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Abstract 
 

In this paper, we address the problem of 
incrementally maintaining a histogram in response to 
a non-stationary update process.  In relational 
database systems, this problem can occur whenever 
relations model time-varying activities.  We present a 
simple update model that is general enough to describe 
both stationary and non-stationary update processes, 
and we use it to show that existing histogram 
maintenance techniques can perform poorly when 
updates are non-stationary.  We describe several 
techniques for solving this problem, and we use the 
update model to demonstrate that these techniques can 
effectively handle a broad range of update processes, 
including non-stationary ones. 
 
1. Introduction 
 

Database management systems maintain a variety of 
statistics, which are used to characterize the database.   
Such statistics are used for query optimization and 
other purposes.  Histograms are widely used to 
characterize data distributions because they are easy to 
construct and they do not depend on a priori 
assumptions about the form of the distribution.  
However, as changes are made to the underlying 
database, histograms may become outdated.  This 
problem can be addressed by periodically rebuilding 
histograms from scratch, but that can be expensive as it 
involves scanning the underlying data.  An alternative 
is to incrementally maintain the histograms in response 
to updates. 

Several incremental histogram maintenance 
techniques have been proposed – a brief overview of 
these techniques can be found in Section 2.  These 
techniques have generally been shown to perform well 
with respect to stationary update workloads.  In a 
stationary update workload, the probability that a 
particular value will be inserted into or removed from 
the underlying data set is stable over time.  However, 
in some important situations, updates are not 

stationary.  As an illustration of such a situation, 
consider the TPC-C transaction processing benchmark 
[13], which includes an ORDER table that contains a 
tuple for every customer order that has been entered in 
the system.  The ORDER table includes an attribute 
called O_ENTRY_D, which records the order entry 
date.  We expect that newer orders will have later dates 
than older orders.  Thus, as new orders are entered into 
the ORDER table, the range of values found in 
O_ENTRY_D will gradually increase.  This is an 
example of a non-stationary update workload.  The 
ORDER table also includes an order identifier, O_ID.  
If order identifiers are correlated with the entry date 
(e.g., if the system assigns monotonically increasing 
order numbers), then O_ID, too, will experience non-
stationary updates.  Finally, consider the TPC-C NEW-
ORDER table, which contains records only for recently 
entered transactions – tuples are added to the table as 
orders enter the system, and they are removed from the 
table as orders are fulfilled.  Thus, in NEW-ORDER, 
we expect that both the minimum and the maximum 
order number will gradually increase over time.  This 
is an example of a rolling update workload – one 
particular class of non-stationary workloads that we 
consider in this paper. 

These examples are merely illustrations.  Similar 
examples can be found in many other situations in 
which a relational attribute is used to represent time, or 
is correlated to such an attribute.  We have found that 
existing incremental histogram maintenance techniques 
may perform poorly when faced with these kinds of 
update workloads.  In this paper, we consider how to 
solve this problem.  The main contributions of the 
paper are as follows. 
• We propose a simple update model that is general 

enough to capture both stationary and non-
stationary update processes.  We use this model to 
generate synthetic update traces that can be used to 
test incremental histogram maintenance techniques 
under a wide variety of conditions. 

• We show that existing incremental histogram 
maintenance techniques may not work well when 



updates are non-stationary.  We propose and 
evaluate several possible techniques for solving 
this problem.  Our work is based on an existing 
incremental histogram maintenance algorithm 
called DADO [3, 2]. 

• We use the update model to evaluate our proposed 
techniques under a range of update workloads.  
Our experiments demonstrate that DADO-VRB, 
one of the proposed techniques, can provide 
effective incremental histogram maintenance 
across a broad range of stationary and non-
stationary update processes. 

 
2. Related Work 
 

Most of the previous work in the literature on space 
constrained histograms focus on enhancing histogram 
accuracy through the proper placement of buckets or 
by considering alternative transformation methods [6, 
12, 5, 11, 7].  In large, this work has deferred dealing 
with the issues of histogram maintenance.  However, 
more recently several effective approaches to 
maintaining histograms incrementally have been 
proposed [4, 1, 3, 7, 2, 10].  In the rest of this section, 
we briefly describe the general approaches to 
incremental histogram maintenance previously 
considered and discuss their limitations with respect to 
non-stationary updates. 

