
A Pure Lazy Technique for Scalable
Transaction Processing in Replicated Databases

Khuzaima Daudjee and Kenneth Salem
School of Computer Science

University of Waterloo
Waterloo, Canada

{kdaudjee, kmsalem}@db.uwaterloo.ca

Abstract

Recently, there have been proposals for scaling-up a
database system using lazy replication. In these proposals,
system scale-up is achieved through the addition of sec-
ondary sites which hold replicas of the database at a pri-
mary site. The addition of more secondary sites improves
system performance by allowing read-only transactions to
be serviced at the secondary sites. However, the scalabil-
ity of the distributed system is limited by the single pri-
mary site which services the update workload. As the work-
load scales-up, an increasing update load is placed on the
primary site, which suffers from performance degradation.
We address this problem by proposing a pure lazy solution
for scaling-up the database system. Our techniques provide
scalability and avoid transaction inversions, which can oc-
cur when transactions access stale replicas.

1. Introduction

Replication is a technique that is gaining increasing
recognition for improving the performance and availabil-
ity of a database system. Gray et al [10] classified synchro-
nization of replicas into two categories: eager and lazy. In
eager synchronization, all copies of a data item are updated
by a single transaction. While this makes it relatively easy
to guarantee the standard correctness criterion of one-copy
serializability (1SR) [3] for replicated data, eager protocols
do not work well if all replicas are not available. Moreover,
the updating transaction can suffer poor performance in a
scaled-up system with a large number of replicas to update
[10]. In lazy replicated systems, an update transaction up-
dates one copy of a data item while replicas are updated us-
ing separate transactions, thereby avoiding the performance
problems of eager protocols.

Consider a database system with two sites: a primary site
that holds the database and a secondary site that holds a

Update and Read-Only
Transactions

Primary Site

Secondary Sites

Lazy Update Propagation

Forwarded Update
Transactions

Clients

Figure 1. Lazy Master System Architecture

replica of the database at the primary site. Update trans-
actions execute at the primary site and updates are propa-
gated lazily to the secondary site and installed in an order
that is consistent with their serialization order at the primary
site. If read-only transactions are serviced at the secondary
site, 1SR can be ensured in the distributed system. How-
ever, as the workload scales-up, the system will not scale
unless both the primary and secondary sites are scaled-up.

A lazy master architecture that allows more secondary
sites to be added to the distributed system as the work-
load scales-up has been recently proposed [17, 16, 9, 21].
In this architecture, illustrated in Figure 1, read-only trans-
actions are serviced at secondary sites that have replicas or
cached copies of the database at a primary site. However,
an increasing update load is placed on the single primary
site since all update transactions are processed there. This
limits system scalability since the single primary site suf-
fers from performance degradation [9]. The first goal of the
techniques presented in this paper is to alleviate this perfor-
mance bottleneck by scaling-up the single primary site of
the lazy master architecture.

A drawback of ensuring only 1SR in lazy replicated
databases is that transactions may be serialized in undesir-
able orders. For example, if a client submits a read-only

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

transaction for execution after an update transaction, the
read-only transaction may not see the update made by the
client’s update transaction. Since update propagation is lazy,
the read-only transaction may run against a stale replica, i.e.
one that does not include the effects of the client’s update
transaction. The result is a transaction inversion: the read-
only transaction precedes the update transaction in the se-
rialization order despite the fact that it follows the update
transaction in the client’s request stream. In [9], we showed
how strong session 1SR can avoid such inversions in lazy
master systems with a single primary site.

With multiple primary database sites, the global database
state is composed of database states of individual primary
sites. The global database state evolves with the execution
of update transactions. Thus, the challenge here is to deter-
mine a valid serialization order for update transactions that
have executed at different primary sites that are synchro-
nized lazily. This serialization order can then be used to in-
stall updates at the secondary sites and to avoid transaction
inversions by guaranteeing strong session 1SR in the dis-
tributed system.

