
The DBC: Processing Scientific Data Over the Internet 

Chungmin Chen Kenneth Salem 
Dept. of Computer Science Dept. of Computer Science 

University of Maryland University of Waterloo 
College Park, MD 20742 USA Waterloo, Ontario N2L 3Gl Canada 

Miron Livny 
Computer Sciences Dept. 

University of Wisconsin-Madison 
Madison, WI 53706 USA 

Abstract 

We present the Distributed Batch Controller (DBC}, a 
system built to support batch processing of large scienti$c 
datasets. The DBC implements a federation of autonomous 
workstation pools, which may be widely distributed. Indi- 
vidual batch ,jobs are executed using idle workstations in 
these pools. Input data are staged to the pool before pro- 
cessing begins. We describe the architecture and implemen- 
tation of the DBC, and present the results of experiments in 
which it is used to perform image compression. 

1. Introduction 

In this paper we present the DBC (Distributed Batch 
Controller), a system that processes data using widely- 
distributed computational resources. The DBC ‘was built 
as a tool for enriching scientific data stored in two mass 
storage systems at NASA’s Goddard Space Flight Center 
(GSFC). Enriching data means processing it to make it more 
useful. For example, isatellite images may be classified ac- 
cording to some domain-specific criteria. These classifica- 
tions can then be stored as meta-data to support content- 
based retrieval of the original images. Another possibility 
is to produce compres8sed, approximate versions of the im- 
ages. These images could be retrieved very quickly because 
of their small size, and would be suitable for applications 
such as preliminary vi:sual inspection of the data. In general, 
data enrichment tasks such as these are computationally in- 
tensive. Enrichment of large volumes of data may require 
enormous computational resources. 

The DBC can be viewed as a global scientific data pro- 
cessing system that can utilize any resource that is willing to 
participate in a data enrichment effort. It draws its comput- 

ing cycles from a collectilon of workstation clusters which 
may be distributed across the Internet. Each of these clus- 
ters uses the Condor resource management system to har- 
ness available cycles from workstations within the cluster. 
The DBC moves data from a mass storage system to local 
disk caches at each Condor pool, controls the :local execu- 
tion of data enrichment tasks, and moves the resulting data 
products to another storage system. Because a data enrich- 
ment effort may be very t.ime consuming, the DBC is de- 
signed to opemte continuously for extended periods of time 
with minimal manual interference. 

We believe that large-scale data processing efforts like 
the one described above will become more common in 
the near future. As any World Wide Web surfer knows, 
very large repositories of valuable scientific data are scat- 
tered throughout the Internet and are gradually coming on- 
line. These repositories were established and are main- 
tained by national agencies and universities in order to dis- 
seminate experimental data throughout the scientific com- 
munity. Many reposit0rie.s store their data in the form of 
files and provide data access through file-oriented retrieval 
protocols like FTl? 

The users of these repositories will require mechanisms 
for pooling th:eir computational resources to process the 
wealth of avai’iable data. Although the DBC was designed 
with a specific data-processing goal in mind, it can serve 
the needs of some of these users. The DBC has no built-in 
knowledge oft he archived data, the enrichment tasks, or the 
resulting data ;products. Special attention has bleen devoted 
in the design of DBC to modularity and to well-defined in- 
terfaces and protocols. 

The remainder of this paper is organized as follows. In 
the next two #sections we discuss the architecture of the 
DBC and the implementation of our prototype system. Al- 
though we focus our attention on the DBC itsdf, we also 

1063-6927/96 $5.00 0 1996 IEEE 
Proceedings of the 16th ICDCS 

673 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



present a brief overview of Condor, which manages the in- 
dividual pools of machines which make up the DBC. We 
then present the results of several experiments in which a 
DBC system consisting of two workstation pools was used 
to process satellite images from a NASA repository. We 
also present an analysis of the system and a discussion of 
how its performance might be improved. In Section 6 we 
discuss some other systems that are related to the DBC. 

2. Global Data Processing System Architecture 

Figure 1 illustrates an architecture for a global batch data 
processing system. The purpose of the system is to exe- 
cute a batch of data processing jobs, e.g., to compress a set 
of images. The system is organized as a federation of au- 
tonomous resource pools. The pools provide the computa- 
tional resources needed to execute data processing jobs. In 
our implementation of the architecture, discussed in Sec- 
tion 3, each pool is managed using the Condor resource 
manager. However, in general, a pool may be almost any 
collection of resources that is capable of processing jobs. 