In the methods that examine data changes (i.e., 
insertions, modifications, and deletions) to maintain 
the histogram, the common approach is to update the 
appropriate bucket counter and then consider adjusting 
the bucket boundaries based on some chosen error 
criteria.  Most proposed methods [4, 1, 3, 2] involve 
splitting buckets with high errors and merging similar 
adjacent buckets.  The algorithms mainly differ in the 
error criteria used, the number of split-merge 
operations performed at a time, and the interval for 
considering such repartitioning operations. 

Another technique involves keeping an auxiliary 
summary of the distribution on disk and updating it 
when the data change so that it can be used to maintain 
the main histogram.  In [4], a uniform backing sample 
is used to rebuild the partition-based histogram from 
scratch when the split-merge techniques are no longer 
within acceptable error allowances.  Similarly, in [10], 
which discusses the dynamic maintenance of wavelet-
based histograms, both an activity log of updates and 
an auxiliary histogram of additional coefficients are 
kept on disk and used to maintain the main histogram.  
Unfortunately, the methods of [4] and [10] incur not 
only overhead storage costs but expensive disk I/O 
operations to maintain histograms.  In addition, we 
note that the Approximate histograms of [4] were 
shown to have problems on heavy deletion loads.  This 

is because numerous deletions deplete the backing 
sample rapidly making frequent scans of the relation 
necessary to maintain the uniform random nature of the 
backing sample.   

 The incremental algorithms [4, 3, 2, 10] that 
examine data changes are all empirically shown to be 
effective on random update processes with varying 
degrees of skew.  But these incremental histograms 
have been shown to have problems on update streams 
with heavy deletion loads as well as sorted update 
streams.  No evidence is available for broader classes 
of updates. 

The maintenance techniques of [1] do not act in 
response to updates, but instead use feedback 
information from query execution engines on query 
workloads to refine the histograms.  These histograms 
are referred to as self-tuning (ST) histograms because 
they are tuned on query feedback information.  The 
idea behind such histograms is to finely tune the parts 
of the histogram where queries are concentrated. 

 
3. Update Model 
 

We are interested in modeling data distributions that 
evolve in response to a stream of updates.  A data 
distribution is defined over some value domain.  For 
simplicity, we assume that the value domain consists 
of non-negative integers in the range [1,S].  A data 
distribution D over such a domain is an S-element 
array of non-negative integers, in which D[i] (1 ≤ i ≤ 
S) represents the frequency of occurrence of value i.  
Thus, if we are modeling the values of the age attribute 
in an employee table, D[i] indicates the number of 
tuples (employees) for which the age is i.  We define 
the size of a distribution to be the sum of its 
frequencies. 

We consider two kinds of distribution updates: 
insertions and deletions.  An insertion INSERT(i) 
applied to a distribution D results in a new distribution 
D' that is identical to D except that D'[i] = D[i] + 1. 
Similarly, an deletion DELETE(i) applied to D results 
in D' that is identical to D except that D'[i] = D[i] - 1.  
Since frequencies must be non-negative, we say that a 
delete operation DELETE(i) is valid on distribution D 
iff D[i] > 0.  An update stream is a sequence of 
INSERT operations and valid DELETE operations. 
 
3.1. Overview of the model 
 

Our update model describes update streams as a 
random process characterized by the parameters shown 
in Table 1.  It is a generative model, meaning that it 
describes how to produce the next update in the stream, 
given the updates that have already been produced.  
The model assumes that the update stream is applied to 



a distribution that is initially empty, i.e., a distribution 
for which D[i] = 0 for all i in [1,S].  A stream begins 
with rinit INSERT operations, which serve to initialize 
the distribution.  These initialization updates are then 
followed by L insertion/deletion cycles, where each 
cycle consists of r INSERT operations followed by r 
DELETE operations.  Thus, the total number of 
INSERT operations in an update stream, ninsert, is 
given by ninsert = rinit + Lr and the total number of 
deletions is given by ndelete = Lr.  Furthermore, once 
the initialization INSERTs have been applied, the size 
of the distribution will cycle between a low of rinit and 
a high of rinit + r, with a mean of rinit + r/2.  Note that 
we can model an INSERT-only update stream by 
setting L = 0. 