The goal of the techniques presented in this paper is to
not only alleviate the bottleneck of a single primary site but
also to maintain global 1SR in the system, and to prevent
transaction inversions. Our contribution in this paper are
techniques to provide scalability and guarantee strong ses-
sion 1SR, which prevents transaction inversions. Our con-
tribution, presented in Section 3, is a pure lazy solution for
scaling-up the primary database and propagating updates to
secondary sites. Performance studies show that our tech-
niques can provide scalability and avoid transaction inver-
sions almost as efficiently as 1SR, which does not prevent
transaction inversions.

2. Strong Session 1SR

In strong session 1SR, transactions are grouped into ses-
sions. The strong session 1SR correctness criterion avoids
transaction inversion within a session but not across ses-
sions. Transactions in an execution history H are grouped
into sessions using a session labeling:

Definition 2.1 Session Labeling: A session labeling LH of
an execution history H assigns a session label (identifier)
to each transaction in H .

We use LH(T) to refer to the session label of transac-
tion T . In this paper, we associate a distinct session with
each client shown in Figure 1, where the session consists
of all transactions submitted by that client. Given an execu-
tion history H and a labeling LH , strong session 1SR [9] is
defined as follows:

Definition 2.2 Strong Session 1SR: A transaction execu-
tion history H is strong session 1SR under labeling LH iff

Secondary Sites

Clients

Read−Only Transactions

Lazy Update Propagation

use lazy synchronization
PRIMARY SITES

Update Transactions

Figure 2. Scaled-up Primary in the Pure Lazy
Architecture

it is 1SR and, for every pair of committed transactions Ti

and Tj in H such that LH(Ti) = LH(Tj) and Ti’s com-
mit precedes the first operation of Tj , there is some serial
one-copy history equivalent to H in which Ti precedes Tj .

In a client’s sequence of transactional requests constitut-
ing a session, strong session 1SR guarantees that transac-
tions are ordered in the sequence in which they are submit-
ted for execution. Thus, for transactions submitted by dif-
ferent clients, this ordering would not necessarily be pre-
served. This makes strong session 1SR much less expen-
sive to enforce than strong serializability [4], which avoids
all transaction inversions [9]. Strong session 1SR is guaran-
teed by the protocol we present in Section 3.

3. A Pure Lazy System

Previous work described techniques for providing strong
session 1SR for lazy master systems [9]. However, these
techniques are restricted to a single primary site. In this sec-
tion, we describe a pure lazy master solution for scaling up
the primary database site. Our approach is pure lazy in that
both synchronization of the primary sites and update propa-
gation to secondaries is performed lazily. Relaxing the sin-
gle primary site restriction allows the primary database to
be partitioned and/or replicated across several sites, result-
ing in the system shown in Figure 2.

3.1. System Model

The system architecture is illustrated in Figure 3. The
system consists of one or more primary sites arranged in a
chain, and an arbitrary number of secondary sites. Each site
consists of an autonomous database system with a local con-
currency controller. Each site guarantees commitment or-
dering [5], which ensures that transactions are serialized in
the order in which they commit.1

1 Commitment ordering is enforced by well-known concurrency con-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

secondary sites

s1 s2 s4s3

a primary site p1

primary site p2

a b a b a b a b

a b

Figure 3. Pure Lazy System Example

As shown in Figure 2, clients connect to the secondary
sites and issue transaction requests. Update transactions are
forwarded to a primary site and executed there, while read-
only transactions execute at the secondaries. Updates are
propagated lazily down the chain of primary sites, and from
the last primary site to the secondaries.

Each data item has a primary copy, which is located at
one of the primary sites. Different data items may have pri-
mary copies at different sites. Using Figure 3 as an exam-
ple, data items a and b (in bold) can have a primary copy
at sites p1 and p2, respectively. In addition, a primary site p
can hold replicas of data items whose primary copies are lo-
cated at sites that precede p in the primary site chain. Sec-
ondary sites hold replicas of all data items. In the example
illustrated in Figure 3, data item a (with primary copy at site
p1) is replicated at primary site p2 and, together with b, is
also replicated at each secondary site. Lazy master replica-
tion configurations to suppport single-site partitioned work-
loads have been proposed [6, 11, 12].

