DISK STRIPING *

Kenneth Salem
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

Just like parallel processing elements can substan-
tially speed up computationally intensive tasks, con-
current transfer of data in and out of memory can speed
up data intensive tasks. In this paper we study one gen-
eral purpose facility for achieving parallel data motion:
disk striping. A group of disks is striped if each data
block is multiplexed across all the disks. Since each
subblock iz in a different device, input and output can
proceed in parallel. With the help of an analytical model,
we investigate the effect of striping on disk service times
and its advantages and limitations in one of a set
representative applications, file processing. We also
explore several possible enhancements to striping:
immediate reading, ordered blocks, and matched disks.

1. Introduction

A group of disk units is striped if each data block is
stored, not on one of the disks, but across all of the
disks. That is, if there are m disks, each block is split
into n subblocks and a subblock is placed on each disk.

The goal of striping is to improve 10 bandwidth.
Ideally, if a block is spread across n disks, then it can be
read (or written) in parallel, cutting access time by a
factor of 1/n. Unfortunately, this beneficial effect may
be counterbalanced by several factors, including higher
CPU overhead and larger rotational and arm movement
delays. In this paper we study these tradeoffs in detail,
and characterize the applications and circumstances
that make striping advantageous. We also study varia-
tions and enhancements to the basic striping idea, and
attempt to determine their usefulness.

In the current quest for very high performance
computers, the idea of striping has been causing consid-
erable interest. However, it is by no means a new idea.
On some parallel-readout disk models, striping can be
done, and has been for many years, within the disk drive
itself. These units have multiple read/write heads
mounted on a single arm, and parallel data transfers to
and from the heads are possible. However, as disk densi-
ties increase, it becomes more difficult to align the
different heads simultaneously during 1/0. This makes
parallel-readout disks much more expensive and limited
to relatively small number of striping channels. The
alternative, striping from separate disk drives, is becom-
ing more effective, and is thus the only one we consider
in this paper.

Striping (to different drives) has been supported by
some operating systems. Although we have been unable
to find references in the published literature, it appears
that some early versions of Unix gave users the option of

+ This work has been supported by NSF Grant ECS-8351818 and
from grents from IBM and NCR corporations,

CH2261-6/86/0000/0336$01.00 © 1986 IEEE

336

striping their files [2]. This option disappeared from the
newer version of Unix, it seems, because it was not
heavily used. More recently, the Cray Operating System
(COS 1.13} supports striping [11]. Reportedly, it
improves performance on some applications
significantly. (As far as we know, this system was the
first to use the term ‘'striping' that we have adopted
here.)

Striping has also been proposed for rnulti-
processors and database machines. For example, the
PASM multi-processor [13] includes the specification of
multiple disk drives for parallel loading of the primary
memories. This scheme has the added advantage that
each disk has an independent path to its corresponding
memory module, avoiding the inherent contention of a
system-wide memory bus. It is also interesting to note
that Boral and DeWitt [2] point to striping as one impor-
tant technique that may improve performance in data-
base machines.

With rapidly increasing memory densities, there has
recently been inierest in rnemory resident database sys-
tems [6,7,8]. Here again, striping has been suggested as
a means to improve bandwidth to disks. For example,
striping can reduce the time it takes to load the data-
base into memory after a crash, or it can reduce delays
in writing the log.

Finally, we suspect that some type of striping is
used in many high performance commercial applica-
tions, for instance, in sorting packages. However, in this
paper we are interested in viewing striping as a general
purpose facility that can be used in a transparent way.
In this facility, applications would simply define the
degree of striping (i.e., n) and would read and write full
blocks. The manipulation of the subblocks would be
invisible.