To complete the definition of the model, we must 
describe how it determines the specific domain values 
that are inserted or deleted for the updates in the 
stream.  We begin by describing the INSERT 
operations. 
 
3.1.1. Modeling Insertions.  The value to be inserted 
by an INSERT operation is determined randomly using 
an underlying probability mass function g: [1, S] → [0, 
1], which is defined over the value domain.  This can 
be an arbitrary probability distribution, which can be 
used to model data skew.  As discussed below, the 
inserted values are chosen in such a way that the 
expected number of INSERT(i) operations in the 
stream will be given by  g(i)ninsert.  However, 
successive inserted values are not chosen 
independently, since we wish to be able to model non-
stationary update streams.  Instead, the values to be 
inserted are chosen using an insertion window of width 
WI, which slides across the value domain.  Initially, 
the insertion window covers the value range [1,WI].  
While the window is in this position, the model 
randomly and independently generates INSERT(i) 
operations, but only for those i in the range [1,WI].  
After a certain number of updates have been generated 
with the window in this position, the window is shifted 
by one position, so that it covers [2,WI+1].  The model 
then randomly generates insertions of values that fall 
within this new range.  This process continues until the 
window reaches its final position, [S-WI+1,S].   It 
should be clear that when WI = 1, the model will 
generate sorted insertions.  Conversely, when WI = S, 
the model will generate independent random insertions, 
as the window will not slide at all.  For values of WI 
between 1 and S, the behavior will be between these 
extremes. 

It remains to specify the number of INSERT 
operations that the model should generate for each 
position of the window, as well as the manner in which 
values are randomly selected from within a window.  

Let Nx represent the number of INSERT operations 
that the model should generate while the window is in 
position [x,x+WI-1].  Let px(i) represent the probability 
that the model generates INSERT(i) given that the 
window is in that position.  We would like to choose 
these values so that the following two conditions will 
hold:  

• ∑ +==
x

initinsertx LrrnN  

• For each i, insert
x

xx nigipN )()( =∑  

The former condition ensures that the model generates 
the desired number of INSERT operations, and the 
latter condition ensures that the expected number of 
INSERT(i) operations will be determined by the 
underlying probability distribution.  These conditions 
can be achieved as follows: 
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3.1.2. Modeling Deletions.  Deletions, like insertions, 
are controlled by a window that slides across the value 
domain.  The deletion window is distinct from the 
insertion window.  It has width WD and it moves 
separately from the insertion window.  Deletions are 
handled somewhat differently from insertions because 
we wish to ensure that deletions are valid, i.e., we do 
not wish to delete values that do not exist in the data 
distribution. 

The deletion window starts at position [1,WD] and, 
like the insertion window, slides “right”.  Suppose that 
the deletion window is at position [x,x+WD-1], the 
current data distribution is D, and the next update 
operation to be generated by the model is a deletion. 

Let px,D(i) represent the probability that the model 
generates DELETE(i).  The probability px,D(i) is 
defined as follows:  
• For each i in the window,  
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Table 1. Update model parameters 
Parameter Description of use Valid values and restrictions 

S Size of the underlying value domain S ≥ 1, is an integer 

g: [1, S] → [0, 1]  g is a probability mass function that represents 
the relative frequency distribution for the 
insertions 

∑
≤≤

=
Si

ig
1

1)( , 0 ≤ g(i) ≤ 1 

WI Width of the insertion window WI  is an integer such that 
1 ≤ WI  ≤ S 

WD 
 

Width of the deletion window WD  is an integer such that 
1 ≤ WD  ≤ WI 

rinit Length of the initial run of insertions rinit ≥ 0, is an integer 

r Number of insertions or deletions per cycle r ≥ 0, is an integer 

L Number of cycles L ≥ 0, is an integer 

 
 

• For each i outside of the window,  
0)(, =ip Dx  

This ensures that the model does not generate 
DELETE[i] unless D[i] > 0, so that all deletions are 
valid. 