The data processing system itself consists of a set of 
agents, one per resource pool, and a coordinator. The agents 
interact with their pools to request resources for batch job 
execution. Each agent has access to a disk buffer for stag- 
ing data. The centralized coordinator assigns work to the 
agents, and tracks the status of the entire batch computa- 
tion. The coordinator also serves as a centralized site for 
user administration of a batch computation, Through the 
coordinator, the user can query the status of the computation 
and can modify it, e.g., by adding new jobs to the batch. 

Data is stored in archives. Input files for the batch jobs 
reside initially in a source archive. Output files are collected 
at the result archive. Agents interact with these archives to 
arrange for data to be staged from the input archive to the 
agent’s local buffer, and from the buffer to the result archive. 

Since the pools are autonomous, the agents have no di- 
rect control of the computational resources at any pool. The 
system must presume that the number of resources allocated 
to its batch jobs by the pool will vary with time. In fact, it is 
possible for a pool to terminate its interaction with the sys- 
tem at any time, or for new pools to join the system at any 
time. Within this environment, the system must harness as 
many resources as possible for use in completing the batch. 

The federated architecture has several important advan- 
tages. First, there is no need to modify a pool’s resource 
manager in order to include that pool in a global system. In 
fact, to each pool’s resource manager, an agent looks like 
any other client. There is also no need for a pool to surren- 
der control of any of its resources in order to participate in 
the system. This makes the architecture particularly attrac- 
tive for coordinating pools that reside in different adminis- 
trative domains. 

2.1. System Responsibilities 

Within the system architecture, the pools provide the 
computational resources needed to perform data processing. 
However, reliable and efficient processing of large batch 
processing jobs requires that a number of other issues be 
addressed by the global data processing system itself. They 
include the following. 

Data Staging: The resource pools used to process data 
may be spread over a wide area. The data to be pro- 
cessed is located in a repository which may not be 
directly accessible to programs running in the pools. 
Similarly, output data must be collected in a repos- 
itory and not left scattered at the pools. The data 
processing system addresses this problem by staging 
data between the repositories and buffers located at 
each of the pools. 

High-Level Scheduling: Each pool allocates and sched- 
ules its own resources. However, the data process- 
ing system must determine which pool will be used 
to process each of the jobs in a batch, a procedure we 
call high-level scheduling. The goal of the high-level 
scheduler is to maximize the throughput of batch 
jobs. To accomplish this, it must keep the resources 
available from each of the pools as busy as possible. 

Reliability: A batch may consist of many jobs, and may 
require hours, days, or even weeks to complete. Fail- 
ures of various kinds are likely to occur with in this 
time frame. The data processing system must detect 
and recover from these failures so that each job in the 
batch will eventually be executed to completion by 
some pool. 

3. The Distributed Batch Controller 

The DBC is an implementation of the global data pro- 
cessing architecture described in Section 2. The DBC sup- 
ports a simple batch model that is well-suited to tasks like 
data enrichment. The resource pools with which the DBC 
interacts are collections of workstations managed by the 
Condor resource management system, which is described 
at the end of this section. 

A DBC batch consists of one or more jobs. In our cur- 
rent implementation, a job is the execution of a single pro- 
gram. Each job may require one or more input files and 
may produce one or more input files. All jobs in a batch 
are executions of the same program, although each job may 
use different input files and produce different outputs. All 
of jobs in a batch are assumed to be independent of one an- 
other. For example, a job’s input file may not be produced 
by another job in the same batch. Although this model is 

674 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



r f R source archive 

L / 

Figure 1. Architecture of the DBC 

somewhat restrictive, it is well-suited to many d;ata enrich- 
ment problems. For example, consider a large set. of images 
that is to be classified before being stored in a database. 
Commonly, classification is performed by executing a clas- 
sification program independently on each of the :images. 

Figure 2 shows the process architecture of the DBC pro- 
totype. The DBC consists of three types of processes: a 
master, workers, and1 job monitors. The master process im- 
plements the coordinator shown in Figure 1, and the the 
worker and job monitor processes together implement the 
agents. 

3.1. The Master and Worker Processes 

The master performs high-level scheduling and keeps 
track of the execution status of each job in the batch. In part 
because of the batch model, high-level scheduling is very 
simple in the DBC. Each worker determines its ,willingness 
to execute additional batch jobs based on the availability of 
resources at its local pool. When resources are available, 
the worker requests work from the master. Since all jobs 
are independent, the master is free to assign any jobs that 
can be accommodated at the worker’s site. When a worker 
completes a job, it notifies the master. 

