To appear in Proc. 8th IEEE International Conference on Cloud Computing (IEEE CLOUD), June 2015. New York, USA.

EdgeX: Edge Replication for Web Applications

Hemant Saxena
University of Waterloo
h2saxena@uwaterloo.ca

Abstract—Global Web applications face the problem of high
network latency due to their need to communicate with distant
data centers. Many applications use edge networks for caching
images, CSS, javascript, and other static content in order to
avoid some of this network latency. However, for updates and
for anything other than static content, communication with
the data center is still required, and can dominate application
request latencies. One way to address this problem is to push
more of the web application, as well the database on which
it depends, from the remote data center towards the edge of
the network. In this paper, we present preliminary work in
this direction. Specifically, we present an edge-aware dynamic
data replication architecture for relational database systems
supporting web applications. Our objective is to allow dynamic
content to be served from the edge of the network, with low
latency.

I. INTRODUCTION

Achieving low latency for web-based applications is an
on-going challenge. A study by Akamai [1] reports that “57
percent of online shoppers will wait three seconds or less
before abandoning” a site. For Amazon, a delay of 100ms
costs 1% of sales [2. A key source of latency for web
applications is what Leighton refers to as the middle mile,
i.e., the need to transmit information between the origin data
center and the end user. [3]

A widely-used technique for reducing web application
latency is to cache information close to the end user [4].
Applications use content delivery networks (CDNs), like
Akamai’s, for caching static content, such as images, CSS,
and javascript files. Although such edge caching is clearly
beneficial, it does not completely solve the latency problem.
Even with CDNs, there is typically at least one round trip
to the origin data center for each application request. In
addition, CDNs become less effective when most of the
application’s data are frequently updated or user-generated.
Figure [I] shows a waterfall diagram of a request to view
an item at eBay.com. This request triggers a number of
requests to content delivery networks (CDNs) to retrieve
static content like images and CSS files cached at the edge of
the network. However, the initial request goes all the way
to a remote data center to obtain item pricing, quantities,
and other dynamic content. The latency of this request is an
order of magnitude higher than that of the CDN requests,
and dominates the overall request latency.

Kenneth Salem
University of Waterloo
kmsalem @ uwaterloo.ca

URL Timeline

+ GET 291227441924?hash=item43ce821b

+ GET odf yaj 4ag ji.css

+ GET 2nrzdlkedm3wvmnd4zcplsssf.css

+ GET imglLoading_30x30.gif

+ GET $_12.)PG

+ GET s.gif

+ GET $_14.)PG 4
+ GET $_14.JPG <
+ GET $_14.)PG

+ GET $_14JPG

Figure 1: Request latencies for ebay.com

In this paper, we consider a technique for going beyond
edge caching to reduce request latencies for web appli-
cations, and in particular for web applications that make
heavy use of dynamic, user-generated content. Our approach
allows edge servers to do more than just cache static content.
Instead, we allow portions of the web application itself
to run at the edge of the network, so that requests can
potentially by handled entirely at the edge, avoiding the
middle mile entirely. The objective of this technique is to
reduce web application latency by taking advantage of geo-
locality, allowing application operations to be executed at
edge sites close to the application’s end users.

Since web applications typically depend on a backend
database, handling application requests at the edge also
requires that this database, or at least parts of it, be present
at the edge of the network as well. To accommodate this,
our approach allows the application’s database to be partially
replicated at the edge of the network. How to manage such
edge replication is the focus of this paper.

Our approach is implemented in a prototype system called
EdgeX. EdgeX uses a novel two-part approach to manage
replication, e.g, to decide which portions of the database
should be replicated at each edge site. The first part of
EdgeX’s approach is a static analysis of the application’s
data access and consistency requirements. The purpose of
this analysis is to determine which portions of the database
can be safely replicated at the edge, i.e., can be replicated
without violating consistency requirements. This analysis
labels each portion of the database as either edgeable or
not. Non-edgeable parts of the database are stored only at
the origin data center, and not at the edge. The second part of
EdgeX’s approach is a run-time mechanism that determines
whether, when, and where to replicate the edgeable parts of

CORE
DATACENTRE

L. 1

o

Figure 2: System architecture, core site with four edge sites.

-9
T4

6 | 2014-10-
4785 | 2014-10-10
| 4787 | 4796 | 2014-10-10 09:48:09 |
| 4793 | 4799 | 2014-10-10 09:48:09 |
| 4802 | 4811 | 2614-10-10
I
I

2 3
842569 | 3

| 25 | 356294 | 3
| 26 | 4c6678 | 3
3

3

3

27	674629			
28	969515	4809	4816	2014-10-10 0
1 29	756439	4812	4815	2014-10-10 09:48:10

,,,

Figure 3: A partition of ITEMS cluster.

the database. EdgeX’s run-time mechanism seeks to exploit
geo-localization in the application’s request patterns. That
is, data that are used primarily by end-users in a particular
geographic area can be replicated to a network edge site in
the same geographic area.