The primary site where an update transaction commits
initiates refresh transactions2 at its descendant(s) (down the
chain) in order to propagate its updates. At each site, refresh
transactions are committed in the order in which they are re-
ceived. Once a refresh transaction has committed at a site,
that site then initiates the refresh transaction at its descen-
dant(s), and so on until the updates have been propagated
to all descendants of the site at which the original update
transaction ran. If a refresh or update transaction T1 com-
mits before T2 at a site si, then si must forward T1 before
T2 to its children. This is termed first-in-first-out (FIFO) ex-
ecution of refresh transactions.

The system that we have just described implements a re-
stricted version of the DAG(WT) protocol [6], which is used
to guarantee 1SR in lazily updated replicated database sys-

trol protocols such as strict two-phase locking in which no locks are
released until after commit.

2 A refresh transaction is used to represent the updates, corresponding
to a single update transaction, propagated lazily to other sites.

tems. However, a key drawback is that the system does not
guarantee strong session 1SR, and that transaction inver-
sions can occur. In the following sections, we show how
the basic system can be modified to prevent transactions in-
versions by enforcing strong session 1SR while providing
primary site scalability.

3.2. Representing Global Primary Database State

To provide the strong session 1SR guarantee under the
pure lazy approach, a globally unique label is needed to rep-
resent the global serialization order. We propose using lexi-
cographically ordered vectors to keep track of the global se-
rialization order of transactions. In Section 3.3, we will use
this representation of the global serialization order to guar-
antee strong session 1SR, which avoids transaction inver-
sions, in the presence of multiple primary sites.

3.2.1. Lexicographically Ordered Vectors (L-Vectors)
We use an L-vector at each database site to represent that
site’s knowledge of the global system state, which changes
as a result of updates to database primary items in the dis-
tributed system.

Every site maintains an L-vector. An L-vector is a vec-
tor of integers of length n, where n is the number of pri-
mary sites in the distributed system. We will use ti to de-
note the L-vector at site si, and ti[j] to denote its jth com-
ponent. Component ti[j] (j �= i) is used to count the num-
ber of update transactions originating at site sj whose up-
dates have been applied at si. Component ti[i] is the local
transaction counter at site si. When an update transaction
commits at si, ti[i] is incremented. When a refresh transac-
tion originating from an update at site sj commits at site si,
ti[j] is incremented.

We also associate an L-vector with each update transac-
tion and read-only transaction. The L-vector of a transac-
tion T that runs at site s is the L-vector of s after T com-
mits. It should be easy to see that no two update transactions
have (are associated with) the same L-vector. However, two
read-only transactions may have the same L-vector, and a
read-only transaction may have the same L-vector as an up-
date transaction.

Transaction L-vectors are useful because they capture
the transaction serialization order. That is, if T1 has a
smaller L-vector than T2, then T1 can be serialized before
T2. L-vector comparison is done lexicographically [8].3

Definition 3.1 Given two L-vectors t1 = (a0, a1, ..., an)
and t2 = (b0, b1, ..., bn), t1 < t2 if there exists an inte-

3 Note that L-vectors are different from version vectors in that the com-
parison of version vectors [20] is not lexicographic, i.e. two version
vectors can be compared only if, for all components of a vector, the
value of each component of one version vector is less or equal to the
value of that component in the other version vector.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

ger j, 0 ≤ j ≤ n, such that ai = bi for all i=0, 1, ..., j-1
and aj < bj .

Definition 3.2 Given two L-vectors t1 = (a0, a1, ..., an)
and t2 = (b0, b1, ..., bn), t1 = t2 if ai = bi for all i=0,
1, ..., n.

3.3. Ensuring Strong Session 1SR

In this section we present an adapted form of the BLOCK

[9] concurrency control algorithm for enforcing strong ses-
sion 1SR while providing scalability. If global strong ses-
sion 1SR in a system with multiple primary database sites
is to be preserved, a session needs to know the global se-
rialization order of all update transactions. BLOCK uses
the serialization order information stored as L-vectors, de-
scribed in section 3.2.1, to enforce global strong session
1SR. The session managers, together with the propaga-
tion, refresh, and local concurrency control mechanisms de-
scribed in Section 3.1, are responsible for enforcing strong
session 1SR.