After generating a deletion, the model considers 
advancing the deletion window.  The deletion window 
is advanced only if D[x] = 0.  If the window is moved, 
its left edge is moved to the smallest value y such that 
D[y] > 0.  In addition, the deletion window is 
constrained such that is left edge must be equal to or 
less than the left edge of the insertion window.  If the 
deletion window cannot be moved without violating 
this constraint, then it is not moved. 
 
3.2. Expressiveness of the model 
 

The proposed update model can generate both 
stationary and non-stationary updates.  In general, 
when one sets WI < S or WD < S, the update model 
generates a non-stationary update process.  If one sets 
WD = WI = S, the update model instead generates a 
stationary, random update process.  Table 2 shows the 
model settings that can be used to generate types of 
update streams (of length rtot) that have been 
considered in previous evaluations of incremental 
histogram maintenance techniques. An entry of “-” 
indicates that the parameter may be set to any valid 
value. 

In addition, the model can generate non-stationary 
update streams characterized by having value ranges 
that slide over time.  We refer to processes exhibiting 
such trends as either “rolling” or “fuzzy rolling”.  A 
rolling process consists of sorted insertions intermixed 
with deletions of the older data in sequential order of 
insertion.  For instance, a rolling process can be used to 

model timestamps in a database logs window.  
Similarly, a fuzzy rolling process also exhibits the 
general trend of the updates sliding across the value 
domain over time, but the order among the updates is 
more relaxed and not strictly sorted.  These update 
streams can be found in a wide variety of real world 
applications where the recent data is of greater interest.  
Table 3 shows the model settings to generate update 
streams of length rtot for these types of updates. 
 
Table 2. Parameter settings for common types 

of update streams 
Stream Type WI WD rinit r L 

Random Insertions S - rtot  0 0 
Sorted Insertions 1 - rtot  0 0 
Random Mixture S S  rtot – 

2rL ≥ 0 
r > 0 L > 1 

Random Insertions 
followed by 
Random Deletions 

S  S  rtot – 2r 
≥ 0 

r > 0 1 

Sorted Insertions 
followed by 
Sorted Deletions 

1 1 rtot – 2r 
≥ 0 

r > 0 1 

 
Table 3. Parameter settings for additional 

types of update streams 
Stream 
Type 

WI WD rinit r L 

Rolling 
Process 

1 1  rtot – 
2rL ≥ 0 

r > 0 L > 0 

Fuzzy 
Rolling 
Process 

1<WI<<S  1<WD≤WI rtot – 
2rL ≥ 0 

r > 0 L > 0 

 



4. Dynamic Average-Deviation Optimal   
   (DADO) Algorithm 
 

The techniques proposed in this paper are 
extensions of the DADO algorithm [3, 2], which builds 
and maintains a histogram dynamically without 
needing to directly access the underlying data on disk.  
Instead, the DADO histogram is continuously 
updateable in response to changes made to the 
underlying data.  The goal of the DADO algorithm is 
to dynamically approximate the minimization of the 
overall sum of absolute values of deviations of 
frequencies from their average within each bucket, 
which is written as: 

∑∑
=

−=
n

i j
iij ff

1

ε               (3) 

where n denotes the number of buckets, ijf  denotes 

the frequency of the jth value in the ith bucket and if  
is the average frequency in the ith bucket.  Here j is 
assumed to run over all possible domain values within 
the ith bucket.  That is, the DADO algorithm uses the 
continuous values assumption to approximate the true 
values that are in each bucket. 

The DADO algorithm cannot directly minimize (3) 
because the ijf ’s are unknown short of scanning the 
entire relation or storing all the frequencies.  Instead, 
each bucket is divided into two parts of equal value-
range width, called sub-buckets, each with its own 
count.  The uniform frequency assumption is applied to 
each sub-bucket separately to approximate the 
corresponding frequencies by their average. 