In spite of the wide range of applications of striping,
very little is known about its performance and its uscful-
ness as a system facility. Is it only useful for loading up
databases and initializing large memories, or can it be
used for other important computations? What variations
of the basic striping idea work best? What are the limits
in the performance improvements possible through the
use of striped disks? Is striping simply a "‘hack’, or
should it be incorporated into operating systems? In
order to answer these gquestions, we embarked on the
present study. {Concurrently, M. Kim [10] has also stu-
died striping, from a different but also interesting per-
spective.)

Most performance evaluations make numerous sim-
plifying assumptions, but since we are dealing here with

non-linear mechanical devices (i.e., the disks) we make
more than our share. In general terms, we believe they
are justified because we are only looking for general
trends in striping performance. The present study must
be viewed as an exploratory one, to be followed up by an
experimental one that actually verifies the the promising
ideas that we uncover here,

Due to space limitations, in this paper we are unable
to present the full details of our model and all of our
results. (These can be found in [12].) Instead we concen-
trate on the key features of the model and of striping,
and present representative performance camparisons.
Specifically, in Section 2 we outline our model for disks,
including the CPU overhead, rotational and latency
delays. Section 3 describes several striping enhance-
ments that may improve performance. In Sections 4 and
5 we examine the “raw” service time for 10 requests and
the total time for the completion of a file processing
task, varying the enhancements that are used. Finally,
in Section 6 we make some concluding remarks.

In this paper we do not address the reliability
aspects of striping. If no precautions are taken, then a
single disk failure in a striped group makes the entire
group inaccessible. However, error detection and
correction codes can be easily added, reducing the mag-
nitude of the problem. One possible strategy for failure
recovery is briefly discussed in Section 6.

2. The Model of Disk Service Time

A simple mathematical model is used te determine
the disk 10 service time in a multiple-disk system. We
define service time as the portion of the request
response time during which useful work is being done.
This does mot include, for example, queueing times for
requests or delays due to contention at the I0 channel
The model attempts to be general in the sense that it
can be set up to medel different types of disk drives and
different system configurations. Customizing the model
to a given system is a simple matter of choosing an
appropriate set of constants.

Service time consists of instruction execution time
and the mechanical and electronic delays in the disk
drive. In the remainder of this section we briefly discuss
how each of these components is represented in the
model.

2.1. CPU time

CPU time is the instruction overhead which is
incurred with every disk 10 operation. This includes such
things as page location calculations and device driver
execution. The amount of time spent executing such
code varies widely from system to system and we do not
attempt to model it in detail.

To reflect the CPU time, the model incorporates an
initialization time #jc + n#;. The first term represents
that part of the CPU time that does not vary with the
number of disks in the striped group. The second term
represents processing which must be done for each disk
in the n-disk system. For example, we may need to han-

dle a “‘transfer completed' interrupt for each of the n-

disks.

2.2. Disk time

The remaining delays can be broken into three
major components. Seek lime is time required to posi-
tion the read/write heads of the disk over the track con-
taining the data. FRotational lotency refers to the wait

337

for the spinning platter to carry the desired portion of
the disk track under the read/write heads. Transfer
time is the time required to pull the data off of the disk
and present it to the 10 channel.

In modeling the seek and rotational delays, we
assume that the size of the set of data blocks to which
we need access remains constant as we vary the number
of disks. The data is stored contiguously on each disk,
and we refer to the space it occupies as the task dato
space.

Seek times and rotational latencies at each disk are
treated as random variables. In determining their
expected values, we assume that requested blocks are
distributed uniformly through the task data space.! The
medel parameters relevant to this determination are
presented in Table 2, together with the values that were
used for most of the evaluations of Sections 4 and 5. Of
these parameters, those directly concerned with the
disk were assigned values corresponding roughly to
actual values specified for DEC's RAB1 disk drive [5].

symbol description value units
ts max seek time 50 msec
tos 1-track seek time 7 msec
odisk disk rot. speed 3600 rpm
h # of disk heads 14
[4 # of cylinders 1268
s # of sectors/track 52
d bytes/sector 512 | bytes/sector
tioe CPU overhead 10 Msec
t; CPU overhead/disk 100 usec