In addition to the site L-vectors described in Section
3.2.1, every client session c at a site si also maintains a ses-
sion L-vector denoted by tc. tc contains an entry for every
site in the system. When a new session starts at site si , tc is
initialized to site si’s L-vector ti. After an update or read-
only transaction from session c commits at site sj , the value
of tj , val(tj), is returned to the session c together with the
transaction result and tc is set to val(tj).

A session’s L-vector indicates database state “seen” by
the most recently committed transaction in that session.
Since the database state at a site, represented by the site’s
L-vector, is maintained by refresh transactions, the site’s
L-vector denotes the current database state at the site. The
BLOCK algorithm is used with L-vectors and the algorithm
is run at each primary site as well as at the secondary sites.
This is to ensure that the correct ordering is maintained
among all transactions in a session. The algorithm ensures
that a transaction from a session is allowed to execute at
a site if the condition that the site’s tsite L-vector is lexi-
cographically at least as large as the session’s tsession L-
vector is satisfied. Otherwise, the transaction blocks until
the above condition is satisfied. The tsession value is piggy-
backed onto an update transaction when it is forwarded to
a primary site only for the purposes of checking the block-
ing condition.4 The BLOCK algorithm, plus the local con-
currency control at each site, is sufficient to ensure that each
transaction will be serialized after its predecessors in its ses-
sion.

Example: Consider a client session c at site s3 in the sys-
tem from Figure 3. Initially, tsite(p1) or simply tp1, tp2 and

4 Since the piggybacked value of tsession is used only for the duration
of this transaction, synchronization of the variable is not required.

tsession(c) or simply tc, are (0, 0). If an update transaction
T1 from session c is to update the primary copy of data item
a located at site p1, the transaction will be forwarded to p1.
After T1 commits at site p1, tp1 becomes (1, 0). tc is now
also (1, 0). Next, if a read-only transaction T2 from c is to
access a, it will execute at s3 if ts3 ≥ tc, which will be the
case after T1’s update corresponding to the L-vector (1, 0)
is installed at s3. Ordering guarantees can also be provided
to transactions that execute at primary sites. Consider an up-
date transaction T3 from session c that is to execute at site
p2. To ensure that T3 is serialized after T1 and T2, T3 will
block at p2 if tp2 < tc. Otherwise, it will be allowed to ex-
ecute there. Upon T3’s commit, tp2 will become (1, 1) and
tc will be updated to (1, 1).

The pure lazy system guarantees 1SR [6]. The BLOCK

algorithm and L-vectors give us strong session 1SR in pure
lazy systems.5

4. Simulation Model

A simulation model of the pure lazy replicated system
has been developed. The model is implemented in C++ us-
ing the CSIM simulation package [18].

The execution of transactions are simulated by client
processes accessing resources, which are servers or sites.
All transactions of a client process, or simply client, are sub-
mitted to the secondary site to which the client is connected.
The distribution of clients over the secondary sites is uni-
form.

Each client starts a series of sessions over which a se-
quential stream of transactions is submitted. Session lengths
follow an exponential distribution with a mean of ses-
sion time. Clients think between transactions, where the
think times are exponentially distributed with a mean of
of think time. num clients is the total number of sessions
in the system at any given time. A new client session is
started when the previous session ends. The mean values of
session time and think time are as specified in the TPC-W
benchmark.

Each update transaction executes at a primary site while
each read-only transaction executes at a secondary site.
The distribution of update transactions over the primary
sites is uniform with equi-probability. Each transaction goes
through its execution site’s local concurrency control. Each
new transaction can conflict with each waiting or running
transaction with a probability of conflict prob at its execu-
tion site. In addition, each concurrency control is modelled
so that a transaction that conflicts with any waiting or ex-
ecuting transactions waits for the conflicting transaction(s)
to finish. Otherwise, the transaction is allowed to execute.