II. SYSTEM OVERVIEW

We assume a two-tier infrastructure consisting of the
origin data center, which we refer to as the core, and multiple
edge sites, as shown in Figure E} As is the case for CDNs,
we assume that network latencies between end users and
nearby edge sites are lower than network latencies between
end users and the core. Unlike the edge sites in CDNs,
which serve as caches, we assume that edge sites are capable
of running the web application’s server-side code, and of
storing and managing application data.

We assume that an application uses a relational database
whose schema can be partitioned into hierarchically orga-
nized clusters of tables, much as in Google’s Spanner [5].
Within each cluster, one table is designated as the parent
table, and all other tables in the cluster are linked to the
parent, directly or indirectly, via foreign key relationships.
For example, Figure [3] shows an example of a cluster
consisting of ITEMS and BIDS tables. ITEMS is the parent
table to the BIDS table via a foreign key (item_id).

Within each cluster, we define partitions based on the
values of the primary key of the parent table. For each
primary key value z, the partition consists of the parent
table tuple with that key, along with all tuples from the other
cluster tables that link, directly or indirectly, to that parent
tuple through the foreign key relationships. For example, the
cluster shown in Figure [3|is partitioned by item_id. Each
partition consists of a single item from the ITEMS table,
along with the bids for that item from the BIDS table.

In EdgeX, partitions (or entire clusters) are the units
of replication and distribution. There can be one or more
replicas of each partition distributed among the core and
edge sites. The EdgeX system does not determine how best
to cluster the database schema. Rather, it assumes that the
clusters are given. Clusters can be defined by application
developers, as in Spanner, or chosen automatically [6].

EdgeX uses partition-level mastership, similar to record-
level mastership in PNUTS [7], to manage the synchro-
nization of partition replicas. Each partition has a single
master copy, which is located at a site chosen by EdgeX.
Each partition may have zero or more secondary copies,
also placed by EdgeX. All partition updates are performed
at the partition’s primary site. EdgeX then propagates these
updates lazily to the remaining replicas.

It is assumed that the application consists of a set of
parameterized, pre-defined server-side operations. End-user
application request for these operations are directed to the
nearest edge site. As we will describe shortly, that edge site
may or may not be capable of handling the request locally,
using locally available data. If the request can be handled by
the edge site, it handles the request and responds, avoiding
the need for any round trips to the core. If the edge cannot
handle the request locally, it acts as a proxy and forwards
the request to the core, which handles the request as usual.
Thus, in EdgeX, each operation is executed at a single site
- either an edge or the core.

III. DATA REPLICATION

EdgeX chooses where to place primary and secondary
copies of each database partition. By monitoring the usage
of database partitions, it can move partition replicas to edge
sites in geographic locations where the partition is heavily
used. EdgeX is constrained in several ways in its choice
of where to place the primary and secondary copies of
each database partition. First, EdgeX must ensure that it is
possible to execute each application operation at a single ex-
ecution site: either at an edge, or at the core. Second, EdgeX
must ensure that application-specified database consistency
requirements are satisfied. This is important because EdgeX
synchronizes partition replicas lazily, making secondary
copies stale relative to the primary.

EdgeX uses a novel two-part approach to solve this
constrained data placement problem. First, EdgeX performs
a static analysis of the application’s consistency require-
ments to associate a replication policy with each database
cluster. A cluster’s replication policy guides and constrains
where the run-time system is permitted to place replicas
of that cluster’s partitions. Second, at run-time, EdgeX
determines the placement of partition replicas based on
observed data access patterns, within the guidelines imposed
by the statically-determined replication policy for each clus-
ter. EdgeX’s replication policies are such that the run-time
system is free to make placement decisions for each partition

independently of the current placement of other partitions.
This significantly simplifies the task of the run-time system.
We describe the replication policies and the static analysis
that produces them in the remainder of this section, and
present the run-time system in more detail in Section

A. Static Application Analysis

EdgeX assumes that the application’s server-side code im-
plements a set of parameterized request types {R1, ..., Ry }.
Handling each type of request may require access to one or
more of the database clusters.

EdgeX’s static analysis takes as input database access
information and consistency requirements for each type of
application request. This information must be provided by
the application developer. Specifically, for each request R;,
the analysis is given:

« the set of database clusters that requests of type I2; may

access, and

o for each such cluster, a flag indicating whether R;’s

access to that cluster can be localized to a single
partition, and

o for each cluster, a consistency constraint indicating

whether R, requires access to an up-to-date copy of
the cluster, or can tolerate access to a stale copy.