Table 2

The model used [12] captures the most important
effects of striping on each of the three components. In
general, seek and rotation delays for the same 10
request will be different for each disk in a striped
group.™ Since we must wait for all of the disks to
respond to each request, expected delays for seek and
rotation increase with the number of disks. On the posi-
tive side, transfer time will decrease since we retrieve
less data from each disk. Another beneficial effect of
increasing the number of disks is that the size of the
task data space on each disk decreases. This leads to a
decrease in expected seek times. In section 4 we exam-
ine the importance of each of these effects on the overall
performance of striped disks.

3. Performance Enhancements

Early data from the model confirmed that seek
delays and rotational latency were the major contribu-
tors towards the response times of striped disk groups.
With an eye towards reducing* these times, several
enhancements to the original striped disks were
developed and the model expanded to include them.
Each of the enhancements acts to reduce either the seek
delays or rotational latency of the disks. They can be
included in the model in any combination, so that the
effect of each on system performance can be deter-
mined. These enhancements are discussed in the

1 This assumption is medified when we consider ardered blocks,
described in section 3.

T

In the next section, we consider & scenario in which this is only
partially true.

following sections.

Note that some enhancements may be easier to
implement than others. We return to these implementa-
tion questions after Section 5, once we understand the
performance gains that can be achieved with each
enhancement.

3.1. Immediate Reading

The original model assumes that any transfer of a
block of data to or from a disk must begin at the position
of the beginning of the block on the disk. Therefore, if
the disk head arrives at the proper track just after the
beginning of the desired block has spun past, data
transfer is delayed until the disk has made almost a
complete revolution. If instead we assume that the capa-
bility exists to begin data transfer from any point within
the block, we can reduce the expected rotational latency
of the disk. We call this the immediate reading enhance-
ment.

With immediate reading the expected rotational
latency varies with the ratio of subblock size to disk
track size. In fact, if we match the block size to the
track size, we reduce rotational latency to zero since we
never have to wait for the correct part of the track t.
spin under the read/write head.

Note that immediate reading could also be used to
enhance the performance of a single disk. In a striped
group, however, rotational delays are more critical,
since we must always wait for the slowest of the n disks
in the group. Therefore we expect that enhancing a
striped disk group in this manner will produce a more
dramatic speedup than would the enhancement of a sin-
gle unit.

3.2. Ordered Blocks

In this scenario, data is stored on the disk in the
order in which it is to be retrieved. Frequently, there is
some natural order to the data in an appucation. For
example, a b-tree can be stored on disk one level at a
time so that the disk head need never “backirack’ over
previously visited cylinders to get the next block. Some-
times it doesn’t matter in what order the data is read,
for example if we are trying to compute the average
salary found in a database of employee records. In these
cases we can merely specify that the data is to be read
in physically sequential order.

) Typically, the price that is paid for this speedup is

that adding and deleting data becomes more difficult.
Going back to the b-tree example, we must either
include extra blocks to handle ‘‘spill-over’ data or rear-
range the b-tree on the disk (presumably an expensive
operation) when additions and deletions occur. However,
ordered blocks may still be useful if the percentage of
operations that cause modifications is small [14].

An important consequence of ordering disk blocks is
that seek times ean no longer be considered probabilis-
tic in the same sense as before. With ordered blocks
there is more information as to the location of the next
block to be read. In some cases the location may be
completely specified.

Ordered blocks can also be used to enhance the per-
formance of single disks. However, as was the case for
the immediate reading enhancement, we expect that a
striped group employing ordered blocks will show a more
dramatic performance improvement.

338

3.3. Matched Disks

Here we consider the possibility of requiring that
the pieces of a block be stored at the same location on
each of the disks. This way, the read/write heads of all
of the disks will move together. With matched disks the
expected seek time will remain approximately constant
as the number of disks in the system increases, since all
of the disks are doing the same seek.