5 Proofs omitted due to space constraints.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

The probability that a transaction is an update transaction
is update tran prob and that it is a read-only transaction is
(1 - update tran prob). The default mix of read-only/update
transactions that we use for our workload is 80%/20% but
we have also run some experiments with the 95%/5% mix.
The 80%/20% mix follows the “shopping” mix in the TPC-
W specification while the 95%/5% mix is the “browsing”
mix.6

Each transaction has a mean tran size number of oper-
ations, randomly chosen between 5 to 15. The probability
that an operation in an update transaction is an update op-
eration is update op prob. Otherwise, it is a read operation.
Transactions execute at a site by accessing that site’s shared
server resource, which has a round-robin discipline time-
sliced at 0.001 seconds.

Propagation processes running at each site are used to
simulate the propagation mechanism. There are two prop-
agation processes per site: a sender process and a receiver
process. At each site, the sender propagation process goes
through a series of propagation cycles, with a delay of prop-
agation delay time units between the end of one cycle and
the beginning of the next. During each propagation cycle,
the process propagates all transactions that have commit-
ted at the site since the last propagation cycle. To do this,
the process generates a message describing the updates of
all of these transactions and broadcasts the message to the
site’s children, if any. The propagation process consumes
op service time during each propagation cycle. It does not
use the local concurrency control, since we assume that the
propagator is implemented as a log sniffer. After a refresh
transaction at a site is committed, the refresher propagates
the transaction’s updates as a single message to the site’s
children, if any. The simulation does not include an explicit
resource to represent the network. We assume that the net-
work has sufficient capacity so that network contention is
not a significant contributor to the propagation delay. We
use a 10s propagation delay to account for delays that may
result from network latencies, batching and scheduling at
primary sites.

At each secondary site, there is a receiver propagation
process that receives the broadcast propagation messages
and installs the transaction update information into a single
update queue in the local database. The propagation pro-
cess consumes op service time for each propagation mes-
sage it handles. It does not use the local concurrency control
when it inserts update information into the update queue.
The queue operations conflict only with the refresh pro-
cesses, which read from the other end of the queue. Thus,
we assume that any contention would be insignificant.

6 The TPC-W benchmark specifies web interactions rather than transac-
tions. If each web interaction is a transaction, which the benchmark al-
lows, then the read-only to update mixes are of the same proportions
as in our workload mix.

Parameter Default

num clients 20 per secondary
think time 7s

session time 15 min.
update tran prob 20%

conflict prob 5%
tran size 10

op service time 0.02s
update op prob 20%

propagation delay 10s

Table 1. Simulation Model Parameters

A refresh process runs at each secondary site. Updates
enqueued into an update queue are read by the refresh pro-
cess. Each update message (or update record) inserted into
the update queue contains the updates of a single update
transaction. The refresh process submits a refresh trans-
action corresponding to a single update record to the lo-
cal concurrency control, where the refresh transaction has
probability conflict prob for conflicting with other transac-
tions at the site. Every refresh transaction is made to conflict
with every other refresh transaction. This forced conflict en-
ables the refresh transactions to be installed in the order in
which they were committed at the primary sites. The re-
fresher takes op service time to read a transaction’s updates
from the update queue and op service time for every update
operation executed at a secondary site.

5. Performance Analysis

We used our simulation model to study system scalabil-
ity and transaction inversion avoidance. We had three ob-
jectives in mind: (i) to observe the effect on system perfor-
mance as the workload was scaled-up (ii) to determine the
cost of providing strong session 1SR over 1SR while pro-
viding scalability, and (iii) to determine the factors that af-
fected scalability.

We compare the performance of the BLOCK algorithm
against algorithm ALG-1SR, which provides only global
serializability (1SR) and not strong session 1SR. ALG-1SR
provides no session guarantees and simply routes all up-
date transactions to a primary site and all read-only transac-
tions to the secondary site. ALG-1SR never blocks transac-
tions though they may be blocked by the local concurrency
control at their execution site. ALG-1SR is an implementa-
tion of the DAG(WT) [6] protocol.