We say that R; requires single-partition access to a cluster
C if it can be determined that each request of type R; will
read and/or write data from a single partition of C, and that
partition can be determined based on the value of a request
parameter. For example, if C' contains information about
users and is partitioned by UserID, R; requires single-
partition access to C' if R; takes a UserID as a parameter
and only reads or writes data in that user’s partition of C.
Different instances of R; may access data about different
users, but each instance must be known to access data about
a single user. Request types that are not single partition are
called multi-partition.

The consistency constraint for R; on cluster C' indicates
whether R; requires access to an up-to-date copy of C
(fresh access), or whether it can tolerate a stale view of C
(stale access). At run-time, EdgeX’s replica synchronization
mechanism ensures that all updates to a cluster are serialized
by the primary copy of that cluster, and then propagated
lazily and in order to any secondary copies. If R; requires
fresh access to C, then it must run where the primary copy
of C' is located. Otherwise, R; is assumed to be able to
tolerate the potentially stale view of C' that would be found
at the location of a secondary copy. Any request type that
updates a cluster requires fresh access.

Given this input for all request types, the primary task
of the static analyzer is to choose a run time replica-
tion policy for each cluster. EdgeX supports two possible
replication policies, which we refer to as Core/Static and
Edge/Dynamic. The Edge/Dynamic policy for cluster C
indicates that EdgeX’s run-time system is free to place the

primary copy of each of C’s partitions at an edge site or at
the core, at its discretion, and regardless of the placement
of C’s other partitions. The run-time is also free to place
secondary copies of C’s partitions anywhere, subject to
the constraint that a copy (either primary or secondary) of
each partition must be present in the core. In contrast, the
Core/Static policy indicates that the run-time system must
keep the primary copy of all of C’s partitions at the core site,
and that it should place a secondary copy of C’s partitions at
every edge site. This placement is fixed and will not change
at runtime.

Clearly, assigning the Edge/Dynamic policy to clusters is
desirable, as it gives the run-time system the freedom to
exploit geo-localized access patterns by moving the primary
copies of partitions to edge sites. However, the static analysis
is constrained in its policy assignments by two factors. First,
it must be possible to execute each application request at
a single site (edge or core) in the system. Second, the
consistency requirements specified for each request type
must be observed. To understand these constraints’ effects
on policy assignment, consider the following example cases:

Case 1: Suppose request type R; requires fresh, multi-
partition access to some cluster C. In this case, the analysis
must assign the Core/Static policy to C. If the Edge/Dynamic
policy were assigned instead, the run-time system would be
free to scatter the primary copies of C’s partitions across
different sites. Thus, there may be no single site in the
system at which requests of type R; could run.

Case 2: Suppose that request type R; requires fresh,
single-partition access to cluster C; and stale single-partition
access to cluster Cy. In this case, the analysis has two
choices. It can assign Edge/Dynamic to C; and Core/Static
to Cy, which will allow each R; request to run at whichever
site holds the primary copy of its target partition in C,
as determined by the run-time system. Alternatively, the
analysis can assign Core/Static to both C; and C}, which
will ensure that requests of type R; can run at the core.

Using similar reasoning, we can generate a (potentially
disjunctive) policy constraint corresponding to each consis-
tency requirement specified by the application. The analysis
then chooses policy assignments that satisfy all such con-
straints. Because of the nature of our policies and consis-
tency requirements, there will always be at least one policy
assignment that will satisfy all of the constraints, namely
assigning the Core/Static policy for all clusters. This is
an undesirable assignment as it leaves the run-time system
without the flexibility to exploit the edge sites, but it does
ensure that the application will be able to run the same
way that it would have if there were no edge sites. In this
sense, EdgeX’s replication policies and static analysis can
be viewed as a way of determining how much flexibility an
application affords for edge execution, and then exposing
that flexibility to the run-time system.

IV. RUN-TIME SYSTEM

EdgeX’s run-time consists of a web server and relational
database system at the core and at each edge site. Implemen-
tations of each of the application’s web requests are present
at the core and at each edge. To this basic infrastructure,
EdgeX adds a mechanism for propagating database updates,
and a mechanism for managing the placement of primary
and secondary copies of database partitions at various sites.