4. Results - Service Time

The effectiveness of striping is the percentage of
speedup obtainable by striping data across 7n disks
rather than storing it on a single disk. This is measured
by comparing the service time in the striped system to
the service time in the other. For example, consider a
situation in which the service time for a single-disk sys-
tem is 25 milliseconds, while the service time is 18 mil-
liseconds for a system with a 3-disk striped group. We
compute the effectiveness of the striped group by:

25 — 18

ti =
effectiveness 55

100 = 28%

Under this definition, the maximum possible speedup is
100%. Negative effectiveness indicates that the task
completion time for the striped group is greater than
that for the single-disk system.

Figure 4a shows the effectiveness i striping for
block sizes ranging from 1K to 256K bytes. Unless other-
wise noted, the parameters of Table 2 are used. It is
clear that striping is more effective for larger block
sizes, although significant savings can be obtained for
block sizes as small as 1K bytes. That large block sizes
provide an ideal environment for striping is to be
expected since transfer time is exactly the component of
the task completion time that striping works to reduce.

Figure 4b shows the break down of service time into
its component parts. The figure is for a block size of 16K
bytes. It is clear from this figure that most of the sav-
ings result from the decrease in transfer time as n
increases. It is also interestinr~ ‘o note that the seek and
rotation time is actually dec sing as the number of
disks gets larger. In this case the effect of the decreas-
ing size of the data space outweighs the delays expected
from the wait for the slowest of the disks.

. In Figure 4c we show the effect of the various
enhancements on striping's effectiveness. Here we use a
block size of 4K bytes. We see that the immediate read-
ing enhancement actually results in a slight decrease in
effectiveness in this situation. This somewhat unex-
pected result arises because of the shrinking size of the
data subblocks as n increases. As was noted previously,
the rotational latency of a disk with immediate reading
capability is a function of the ratio of the subblock size
to the track size. We caution that this result does not
imply that service time is longer with striped disks, only
that striping is slightly less effective with immediate
reading than without.

4.1. Other Disk Drives

This section is included to show how varying our
choice of disk drives affects striping’'s performance. Two
additional drives, the RABO and the RP08, are compared
to the RAB1 drive, which was used in the previous com-
parisons [3,4,5]. Values of parameters for all three
drives are listed in Table 4 for comparison.

Figure 4d shows striping effectiveness when using
the various disks, for a block size of 32K bytes. An

100.0

60.0

eff
(€3]

40.0

20.0

0.0

45.0

30.0

eff
[€0]

15.0

! T T
Oblock siza = 256Kbytes
| Oblock size = 64Kbytes "
Oplock size = 16Khytas 4
Oplock size = 4Kbytes
AI:»lx:u:k size = lKbytes
|
0.0 2.0 4.0 5.0 8.0
n Chumber of disks)
Figure 4a
I I I
B o enhencements
O patched disks
o immediate reading
O ordered blocks
1 | |
0.0 2.0 4.0 6.0 8.0

h (number of disks)

Figure 4c

50.0 T 1 1 1 1 1
@ seek and rotatfon
40.0 @ transfer 1
30.0 N
time
(msecs)
20.0
10.0
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
n (number of disks)
Figure 4b
50.0 T T T —
{
40.0 | -
eff
(€]
20.0 [~ disk drive
RPOB
C pago
O rest
0.0 ' . .
0.0 2.0 4.0 6.0 8.0

339

n (humber of disks)

Figure 4d

_parameter | RA81 | RAB0O | RPOB units
fpng 50 50 6C msec
tos 7 8 10 msec
Ldisk 3800 3600 3600 rpm
h 14 14 19
[1258 561 815
s 52 31 22
d 512 512 512 | bytes/sector
Table 4

examination of the characteristics of the disk drives
reveals why some are more advantageous to striping
than the others. Simply stated, if their rotational speeds
are constant then striping is more effective with drives
having lower bit-per-track densities. This is so because,
for a fixed block size a lower bit-per-track density means
a longer transfer time. This is the situation for which
striping is the most effective, since it acts to reduce
transfer time.

