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Management o f Partia lly  Safe Buffers 
Sedat Akyiirek and Kenneth Salem, Member,  IEEE Computer  Society 

AbstPactAhfe RAM is RAM which has  been  made  as reliable as  
a  disk. W e  coI1sider the problem of buffer management  in partially 
safe buffers, i.e., butlers which contain both safe RAM and  volatile 
RAM. Buffer managemnt  techniques for partially safe buffers 
explicitly consider the safety of memory in deciding which data to 
place in the buffer, where to place it, and  when  to copy updaks  
back to the disk. W e  present techniques for managhg  such buffers 
and  study their per formauce using trace-driven simulations. 

Index Terms-Buffer management ,  disks, operat ing systems, 
performance, reliability, safe RAM. 

I. INTRODUCTION 

S Al% RAM is RAM which has  been  made  as reliable as  a  disk. 
Safe RAM can be  implemented using batteries or uninter- 

ruptible power  supplies plus redundancy for error correction and  
detection. Comput ing systems, such as  transaction processing sys- 
tems and  operat ing systems, often guarantee the durability of 
modif ied data by  propagat ing it to disks. Because it can  be  updated 
much more quickly than disks, safe RAM can greatly reduce re- 
sponse times for data updates.  Safe RAM can also improve per- 
formance by reducing the total number  of disk writes that must 
eventually be  performed. Updated objects can be  buffered tempo- 
rarily in safe RAM in case they are updated again. Should this 
occur, two (or more) disk writes will have  been  combined into one  
when  the object is finally written to the disk. 

The  d isadvantage of safe RAM is its cost. A recent study [l] 
found that non-volati le RAM was about  five times as  expen-  
sive as  volatile RAM, al though this cost differential is likely to 
drop over time. Given that some cost differential exists, pur- 
tidy safe buffers make sense.  Partially safe buffers are im- 
p lemented using a  mix of safe RAM and  volatile RAM. W e  
note that when  speed rather than volatility is considered, a  
similar situation arises. Since faster memories are more ex- 
pensive, system designers resort to a  memory hierarchy, i.e., a  
mix of fast, expensive memory and  slower, cheaper  memory.  

A variety of existing systems already implement partially 
safe buffers or assume their existence. These include both 
main memory buffers, e.g., in the POSTGRES storage system 
[17], and  controller buffers such as  the partially safe buffer 
implemented in the IBM 3990  storage controller [ 81. 

This paper  addresses two issues. First, we consider the 
management  of partially safe buffers, with emphasis on  re- 
p lacement policies. Common (and effective) replacement 
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policies, e.g., least-recently used  (LRU), are blind to the safety 
or volatility of the buffer. For example, the LRU policy might 
place an  updated object in the volatile buffer if that is where 
the least recently used  object happens  to reside. In a  partially 
safe buffer, replacement decisions should take the safety of the 
buffer into account.  An example of a  policy which takes safety 
into account  is one  which makes all read replacements in the 
volatile buffer and  all update replacements in the safe buffer. 

W e  present four candidate replacement policies and  evalu- 
ate their per formance using trace-driven simulations. Our  
evaluation considers the following factors: 

l Size of the Safe BufSer. Performance can be  expected to 
improve as  the safe buffer size is increased. However,  the 
marginal benefits of additional buffer space will decrease 
with the buffer size. Furthermore, the buffer size affects 
different buffer management  policies differently. 

l Workloud Characteristics. Work load characteristics, such as  
read/write ratios, “burst iness” of request arrivals, and  request 
locality, affect the performance of the buffer. Our  study con- 
siders a  variety of workloads with differing characteristics. 

l Update Staging. When  a  dirty object is replaced in a  buffer 
it must be  written back to the disks, causing a  delay. To  re- 
duce  these delays, dirty objects residing in the safe buffer 
can  be  written asynchronously to the disks. This is known 
as staging. Staging can reduce response times if disk utili- 
zation is not too high. Staging also affects the relative per- 
formance of the replacement policies. 

The  second goal of this paper  is to compare partially safe 
buffers with volatile buffers. Write-through volatile buffers, 
which must guarantee the safety of every update as  it occurs by  
forwarding it to a  disk, will clearly be  outperformed by a  par- 
tially safe buffer. Our  study quantif ies this per formance gap.  A 
more interesting compar ison can be  made  between partially 
safe buffers and  volatile buffers in which unsafe updates can 
be  permitted, at least temporarily. W e  will refer these buffers 
as  copy-buck buffers. Copy-back buffers are common in op-  
erating systems and  database management  systems. 