A. Request Handling

A request issued by a client is sent to the nearest edge
site, which determines whether the request can execute
locally, at the edge, or whether it must be forwarded to the
core for execution there. This decision is made based on
whether data required by the incoming request are present
at the edge site. To support these routing decisions, EdgeX
maintains metadata at each edge site to indicate which
cluster partitions are present in the edge site’s database.
These metadata are updated by EdgeXs partition placement
manager when partitions replicas are added to or removed
from the edge database. Two partition lists are maintained,
one to indicate which partitions have their primary replicas
at the site, and the other to indicate which partitions have
a secondary replica there. In our EdgeX prototype, request
forwarding is implemented using the Apache web server’s
mod_rewrite module, which performs rule-based rewriting
and forwarding of request URLs. The mod_rewrite module
parses the request URL and extracts the key of the required
partition from the request parameters. It then checks the
EdgeX metadata for this partition.

B. Update Propagation

Each partition has single master copy in the local database
at one site, and zero or more secondary replicas in databases
at other sites. Execution policies determined by EdgeX’s
static analysis, together with its request handling mechanism,
ensure that all updates to a partition will be performed at
the partition’s primary site.

EdgeX uses a publish-subscribe mechanism to propagate
database updates lazily among the databases at the core and
edge sites. EdgeX defines a publication channel for each
database partition, and each site subscribes to the channels
for partitions it holds secondary copies of. Each site is
responsible for pushing updates of all primary partitions it
holds though the appropriate channels.

C. Replica Placement

EdgeX’s run-time manages the placement of partition
replicas for all clusters labeled as Edge/Dynamic by the
policy analysis. Intuitively, the goal of EdgeX’s replica
placement manager is to replicate a partition to an edge
site if most of the application requests that use that par-
tition originate from that site. For example, in an classified

by sellers from the Toronto region may be most frequently
accessed by the buyers in the same region, and EdgeX can
move data about those items to an edge site in the same
region. If most updates for a partition originate at a site,
EdgeX can move the primary copy of the partition there.

EdgeX has a parameter which limits the number of repli-
cas of each partition, so that the cost of maintaining replicas
can be controlled. The run-time system places the partition
replicas such that the latency benefit is maximized. EdgeX
has a central replica placement manager which periodically
analyzes the workload of each edge site and decides whether
and how the replica placement needs to be changed.

V. RESULTS AND CONCLUSION

We are currently in the process of evaluating EdgeX’s
ability to reduce web application request latencies. As an
initial test, we applied EdgeX’s static analysis to RUBIS [8]],
an auction site benchmark modeled after eBay. The resulting
policy assignments allow up to 70% of RUBIS application
requests to be handled entirely at edge sites. Thus, EdgeX
is a promising mechanism for going beyond static caching
at the network edge. The actual percentage of requests that
the EdgeX run-time will handle at edge sites will depend on
the amount of geo-locality present in the workload, but the
policy assignments give an upper bound on the amount of
“edging” that is possible for this workload.

VI. ACKNOWLEDGEMENT

This research has been funded in part or completely by the
Smart Applications on Virtual Infrastructure (SAVI) project
under National Sciences and Research Council of Canada
(NSERC) Strategic Networks grant number NETGP397724-
10.

REFERENCES

[1] June 14, 2010 - New Study Reveals the Impact of Travel
Site Performance on Consumers, http://www.akamai.com/html/
about/press/releases/2010/press_061410.html.

[2] R. Kohavi and R. Longbotham, “Online experiments: Lessons
learned,” Computer, vol. 40, no. 9, pp. 103-105, 2007.

[3] T. Leighton, “Improving performance on the internet,” Com-
mun. ACM, vol. 52, no. 2, pp. 44-51, Feb. 2009.

[4] J. Dilley et al., “Globally distributed content delivery,” IEEE
Internet Computing, vol. 6, no. 5, pp. 50-58, Sep. 2002.

[5] J. C. Corbett et al., “Spanner: Google’s globally-distributed
database,” in OSDI, Oct. 2012, pp. 261-264.

[6] K. Q. Tran et al., “JECB: A join-extension, code-based ap-
proach to OLTP data partitioning,” in Proc. ACM SIGMOD,
2014, pp. 39-50.

[7]1 B. E. Cooper et al., “PNUTs: Yahoo!’s hosted data serving
platform,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1277-1288,
Aug. 2008.

[8] E. Cecchet et al., “Performance and scalability of EJB appli-
cations,” in Proc. ACM OOPSLA, 2002, pp. 246-261.

http://www.akamai.com/html/about/press/releases/2010/press_061410.html
http://www.akamai.com/html/about/press/releases/2010/press_061410.html

	Introduction
	System Overview
	Data Replication
	Static Application Analysis

	Run-time System
	Request Handling
	Update Propagation
	Replica Placement

	Results and Conclusion
	Acknowledgement
	References