The same statement could also be made for disks
with slower rotational velocities, since this again would
translate to longer transfer times. However, the effect is
partially counterbalanced in this case because slow rota-
tional velocity also means longer expected rotatienal
latency. This leads to less effectiveness since striping
tends to bring out the worst in rotational delays.

5. Results - Applications

To fully evaluate striping we must look at an entire
application, not just at an isolated disk to memory data
transfer. Therefore we selected several tasks represent-
ing a variety of data access and computational patterns.
Each was analyzed using the model presented in the last
section to determine the effectiveness of striping in that
particular situation. Most of these tasks involved multi-
ple disk 10 operations. Each included some measure of
processing time once the data was present in memory.

Effectiveness for an application is computed the
same way it was computed for service times, except that
now we are comparing the total times to complete the
task in the striped and unstriped systems

Due to space limitations, we only describe one of
these tasks here, which we call file processing, and
present some of our results. (The cenclusions of the fol-
lowing section, however, are based on studying other
tasks too.) The file processing task is to read and per-
form some type of operation on the records in a file.
Depending on which of two variations of the task was
chosen, the processor then may or may not be required
to write the records back out to the disks. For all of the
data presented in this section the latter variation is to
be assumed unless otherwise specified

The file processing task requires several unique
input parameters. These are listed in Table 5.

symbol description value | units

Ta database size 108 bytes

m buffer size 32K | bytes

p CPU time/byte 1 gsec
Table 5

Processing of the data is simulated by the specification
of a processing constant p, the amount of time

340

necessary for the processing of each byte. The number
of bytes of memory available for the task is specified by
the parameter m. The block size is not specified as a
parameter. Instead, for each n computations are done
for a variety of block sizes and the smallest time is used
as the completion time for the task on an n-disk system.
Block size is restricted to be no more than one-half of
the available memory buffer space so that we have room
for double buffering.

It is assumed for this task that disk requests can be
gueued. The processor initially requests enough blocks
to fill the memory buffer, then begins processing the
first block. After each block is processed, a request to
write the used block back to disk is queued, followed by
a request to read in a new block if any remain. Process-
ing of the next block is then begun. Letting & represent
the number of blocks that can fit in the memory buffer,
we summarize this protocol with the simple program
shown in Program 5.

initial phase:
REPEAT k TIMES §
IF (unrequested blocks remain) THEN
queue a block read request

J
main phase:
WHILE (not all records processed) DO §
process a block in the buffer
queue a block write request for that block
[optional]
IF (unrequested blocks remain) THEN
queue a block reud request

Program 5

No scheduling optimization is modeled for the disk
request queue; requests are assumed to be handled on a
first-come-first-serve basis. An estimation as to whether
the completion time will be 10-bound or processor-bound
is used in determining the completion time.

Some results from the file processing model are
shown in Figures 5a-b (again using the parameters of
Table 2). Like most of the effectiveness curves in this
paper, those for the file processing task tend to flatten
out, as n increases. Two factors contribute to this ten-
dency. First, the expected value of the sum of seek and
rotation time in a striped system approaches a fixed
maximum value, namely fn; + 1/ 04, as n increases.
Second, as the number of disks increases, the subblocks
become so small that transfer time becomes negligible.
Where these effects become noticeable depends on the
characteristics of the system. After that point, the addi-
tion of additional disks to the striped group causes little
change in its effectiveness.