Each job request from a worker is accompani.ed by a pa- 
rameter indicating the level of resource availability at the 
worker’s pool. (In the prototype, the only resource moni- 
tored by a worker is the amount of local buffer !space avail- 
able for input and output files.) In response to the request, 
the master selects one or more unassigned jobs whose re- 
quirements can be accommodated by the worker’s available 
resources and assigns them to the worker. 

3.2. Job Monitor Process 

A worker spawns a job monitor process for each job it is 
assigned. Processing a job involves transferring a data file 
from the data archive to the disk buffer at the worker’s site, 
submitting a job to Condor for processing, and transferring 
an output file to the resuh archive. The job momnitor initiates 
these steps and monitors their progress. 

Transfer of input and output files is performed using the 
File Transfer Protocol (FTP) [8]. Both the source and re- 
sult archives are assumed to be FTP servers. Interaction 
between the job monitors and the archives is complicated 
by the fact that there is no standard programming interface 
for FTP. The monitor transfers files by spawning executions 
of the UNIX: FIT’ client program. For similar reasons, the 
job monitor submits is job request to Condor by spawning 
an instance of the condo.rsubmit program. 

An API for Condor, called CAMI [9], ha.s recently be- 
come available. We intend to incorporate it into subsequent 
versions of the DBC. Unfortunately, we nolt aware of an 
existing API for FTP. To implement direct clontrol of m 
file transfers, we can provide an implementation of the FTP 
protocol within the job monitor itself. Alternatively, we 
could make use of a wide-area file system such as Jade[ lo] 
or Prospero[7]. These systems would allow the monitor 
to transfer filles to and from remote FTP servers using the 
UNIX file system program interface. We are studying these 
alternatives For the next version of the DBC. 

3.3. Failure Detection and Recovery 

The DBC is capable of detecting and recovering from 
several types of failures. Failures of the DBC worker pro- 
cesses are detected through a heartbeat mechanism. The 
DBC master maintains ,the status of the batch execution in 

675 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



coordinator r---------------------------- 

result archive 

Figure 2. DBC Prototype Process Architecture 

a file so that it can restored after a failure. A failure of a 
job monitor is detected by the worker that created it. Con- 
dor itself provides a guarantee of reliable execution of jobs 
submitted to it. In addition, the DBC job monitor imple- 
ments an optional timeout mechanism to detect hung jobs. 
Finally, file transfer failures are detected by monitoring the 
output of the FTP client program. 

These mechanisms are intended to ensure that each job 
in a batch will appear to have executed exactly once, despite 
failures. If an worker fails while jobs are running it its pool, 
or if a pool refuses or is unable to process jobs that have 
been assigned to it, high-level scheduler in the coordinator 
will assign them to another pool. The DBC ensures that 
multiple executions of the same job appear to be serialized, 
and that if a job is executed more than once, later executions 
overwrite the results of earlier executions. Thus, although a 
job may actually execute more than once, it will appear to 
have run once only. 

The DBC is designed to allow workstation pools to join 
or leave the system at any time. Pools may leave the system 
because of failures, or simply because their resources are 
no longer available for DBC jobs. Since the DBC cannot 
assume that a lost pool will ever rejoin the system, it will 
simply reassign that pool’s jobs to another pool. For the 
same reason, all critical state information is maintained by 
the DBC master, and not the workers. 

3.4. Condor 

The DBC assumes that each pool’s resources are man- 
aged by Condor [6, 11. Condor is a resource management 
system that runs on pools of UNIX workstations. Condor 
harnesses the computational power of unused workstations 
in the pool. Jobs submitted by Condor users are sent au- 
tomatically to idle workstations in the pool for processing. 

Should an idle workstation become busy, Condor jobs are 
moved from it to other idle machines. 

Since the DBC uses Condor, it effectively draws its com- 
putational power from idle workstations in many pools, pos- 
sibly distributed over a wide area. Jobs submitted to Condor 
by a DBC agent must compete with other Condor jobs for 
the available resources in a pool. A pool’s resources are 
allocated to jobs (including DBC jobs) according to poli- 
cies implemented by Condor. These policies may very from 
pool to pool, according to the needs of the pools’ owners. 