The DADO algorithm approximates the dynamic 
minimization of (3) by using the following split and 
merge operations:  
• Split operation: A bucket is split along the sub-

bucket border to generate two new buckets.  For 
each new bucket, the sub-buckets have equal 
counts and the sub-bucket border is based on an 
equal-width partition of the corresponding original 
sub-bucket. 

• Merge operation: Two adjacent buckets are 
merged to generate a single new bucket.  The sub-
bucket counts of the new bucket are calculated 
based on the counts and ranges of the original 
buckets.  The sub-bucket border of the new bucket 
is based on an equal-width partition of the 
combined value range of the original buckets. 

First, the DADO histogram is initialized by loading 
the first n distinct points into individual buckets, where 
n is the total number of buckets allowed with the 
available space.  Then on each subsequent update, the 
algorithm adjusts the appropriate bucket counter after 

which it decides whether or not to repartition the 
bucket boundaries.  Repartitioning in the DADO 
algorithm consists of splitting a bucket with 
frequencies that highly deviate from the bucket average 
and merging two adjacent buckets that are similar to 
each other. 

In addition, an effective static histogram, the 
Successive Similar Bucket Merge (SSBM) histogram, 
based on the same merge error criteria as DADO, is 
introduced in [3].  The SSBM histogram is constructed 
by initially loading all the distinct values and the 
empty spaces between them into an exact histogram.  
The algorithm then successively merges adjacent 
buckets using the same criteria as DADO for best 
merge candidates, until the histogram size is reduced to 
the space allowed.  In their experiments, the SSBM 
histogram is used as a measure to evaluate the 
performance of the dynamic histograms. 
 
4.1. Performance of DADO 
 

In [3], the DADO histogram is empirically 
compared against the Approximate Compressed (AC) 
histogram of [4] and shown to consistently outperform 
the AC histogram on a variety of update streams.  The 
types of updates considered correspond to the common 
classes of updates listed in Table 2. 

In particular, the DADO histogram is shown to be 
highly effective in capturing random updates; its 
performance approached that of the static SSBM 
histogram.  However, the DADO algorithm was shown 
to have problems on sorted update streams. 

We conducted further evaluations of DADO on 
several types of non-stationary update streams that 
were not considered in the earlier study such as rolling 
update streams [8].  We found that DADO has 
problems with both sorted insertions and rolling 
updates where the data from one end of the value 
domain is deleted over time.  We also found that the 
performance of DADO greatly deteriorates with larger 
domain sizes when the updates are in sorted order.  The 
details of our study are available in [8]. 
 
5. New Incremental Histogram    
    Maintenance Techniques 
 

The types of non-stationary update processes that 
DADO has been shown to perform poorly on include 
those with variable value range over time as well as 
those with large sparse value domain.  In general, 
merge operations lose information and so reduce 
histogram accuracy.  Unfortunately, the frequent 
expansion and contraction of the value range, as results 
from sorted update patterns, causes frequent merges 
involving the end buckets. 



In this section, we propose several techniques to 
address the problems exhibited by DADO on certain 
classes of non-stationary updates.  These techniques 
could be extended to maintain other types of partition-
based histograms where buckets are repartitioned 
based on some criteria in response to updates. 
 
5.1. Adapting to Variable Value Ranges 
 

Methods to enable the histogram to expand and 
contract its range dynamically would increase its 
ability to capture non-stationary distributions with 
variable value ranges over time, such as sorted updates.  
We refer to the proposed changes regarding range 
expansion and contraction, when applied to DADO, as 
the DADO Variable Range (DADO-VR) algorithm. 

• Range Expansion:  Currently, when an out of 
range insertion x occurs, DADO extends the range of 
the histogram buckets by temporarily assigning x its 
own bucket.  However, any empty space between x and 
the closest end-point of the histogram is not explicitly 
represented.  This is a problem because DADO does 
not store the maximum value (right border) of each 
bucket, but assumes it to be one less than the minimum 
value of the right neighboring bucket based on the 
continuous values assumption.  As a result, any new 
empty space generated from an out of range insertion is 
implicitly merged with existing values in the original 
end bucket.  Therefore, additional errors are 
introduced, which are further propagated in subsequent 
histogram repartitions.   