5.1. Methodology

For each run, the simulation parameters were set to the
default values shown in Table 1, except as indicated in the

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

Block - 1 primary
1SR - 1 primary

Block - 3 primaries
1SR - 3 primaries

Figure 4. Transaction Throughput, 20 Clients
per Secondary, 80/20 mix

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

Block - 1 primary
1SR - 1 primary

Block - 3 primaries
1SR - 3 primaries

Figure 5. Transaction Throughput, 20 Clients
per Secondary, 95/5 mix

descriptions of the individual experiments. Each run lasted
for 35 simulated minutes. We ignored the first five minutes
of each run to allow the system to warm up, and measured
transaction throughput and other statistics over the remain-
der of the run. Each reported measurement is an average
over five independent runs. We computed 95% confidence
intervals around these means. These are shown as error bars
in the graphs.

5.2. Experimental Results

Since the goal of our system is that it should be able to
scale with the workload, we ran experiments in which both
the workload and system resources were increased in-step.
The workload was scaled-up by increasing the number of
clients while the resources were scaled-up by increasing the
number of secondary sites and primary sites. We measured
the performance of the system as extra primary sites were
added to the system while the number of clients per sec-
ondary site was held constant at 20. The results of these ex-
periments are shown as transaction throughput plots. Each
curve shows the behavior of either ALG-1SR or BLOCK.

We present results of experiments to study the scale-up
behavior of the BLOCK algorithm, which avoids transac-

tion inversion by providing the strong session 1SR guar-
antee. Figure 4 shows the throughput results for the pure
lazy system under the BLOCK and ALG-1SR algorithms.
For the BLOCK algorithm, transaction throughput scales-up
as more primary sites are added to the system. Multiple pri-
mary sites are able to sustain higher update loads than a
single primary site, giving rise to significant increases in
throughput as shown in Figure 4. With a single primary
site, the pure lazy system suffers from resource contention.
Addition of two extra primary sites significantly alleviates
resource contention and throughput at high load levels is
higher by about 70% over having a single primary site. As
the workload scales-up past 20 secondary sites, ultimately
data contention dominates resource contention in limiting
scalability. Beyond this point, significantly large perfor-
mance improvement is not observed since the availability of
extra system resources does not alleviate data contention.

A key question is whether both scalability and transac-
tion inversion avoidance can be provided efficiently. That
is, we need to quantify the cost of providing strong session
1SR over 1SR. As shown by the throughput results in Fig.
4 and the results for the 95/5 read/write transaction mix in
Fig. 5, scalability and transaction inversion avoidance can
be provided efficiently. The BLOCK algorithm performs al-
most as well as ALG-1SR even though BLOCK prevents
transaction inversions while ALG-1SR does not. Scalabil-
ity is sensitive to the mix of read and write operations in the
workload. As Figure 5 shows, significantly greater scalabil-
ity can be attained with a 95/5 read/write transaction mix.

6. Related Work

There has been recent interest in improving the perfor-
mance of eager replication protocols or using lazy proto-
cols. Techniques that address the performance drawbacks
of eager protocols have been proposed but they rely on the
availability and performance of group communication pro-
tocols [14]. The viability of lazy master replication has been
proved by recent research and commercial approaches that
use data that is replicated or cached at secondary sites from
the primary site to service the read-only portion of the work-
load [17, 16, 21, 9]. However, none of the proposed tech-
niques address the problem of how the single primary site
can be scaled-up in a pure lazy system while preventing
transaction inversions.

Ladin et al [15] proposed using a 2-phase commit pro-
tocol to propagate updates to a majority of replicated sites
to prevent transaction inversions. However, they do not con-
sider the provision of scalability and session-level guaran-
tees. Bayou [23] is a system that can provide session-based
causal ordering constraints on read and write operations.
However, since only eventual consistency is guaranteed in

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Bayou, transaction inversions are not prevented in the pres-
ence of updates.