4. Image Compression Experiments 

We have used the DBC prototype as an engine for com- 
pressing a database of Landsat Thematic Mapper (TM) 
images. Compression was accomplished by a technique 
known as vector quantization (VQ). Vector quantization 
produces a very compact representation of an image which 
can be decompressed quickly. Compression is lossy. The 
decompressed images are useful for applications, such as 
database browsing or preliminary data analysis, which can 
tolerate approximate versions of the original images. 

A program implementing VQ was provided to us by 
M. Manohar, from NASA’s Goddard Space Flight Center 
(GSFC). This was the batch program used by the DBC. The 
program requires two input files, one holding the uncom- 
pressed TM image, and the other a small codebook used 
during compression. The same codebook file is used to 
compress all of the images. The program produces a sin- 
gle output file, which holds the compressed version of the 
input image. In our tests, we used a codebook with 128 en- 
tries and a four-by-four pixel vector size, which results in a 
16-to- 1 compression of the images. 

For the purposes of our experiment, we selected from 
the database approximately one hundred images to be com- 

676 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



Figure 3. DBC: Experimental Environment 

pressed. Each image IS a 2984 by 4320 array of pixels, with 
one byte used to represent each pixel. Thus, ea.ch image 
occupies slightly less than 13 megabytes. The single code- 
book file is only about 8 kilobytes in size. 

Although we selected only a fraction of the available im- 
ages, compressing even those requires a non-trivial amount 
of computation. Compression of a single 13 megabyte in- 
put image using the VQ program requires approximately 30 
minutes on a SparclO workstation. Sequential processing 
of the one hundred selected TM images would occupy such 
a workstation for more than two days. 

The DBC system we used for this experiment is illus- 
trated in Figure 3. It consists of two workstation pools, 
one large and one small. The small pool is located at the 
Center of Excellence in Space Data and Information Sys- 
tems (CESDIS), loca,ted at GSFC, near Washington, DC. 
The CESDIS pool includes nine SparclO workstations and 
a 140 megabyte disk buffer for the DBC. The other pool is 
located at the University of Wisconsin, in Madison, Wis- 
consin. The Wisconsin pool includes approximately one 
hundred Sun workstations of various types and a DBC disk 
buffer of 140 MB. 

The DBC source archive, which holds the image 
database, is a mass storage system located at GSFC. Al- 
though both the mass storage system and the CESDIS work- 
station pool are located at GSFC, applications running at 
CESDIS do not have direct access to the mass storage sys- 
tem’s files. The DBC result archive is located at CESDIS. 

We initiated the irnage compression experiment at 7:00 
pm EDT on a weeknight. It was complete approximately 
six hours later. Figure 4 shows the number of batch jobs 
completed by each of the pools as a function of time. The 
CESDIS pool was idle during much of the final hour of the 
experiment, while the last few jobs were being executed in 
the Wisconsin pool. Since jobs tended to complete more 
quickly a CESDIS, a more sophisticated high-level sched- 
uler might have been able to minimize this boundary effect. 
The figure also shows bursts of job completions, particu- 
larly at the Wisconsin pool. This is also an artifact of the 
high-level scheduler. 

It should be emphasized that the DBC’s power to com- 

20 

10 i 

OL 
0 50 100 150 200 250 30’0 

elapsed time (minutes) 
0 

Figure 4. Progress of the VQ Experiment 

press images is harnessed from existing, geographically- 
distributed, non-dedicated, computational resources. The 
amount of power that the DBC was able to deliver can be 
quantified by comparing it against a benchmark. As our 
benchmark, we choose an idealized, dedicated workstation 
that can execute the VQ program in time &deal, and that has 
direct, instantaneous access to the input and out:put archives. 
We define the idealizedprocessor equivalent (II’E) rating, I, 
of the DBC system to be: 

n&deal I:= -- 
tDBC 

where n is the. number of jobs in the batch, and tDBC is the 
batch completion time of the DBC system. For example, 
if our idealized workstation is about as fast as a SparclO 
then i&&al = 30 minutes. Using this benchmark, the DBC 
achieved an IPE rating of approximately 8.5 during our ex- 
periment. Thus, the DBC system provided power equiva- 
lent to more than eight workstations having instantaneous 
access to the s,tored data. 

5 Additional Expeknents 

By changing its batch program, the DBC may be used 
to support other data processing applications. We expect 
that the power that the DBC can deliver will depend on the 
application it is supporting. One important feature of an ap- 
plication is its computational density: the amount of com- 
puting required per megabyte of input and output data. We 
expect that the DBC will be most effective for applications 
with high computational dlensities. High densities allow the 
DBC to amortize the cost of staging data to be amortized 
over longer computing times. 