Our approach to the problem is to create an 
additional bucket to represent the generated empty 
space.  We then perform an additional merge.  This 
method is preferable to DADO’s approach because it 
performs two explicit merges based on the least error 
criterion.  However, this approach may take slightly 
more time than the original DADO algorithm because 
of the extra merge. 

• Range Contraction:  Deletions to the underlying 
data can contract the range of the data distribution.  
Unfortunately, the DADO algorithm is unable to detect 
precisely when the range of the underlying data 
contracts because the actual data on disk is not directly 
accessed.  Currently the DADO algorithm does not 
permit the range of the histogram to contract for 
deletions.  This is a problem for update streams where 
data from one end is deleted over time.  For such 
update streams, histogram accuracy deteriorates over 
time as space is wasted on approximating the 
distribution of values no longer found in the underlying 
data. 

Our approach to contracting the histogram range is 
to delete an end bucket whenever a deletion falls in 
that bucket and causes it to become empty.  Any 

recovered bucket allows us to split a non-empty 
bucket.  Note that only empty end buckets are deleted 
to recover space and allow other buckets to be split.  
Therefore, the goal of approximating the minimization 
of the error quantity (3) is not compromised when an 
empty end bucket is deleted to contract the range of the 
histogram.  However, with this approach it is possible 
to have subsequent out of range deletions.  This is 
possible because the histogram is an approximation 
and although its frequency count for a value may be 
zero, the underlying frequency may be positive.  Such 
deletions must be removed from somewhere to 
preserve the total mass of the histogram accurately.  
An out of range deletion is handled by decrementing 
the appropriate sub-bucket counter of the nearest 
bucket to the deleted value point.   

• Alternative approach to range expansion:  An 
alternative approach to expanding the range of the 
histogram is to simply store the right border of each 
bucket as well.  However, this method requires more 
space per bucket.  We refer to this method as the sparse 
DADO algorithm.  We expect this method to perform 
worse than DADO on updates with few out of range 
insertions because it results in approximately 25% 
fewer buckets than DADO for the same amount of 
space. 
 
5.2. Batch Processing of Updates 
 

Update streams from real world applications are 
likely to contain insertions or deletions of identical 
values that occur in close succession.  The updates are 
then said to occur in batches.  We have seen DADO 
perform poorly on batched data such as sorted data.  
DADO performs poorly on batched updates because it 
adjusts the histogram on each individual update and 
hence is slow in recognizing significant trends.  This is 
a problem for non-stationary batched updates because 
the algorithm may perform excessive bucket 
repartitions and thus lose a significant amount of 
information.  We propose to process the updates in 
batches instead of individually to improve histogram 
accuracy.  We refer to the proposed changes when 
applied to DADO as the DADO Batch Update 
algorithm. 

To facilitate histogram adaptation to batched 
updates, we track individual recently updated values 
separately from the main histogram.  From the total 
space available, we propose to set aside space 
equivalent to k ≥ 1, singleton buckets to track the k 
most recent values. The singleton buckets store the 
value and a count representing the value’s net 
frequency from insertions and deletions.  The 
corresponding singleton bucket counter is incremented 
or decremented by one for an insertion or a deletion of 



the value, respectively.  We allow the count to become 
negative because at all times, we use both the 
frequency approximation from the main histogram and 
the corresponding singleton bucket count to arrive at 
an estimation of the value’s frequency.  If the 
frequency estimation from the combined information is 
negative, the frequency of the value is then 
approximated as zero and the outstanding counts are 
moved to neighboring buckets. 

Since we have a finite number k of singleton 
buckets to track recent values, when all k tracking 
buckets are in use and a different value occurs, the 
least recently updated tracking bucket cLRU is 
integrated into the main histogram and the new value is 
given its own (singleton) tracking bucket.  The 
integration of cLRU is accomplished by partitioning the 
bucket that contains the tracked value, cLRU.value, into 
at most four distinct parts: the sub-bucket values less 
than cLRU.value, cLRU.value, the sub-bucket values 
greater than cLRU.value and the other sub-bucket that 
cLRU.value does not fall within.  Each of these 
partitions is temporarily given its own bucket.  Then 
we merge best candidate adjacent buckets until the 
histogram size is restored.  At most three merges are 
required since at most four new buckets are created. 