Copy-back buffers share many  of the advantages of partially 
safe buffers. Copy-back buffers remove disk I/O from the 
critical path of update requests, resulting in much faster re- 
sponse times. Furthermore, by  buffering unsafe updates in the 
buffer, it may be  possible to combine several updates to the 
same block or page  into one,  resulting in improved write 
throughput.  Copy-back buffers also have  a  disadvantage: Ap- 
plications must be  willing to tolerate some lost work in the 
event  of a  failure. For example, updated data in a  Unix file 
system buffer is not f lushed to disk immediately. Instead, buff- 
ered updates are synchronized (i.e., copied back to the disks) 
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periodically. A failure may cause updates that occur after the 
most recent synchronizat ion point to be  lost. 

In database management  systems, buffer managers  that permit 
unsafe updates are said to use  a  TFORCE [7] policy. Such 
buffer managers  are often used  in conjunction with a  separate 
mechanism, such as  after-image (REDO) logging [7] and  peri- 
odic checkpoint ing, to guarantee the safety of all updates.’ The  
combinat ion of logging, checkpoint ing, and  a  -FORCE volatile 
buffer provides advantages similar to those of partially safe buff- 
ers: Write response times are fast and  the safety of updates is 
guaranteed.  However,  a  partially safe buffer can  provide the 
guarantee more simply, since no  REDO logging or checkpoint- 
ing is necessary.  Furthermore, checkpoint ing mechanisms intro- 
duce  a  tradeoff between failure recovery time and  overhead 
during normal operation. (More frequent checkpoints reduce 
recovery time at the expense of additional overhead.)  Partially 
safe buffers require no  such tradeoff. 

Our  per formance study compares partially safe buffers and  
volatile copy-back buffers. Partially safe buffers are the superior 
alternative if they can provide competit ive request response 
times, since they do  not lose updates to failures. In database 
management  systems, partially safe buffers can be  v iewed as 
simple alternatives to REDO logging and  checkpoint ing. 

A. Related Work  

A number  of existing or proposed systems already employ 
safe RAM to improve performance. As we have  already noted, 
the IBM 3990  disk controller [8] is capable of buffering up  
dates in its non-volati le memory.  Both volatile and  non-  
volatile buffers are maintained, and  updates appear  in both. 
Dirty data in the safe buffer is s taged to disk asynchronously 
when  possible. XPRS [18], a  POSTGRES-based transaction 
processing system, buffers frequently updated data blocks in 
safe RAM to provide fast recovery. The  techniques used to 
manage  the safe buffer are not descr ibed there. The  Phoenix 
file system [SJ maintains an  entire file system in safe RAM. 

In [3], the use  of partially safe buffers in transaction proc- 
essing systems is discussed. An analytic queueing model  is 
used  to estimate the size of the safe buffer required to avoid 
synchronous disk writes, when  asynchronous staging is used.  
(Synchronous writing is required when  the safe buffer becomes 
filled with dirty data.) However,  that work does  not consider 
buffer management ,  which is the focus of the model  in this 
paper.  Our  model  incorporates the impact of the safe buffer 
and  the buffer management  policies on  read response times as  
well as  write response times, and  is based  on  trace-driven 
simulations rather than an  analytic model. 

Stochastic simulations descr ibed in [12] compare several 
alternative safe RAM configurations in database systems. Safe 
extended main memory,  solid state disk, and  safe disk 
(controller) buffers are considered. That work uses a  different 
safe RAM model  than ours. In [ 121,  read-referenced data that 
is located in the safe extended main memory must be  trans- 
ferred to volatile main memory to be  read. Furthermore, direct 
transfer of data between the safe RAM and  the disks is not 

’ Actually, only the safety of cornmined updates is guaranteed. 
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possible. The  focus of that work is on  compar ing the altema- 
tive safe RAM configurations, and  not on  buffer management .  

Two recent studies have  used trace-driven simulations to 
evaluate safe buffers in operat ing systems. One  study [l] was 
based  on  traces from the Sprite file system, while the second 
used traces from Unix file systems [ 131.  The  traces used in 
[ 131  are block level traces similar to our  own, while the Sprite 
traces are captured at a  higher level. In particular, the Sprite 
traces do  not include requests for file system meta-data, such 
as  i -nodes [9]. Such references account  for a  substantial frac- 
tion of the requests (particularly write requests) in our  traces 
andinthoseof[13]. 

Both of these studies used  a  safe RAM configuration called 
write-aside, which we did not consider in our  study. