for Selectivity
Estimation of Range Predicates. In Proceedings of the
1996 ACM SIGMOD International Conference on
Management of Data, pages 294-305, 1996.

[13] TPC Benchmark C, Revision 5.0. Transaction
Processing Performance Council, 2001.

[14] G. K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley, Reading, MA, 1949.