By using a queue of singleton buckets to track a 
number of most recent values, the algorithm is able to 
see a larger window of changes between successive 
bucket repartitions.  However, accuracy is not 
compromised since at any given time, all the summary 
information available in both the main histogram and 
the k tracking buckets are used for query selectivity 
estimation.  In addition, by separating the value that 
actually occurred in updates from other values in the 
same bucket, the frequency prediction of that value can 
be precisely updated.  This allows values with high 
frequencies to be approximated more accurately and 
hence leads to improved histogram accuracy.  
However, a drawback of this approach is that fewer 
regular buckets are available because some of the 
space is used instead to track the k most recent values.  
The required space for tracking the k recent values is 
roughly equivalent to 2/3 k regular DADO buckets. 
 
6. Experimental Evaluation 
 

We have proposed several techniques to address 
existing histogram maintenance problems on certain 
classes of non-stationary updates.  We combine the 
techniques and apply them to the DADO algorithm to 
derive the following new dynamic histograms:  

• Sparse DADO 
• DADO Variable Range (DADO-VR) 
• DADO Variable Range Batch Update (DADO- 

VRB) 

The name of the algorithm indicates which 
techniques have been combined.  In the rest of this 
section, we present and analyze the results of our 
empirical evaluation of the proposed dynamic 
histograms. 
 
6.1. Experimental Environment 
 

First, we describe the experimental environment of 
our empirical study.   

Error Measure:  We use the KS statistic [9] as an 
error metric to evaluate the quality of a histogram as is 
done in [3].  The KS statistic for two distributions is 
defined as  

)()(max 21 xPxPt
x
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             (4) 

where )(1 xP  and )(2 xP  are cumulative distribution 
functions. 

The KS statistic has an intuitive interpretation for 
range predicates.  The selectivity of a range predicate 
is the fraction of tuples in the relation that satisfy the 
range predicate.  The selectivity estimate of any range 
predicate posed against the histogram rather than the 
original data will have an absolute error that is less 
than or equal to 2t. 

Relative Insertion Distributions:  Past 
experimental work [4, 1, 3, 10] has used permuted Zipf 
[14] distributions to evaluate proposed histograms.  
The Zipf distribution is widely used because many 
real-world data appear to follow Zipf laws.  In our 
experiments we also used permuted Zipf distributions 
to determine the underlying data distribution g of our 
model.  Specifically, the set of frequencies and values 
are chosen independently using Zipf, and then the 
frequencies are randomly mapped to the values. 

• Frequency Sets:  The frequencies are 
generated following a Zipf distribution with z 
= 1 (i.e., skew of 1).   

• Value Sets:  The values are determined from 
the individual spreads, which are the 
distances between successive values.  The 
spreads are generated following a Zipf 
distribution with z = 1 (i.e., skew of 1) and 
then randomly reordered to obtain the values. 

Update Streams:  We used the update model to 
generate the update streams tested on.  Full details of 
the parameter settings used are available in [8].  Unless 
otherwise noted, the number of distinct values |V| is 
fixed at 1000. 

Methodology and Histogram Settings:  We 
compare the performance of the dynamic histograms 
not only against each other, but against the statically 
built SSBM histogram.  All the dynamic histograms 
are initially empty and are populated entirely based on 



the updates.  The SSBM histogram is built on the final 
data distribution after all the updates are applied to the 
underlying distribution.  After the entire update stream 
is processed, each histogram is compared to the real 
(net) distribution using the KS statistic as an error 
metric.  Every test configuration was generated 
multiple times (by starting from a different random 
seed for the random number generators used in 
generating the update streams) and evaluated based on 
the average of the measured KS statistics. 

For fair comparison, all histograms were given the 
same amount of memory.  In our experiments, the 
default amount of space given to each histogram is 1 
KB, which is the same default used in [3].  For the 
DADO-VRB histogram, the default amount of space 
allocated for tracking individual recent values is 5% of 
the total amount of space available.  This corresponds 
to six singleton buckets in our experiments. 
 