To evaluate the impact of this application parameter, we 
wrote a artificial application, ART, whose density can be 
controlled. The ART program is modeled after VQ. It first 

677 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



0 1 2 3 4 5 6 7 8 9 10 
computational density (minutes/Mbyte) 

Figure 6. Effect of Computational Density on 
the IPE Rating 

opens and  reads a  single input file sequentially. It then en- 
ters an  empty loop, in which it spins for a  number  of it- 
erations determined by a  nominal computat ion time, t,,, , 
specif ied as a  command line argument.  After looping, ART 
writes an  output file sequentially. By varying either the sizes 
of the input and  output files, or the number  of loop itera- 
tions, the computational density of ART can be  controlled. 
W e  define the nominal computational density of the ART 
program, d, by 

where S;, and  Sout are the sizes of the program’s input and  
output files. 

W e  ran a  set of experiments with the DBC in which the 
nominal density of the ART program was varied. Each ex- 
periment consisted of the execut ion of a  batch of ART jobs, 
with each jobs having the same nominal density. Figure 5  
summarizes the ART program parameters we used. The in- 
put and  output file sizes are identical to those used for the 
VQ experiments. 

The experiments were run using the two-pool DBC sys- 
tem shown in Figure 3. This system was identical to the 
one  used for the VQ experiments, except that the CESDIS 
pool had  an  additional workstation (for a  total of ten) and  
an  additional 20Mbytes of disk buffer space (for a  total of 
160  Mbytes.) Each experiment was started during off-peak 
hours because the processing power available from the Con- 
dor pool was the most stable then. This made it easier to 
compare the results of experiments run on  different days. 

Figure 6  summarizes the results of these experiments. 
The curve shows the IPE rating attained by the DBC sys- 
tem as a  function of the computational density of the batch 
program. In all cases, the IPE rating is computed assum- 
ing an  ideal processor than can process a  single batch job in 
time t,,, , i.e., the ideal processor is about  the speed of a  
SPARCIO workstation. 

Our  measurements show that the DBC can harness sub- 
stantial power from geographically-distr ibuted resources, 
provided that the batch jobs are computationally intensive. 
W ith d  near  two minutes per megabyte,  the system was mea-  
sured at approximately 8  IPEs. This is about  the same as 
was measured for the VQ program, which has a  compa-  
rable computational density. As d  was increased to about  
nine minutes per megabyte,  the IPE rating of the system 
increased by almost 60%. W h e n  d  was reduced below one  
minute per megabyte,  power dropped off quickly. Given the 
resources available at a  pool, it is possible to derive some 
simple formulas that predict the amount  of computational 
power the DBC will be  able to harness from it. These cal- 
culations are not included here because of space limitations. 
However,  they can be  found in [2]. 

6. Related Work 

There are several systems that support  load sharing 
across pools of workstations. Besides Condor,  which 
we discussed in Section 3, these include DQS [ll], 
LoadLeveler,  LoadBalancer,  LSF (formerly Utopia [ 13, 
12]), and  Codine. A discussion and  comparison of many 
of these systems can be  found in 141.  The DBC differs from 
these systems in several ways. The DBC manages pools of 
workstations, rather than individual workstations. The DBC 
is intended to operate over wide area. It does not assume 
that the files required by batch jobs will be  directly acces- 
sible by those jobs. Finally, an  instance of the DBC exists 
to process a  single batch of jobs. It is not concerned with 
allocating resources among multiple, compet ing batches. In 
contrast, systems such as the ones ment ioned above accept 
jobs (or groups of jobs) from many users, and  seek to allo- 
cate resources fairly among them. 

Another related system is UFMulti [5], intended for data 
processing in high-energy physics. Like the DBC and the 
systems descr ibed above,  UFMulti performs data process- 
ing using a  pool of workstations. UFMulti focuses on  multi- 
s tage computations, in which jobs in one  stage provide input 
for jobs at the next. The system’s emphasis is on  load bal- 
ancing, so the more computationally demanding stages can 
be  allocated additional workstations from the pool. 