The first figure shows the important and somewhat
unexpected eflfect of memory size on effectiveness.
When only an 8K buffer is available, blocks are limited to
only 4K bytes and striping is not worthwhile. With 32K
available, striping becomes effective. However, if
memory is increased beyond this value, effectiveness
decreases once again! This is because the extra memory
lets us decrease I0 times to the point where 10 is no
longer a bottleneck. This is an important property of

- | ﬁ/;-\g——;/ﬁ/4
10.6 | buffer size
32Kbytes
o G4Kbytes
O zakbytes
off 0 BKbytes
)
0.0 "
FILE PROCESSING TASK
| 1 |
100 50 2.0 4.0 6.0 8.0

n (humber of disks)

Figure Sa

any system in which 10 and processing are occurring
simultaneously: once the task is no longer 10-bound,
adding additional disks to the striped group will not
change its effectiveness. With 64K bytes of memory, the
disks begin to outrace the CPU when n = 3. With 128K,
even when n = 1, the CPU cannot process the data as
quickly as the disk can supply it.

Figure 5b shows striping's effectiveness under the
various enhancements, using a buffer size of 32 Kbytes.
We can see that the curve for ordered blocks behaves
much as did the curves for large buffer sizes in the previ-
ous graph. Again, we have decreased the I0 time to the
point where it is no longer the bottleneck for the com-
pletion time. Because seek times are relatively small in
comparison to other factors (e.g. rotational latency) in
this example, we find that matching disks does not
significantly change effectiveness, and the negative
effect of the immediate reading enhancement is more
pronounced. With larger file sizes or smaller disks, both
enhancements would allow greater effectiveness.

8. Conclusions

In addition to the results presented here, we have
studied striping in considerable detail, varying the model
parameters, studying other striping enhancements, and
analyzing two additional tasks: B-tree searching (requir-
ing relatively little processing} and merge-sort (requir-
ing substantial processing) [12].

In general terms, our results on striping seem to be
mixed. On the one hand, the performance improvements
we have observed for the ‘‘typical” tasks are in 10% to
70% range (speedups of up to about 3 to 1), modest in
comparison to the orders of magnitude improvements
sought by supercomputer efforts. On the other hand,

341

25.0 I ! I
20.0 [~ FILE PROCESSING TASK 7
5.0 [
eff
(€3]
10.0 |
Anane
5.0 [0 O natched 7
O {omediate
O ordered
! | 1
0.0
0.0 2.0 4.0 8.0 8.0

n (humber of disks)

Figure 5b

the striping improvements have been achieved at a very
low cost. Many existing computers already have multiple
disks and controllers, so the hardware cost of striping
may be zero. The software development cost may also
be small, especially if a general purpose striping facility
is implemented and its cost amortized over many appli-
cations.

Striping also promises to become much more
effective in the near future. Processors are becoming
faster, memories larger, but disk speeds are not chang-
ing very much. At the same time, data requirements are
growing in many applications. All of these factors make
striping more effective. For example, in Figure 8 we plot
the effectiveness of striping not for a typical file process-
ing task as was done in Section 5, but for a task that is
likely to be encountered in 5 years. We have set the pro-
cessor speed at one nanosecond per byte (achievable
with parallel processing), the file size at 2 gigabytes ,and
the memory buffer at half a megabyte. (The curve begins
at n = 5 since we need five of our disks to hold the 2
gigabyte file.) We have also plotted the curve for a 200
megabyte file with a 32K buffer using our “present day’
parameters, for comparison. In the new scenario, strip-
ing speedups are 3 to 1 or more, and clearly striping
pays off.

Our results show that striping has limitations and
must be used with care. In all cases, the speedup obtain-
able by striping tends towards a constant value as the
nurmber of disks increases. Striping is very sensitive to
parameters such as available memory buffer space and
the amount of processing that must be performed on the
data. This means that selecting the optimum number of
disks, n, to stripe for an application is difficult, espe-
cially if the same data file is going to be used in different

100.0 1 T T T

50.0
eff A
(¢5) future scenarfo
current scehario
40.0 1
- g
20.0 [T
FILE PROCESSING TASK
0.0 ! L { {
" e.0 2.0 4.0 5.0 - 8.0 10.0
n Cnumber of disks)
Figure &
ways.