6.2. Experimental Results 
 

In our experiments, we varied S to study the effect 
of spreads on histogram performance and varied WI 
and WD to evaluate how well the histograms perform 
on updates that fall in between the extremes of random 
and sorted orders. 

Performance on Sorted Updates:  For sorted 
updates, we are interested in studying the effect of 
spreads (i.e., distances) between values on histogram 
performance.  Figure 1 shows results for insertions 
only.  The results for mixtures of sorted insertions and 
deletions are similar and available in [8]. 

In the experiments depicted in Figure 1, we fixed 
the number of distinct values to 1000 and varied S 
from 5000 to 40000.  Since the number of distinct 
values is fixed, by varying S we vary the magnitudes 
of the spreads.  From the results, it is clear that the 
accuracy of DADO deteriorates greatly as S increases.  
In contrast, the accuracy of the other dynamic 
histograms just modestly degrades with increasing S.  
We note that DADO-VRB not only significantly 
outperforms the other dynamic histograms, but it also 
comes close to the performance of the statically built 
SSBM histogram (on the final data distribution) at 
every magnitude of S tested.  Clearly, the proposed 
batching and variable range techniques are highly 
effective for capturing sorted updates. 

Performance on Fuzzy Updates:  We study the 
effectiveness of the dynamic histograms for capturing 
non-stationary updates that fall in between the 
extremes of random and sorted orders by varying WI 
and WD, the window widths for generating insertions 
and deletions, respectively.  In our experiments, we set 
WI = WD and varied their values as percentages of S, 
the maximum domain value.  Random updates 

correspond to WI = WD = 100% of S, while strictly 
sorted updates are achieved as the window size 
approaches zero.  Figure 2 shows results for insertions 
only.  The results for mixtures of insertions and 
deletions are similar and available in [8]. 

In Figure 2, we notice that all the dynamic 
histograms perform significantly better on the random 
update streams than on the non-stationary fuzzy update 
streams (i.e., updates that fall in between the extremes 
of random and sorted orders) tested.  However, the 
performance of each dynamic histogram does not 
appear to vary significantly across the intermediate 
sized window widths (i.e., window widths from 10% - 
80% of S).  We also note that for smaller window 
widths, DADO-VRB clearly outperforms the other 
dynamic histograms because of batching. 
 

 
Figure 1. Error vs. Domain Size 

Sorted insertions, Value range = [1, S], |V| = 1000, 
Stream size = 100K, Memory = 1 KB 
 

 
Figure 2. Error vs. Window Widths 

Insertions, S = 20000, Value range = [1, S], |V| = 1000, 
WI = WD, Stream size = 100K, Memory = 1 KB 



Histogram performance over time:  In Figure 3, 
we measured the KS statistic of each proposed 
dynamic histogram at different fractions of the update 
stream loaded.  We can see that the performance of 
each dynamic histogram degrades as more updates are 
processed.  However, for all the dynamic histograms 
the rate of decline in accuracy appears to stabilize. 
 

 
Figure 3. Error vs. Fraction of stream loaded 

Fuzzy insertions and deletions, S = 60000, Value range 
= [1, S], |V| = 3000, WI = WD = 0.01S, Stream size = 
500K, Memory = 1 KB 
 

Other Experiments:  In other experiments, we 
observed that on random updates the performances of 
the proposed dynamic histograms did not vary 
significantly from that of DADO.  We also varied the 
amount of tracking space for DADO-VRB and found 
that its performance initially improves when the 
amount of tracking space is increased from low levels, 
but eventually it worsens with increased levels because 
of the trade-off of having fewer regular buckets.  More 
details are available in [8]. 
 
7. Conclusions 
 

In this paper, we introduced several techniques for 
capturing broader classes of non-stationary updates and 
applied them in effective ways to the DADO 
algorithm.  In addition, we introduced a general but 
still realistic update model for database changes.  Our 
experimental results show that the proposed dynamic 
histograms offer greater accuracy than DADO for 
capturing broader classes of updates than were 
considered in previous studies.  In particular, the 
DADO-VRB histogram is shown to consistently 
outperform the others. 
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