7. Conclusion 

As the volume of on-l ine scientific data grows, so too 
will the need for resources to process and  enrich that data. 
The DBC provides a  flexible mechanism for applying a  
large, distributed collection of resources to a  single data pro- 
cessing task. Because the DBC utilizes Condor-managed 
workstation pools, it can exploit the processing power of 
idle workstations. No dedicated computational resources 

678  

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 



Nominal Computational Density 

Figure 5. ART Experiment Parameters 

are required. Our experiments show that the DBC can fo- 
cus substantial computing power on a data processing ef- 
fort, even when many of the available computing resources 
are thousands of miles away from the data repository. 

The DBC is still under development, and much remains 
to be done to improve the system’s performance and func- 
tionality. A more general job model would increase the va- 
riety of applications that can be supported by the system. 
For example, it would be useful to support jobs consisting 
of program executions pipelines, in which the output of one 
job is the input to the next. Many scientific data process- 
ing activities are naturally expressed in such a model. We 
also need to provide modules that will allow the DBC to in- 
teract with resource managers other than Condor. We are 
currently developing a new, easier to administer, and more 
robust implementation of the DBC system. The new im- 
plementation uses PVM [3] to provide distributed process 
control and communication. We intend to make this imple- 
mentation publicly available. 

8 Acknowledgements 

Support for this work has been provided ‘by NASA 
through its Applied Information Systems research program. 
The authors are grateful to CESDIS for its cooperation and 
willingness to provide resources. We also wisb to thank 
Robert Cromp, Nathan Netanyahu, Mareboyana Manohar 
at NASA/GSFC for their assistance and cooperation, and 
for providing access to software and data. 

References 

[I] A. Bricker, M. Litzkow, and M. Livny. Condor technical 
summary. Technical Report TR 1069, Department of Com- 
puter Science, U.niversity of Wisconsin, Oct. 19!31. 

[2] C. Chen, K. Salem, and M. Livny. The DBC: Processing 
scientific data over the intemet. Technical Report CS-96-17, 
University of Waterloo, Dept. of Computer Science, Mar. 
1996. 

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, FL. Manchek, 
and V, Sunderam. PVM: parallel virtual machine - a user’s 
guide and tutorial for networked parallel computing. The 
MIT Press, Cambridge, MA, 1994. 

141 

151 

161 

[71 

181 

191 

1101 

[Ill 

1121 

1131 

J. A. Kaplan and M. L. Nielson. A comparison of queueing, 
cluster, and distributed computing systems. Technical Re- 
port NASA Technical Mernorandum 109025, NASA Lang- 
ley Research Center, Oct. l993. 
J. Kasaraneni, T. Johnson, ;and I? Avery. Load balancing in a 
distributed processing system for high-energy physics (UF- 
Multi). Technical Report 95-002, Departmem of Computer 
and Information Science, TJniversity of Florida, 1995. 
M. Litzkow and M. Livny. Experience with the Condor dis- 
tributed batch system. In Proc. of the IEEE Workshop on Ex- 
perimenml Distributed Systems, pages 97-1011, Oct. 1990. 
B. C. Neuman. ProsperoN: A tool for organizing intemet 
resources. Electronic Networking: Research, Applications, 
and Policy, 2(l), 1992. 
J. Postel and J. Reynolds. File transfer protocol (FTP). Tech- 
nical Report RFC-959, USC Information Sciences Institute, 
1985. 
J. Pruyne and M. Livny. Parallel processing on dynamic 
resources with CARR41. In Workshop on Job Scheduling 
Strategiesfor Parallel Processing, IPPS ‘95, ,4pr. 1995. 
H. C. Ra.o and L. L. Peterson. Accessing files in an inter- 
net: The Jade file system. IEEE Transactions on Software 
Engineering, 19(6):613-6124, June 1993. 
Supercomputer Computauons Research Institute, Florida 
State University, Talahass,ee, Florida. DQS User Manual, 
DQS version 3.1.2.3 e.dition, June 1995. 
J. Wang; S. Zhou, K. Ahmed, and W. Long. LSBATCH: 
A distributed load sharing batch system. Technical Report 
CSRI-286, Computer Systems Research Institute, Univer- 
sity of Toronto, Apr. 1993. 
S. Zhou, J. Wang, X. Zheng, and P. Delisle. UTOPIA: A load 
sharing facility for large, heterogeneous distributed com- 
puter systems. Technical IReport CSRI-257, Computer Sys- 
tems Research Institute, University of Toronto, Apr. 1992. 

679 

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96) 
1063-6927/96 $10.00 © 1996 IEEE 