Several replication protocols have been proposed to
guarantee 1SR in lazy master replicated database sys-
tems. Breitbart and colleagues have proposed DAG pro-
tocols [6], where different database objects may have
their primary copies located at different sites, and an
acyclic site graph is used to guide the propagation of up-
dates among the sites. Other related work on concur-
rency control protocols includes the virtual sites protocol
of Breitbart and Korth, the quorum consensus proto-
col of Satyanarayanan and Agrawal, which uses a gos-
sip mechanism to lazily propagate updates to sites that
have missed them, and the epidemic update propaga-
tion protocol of Agrawal et al [7, 22, 1]. Amza et al [2] ad-
dress the database scale-up problem using distributed
multiversioning of data. Jimenez-Peris et al update repli-
cas using an optimistic group communication protocol
[13]. Pacitti et al [19] proposed a lazy propagation pro-
tocol in a synchronous environment that allows a global
ordering of refresh transactions. None of the above tech-
niques show how to guarantee strong session 1SR in
an asynchronous pure lazy system with multiple pri-
mary sites.

7. Conclusion

In this paper, we proposed techniques for providing scal-
ability and avoiding transaction inversion in lazy replicated
databases. Our technique, a pure lazy approach, employs
lexicographically ordered vectors to avoid transaction inver-
sions and allows scalability of the primary database through
partitioning and replication.

We studied the performance of our algorithms and found
that our techniques cost almost the same as 1SR, which does
not prevent transaction inversions. We conclude that our
proposed solution is a viable technique for achieving scal-
ability and preventing transaction inversions in lazy repli-
cated database systems.

References

[1] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic algo-
rithms in replicated databases. In Proc. PODS, pages 161–
172, 1997.

[2] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed
versioning: Consistent replication for scaling back-end
databases of dynamic content web sites. In Proc. Middle-
ware, pages 282–304, 2003.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[4] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of multidatabase transaction management. VLDB
Journal, 1(2):181–293, 1992.

[5] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and
A. Silberschatz. On Rigorous Transaction Scheduling. IEEE
Trans. Soft. Eng., 17(9):954–960, 1991.

[6] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and
A. Silberschatz. Update propagation protocols for replicated
databases. In Proc. SIGMOD, pages 97–108, 1999.

[7] Y. Breitbart and H. F. Korth. Replication and consistency:
Being lazy helps sometimes. In Proc. PODS, pages 173–
184, 1997.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. McGraw-Hill, 1990.

[9] K. Daudjee and K. Salem. Lazy database replication with or-
dering guarantees. In Proc. ICDE, pages 424–435, 2004.

[10] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proc. SIGMOD, pages 173–
182, 1996.

[11] IBM. DB2 Universal Database Replication Guide and Ref-
erence, 2000. version 7.

[12] Informix Corp. Enterprise Replication: A High Performance
Solution for Distributing and Sharing Information, 1998.
Whitepaper.

[13] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and
B. Kemme. Improving the scalability of fault-tolerant
database clusters. In ICDCS, pages 477–484, 2002.

[14] B. Kemme and G. Alonso. A new approach to developing
and implementing eager database replication protocols. ACM
TODS, 25(3):333–379, 2000.

[15] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Provid-
ing high availability using lazy replication. ACM TOCS,
10(4):360–391, 1992.

[16] P.-A. Larson, J. Goldstein, and J. Zhou. Mtcache: Mid-tier
database caching in sql server. In Proc. ICDE, pages 177–
188, 2004.

[17] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, and J. F. Naughton. Middle-tier database
caching for e-business. In Proc. SIGMOD, pages 600–611,
2002.

[18] Mesquite Software Inc. CSIM18 Simulation Engine (C++
version) User’s Guide, Jan. 2002.

[19] E. Pacitti, P. Minet, and E. Simon. Replica consistency in
lazy master replicated databases. Distributed and Parallel
Databases, 9(3):237–267, 2001.

[20] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. A. Edwards, S. Kiser,
and C. S. Kline. Detection of Mutual Inconsistency in Dis-
tributed Systems. TSE, 9(3):240–247, 1983.

[21] C. Plattner and G. Alonso. Ganymed: Scalable replication for
transactional web applications. In Proc. Middleware, 2004.

[22] O. T. Satyanarayanan and D. Agrawal. Efficient execution of
read-only transactions in replicated multiversion databases.
TKDE, 5(5):859–871, 1993.

[23] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for weakly
consistent replicated data. In Proc. PDIS, pages 140–149,
1994.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