The striping enhancements can improve perfor-
mance and at least some of them should be included in a
general purpose operating system facility. In addition to
increasing effectiveness and reducing service time,
matching disks could actually simplify system imple-
mentation (each subblock would have the same address
on the disk). Ordering the blocks can improve perfor-
mance, but in this case the application must inform the
system where blocks should be placed. Disks with
immediate reading capability, if used with care, can pro-
vide significant reductions in I0 service time and still
allow for effective striping.

As mentioned in the introduction, a reliable striping
systermn must include error recovery and detection codes
in order to avoid total data loss in a group. Probably the
best strategy is to have detection codes within each disk
unit, so that a failing unit can be pinpointed. Then the
correcting codes can be stored in redundant disk drives.

For example, suppose that we want to correct a sin-
gle failure. Then we only need one extra disk with parity
bits. For each stored block, there will be a correspond-
ing subblock in the extra disk. The first bit in the sub-
block will be the parity bit for the set of bits that consti-
tute the first bit of the other subblocks. The second bit
will be the parity for the second set of bits, and so on.
When a failure occurs, the codes internal to each disk
will be used to identify the subblock that has been lost.
Then the parity block can be used to reconstruct the
missing subblock. If having delays in the correction
phase is tolerable, then the parity block does not have to
be read until an error is detected. Otherwise, it has to
be read concurrently with the other subblocks. (Note
that if the lost subblock cannot be identified, more than
a single parity subblock is required.) To correct more
failures, this example can be generalized using well
known erasure correcting codes [1].

342

References

[1]
(2]

(3]
[4]
[5]
(6]

[7]

(8]

[9]
[10]

(11]
[12]

[14]

E. Berlekamp, '"Algebraic Coding Theory,’
McGraw-Hill, 1968, pp. 229-231.

H. Boral, D.J. DeVitt, ‘‘Database Machines: An
Idea Whose Time Has Passed? A Critique of
the Future of Database Machines,"” Database
Mochines, H.-0 Leilich, M. Missikoff, ed.,
Springer-Verlag, 1983, pp. 166-187.

" RAB0 Disk Drive User Guide,’ Digital Equip-
ment Corporation, 1981.

" Peripherals Handbook,'' Digital Equipment
Corporation, 1981.

" RA81 Disk Drive User Guide, ' Digital Equip-
ment Corporation, 1982.

D.J. Dewitt, R.H. Katz, F. Olken, L.D. Shapiro,
M.R. Stonebraker, D. Wood, ‘‘Implementation
Technigues for Main Memory Database Sys-
tems,” SIGMOD Kecord, Vol.14,#2,1984.

H. Garcia-Molina, R.J. Lipton, J. Valdes, ‘‘A
Massive Memory Machine,” IEFE Transac-
tions on Computers, Vol. C33, No. 5, May 1984,
pp. 391-399.

J. Gray, ""What Difficulties are Left in Imple-
menting Database Systems,” Invited Talk at
SIGMOD Conference, San Jose, CA., May 1983.

P. Honeyman, personal communication.

M.Y. Kim, *“Parallel Operation of Magnetic
Disk Storage Devices: Synchronized Disk
Interleaving,” Proc. of the Fourth Mntl
Workshop on Database Machines, March, 1985,
pp. 299-329.

D. Mason, personal communication.

K. Salem, H. Garcia-Molina, *‘Disk Striping
{Full Version)," Technical Report 332, Depart-
ment of Electrical Engineering and Computer

Science, Princeton University, December
1984.
H.J. Siegel, F. Kemmerer, M. Washburn,

“Parallel Memory System for a Partitionable
SIMD/MIMD Machine,” Proc. 1979 Intl.
Conference on Puarallel Processing, pp. 212-
221.

G. Wiederhold, "Dotabase Design,’' McGraw-
Hill, 1977, Chaps. 2,8.

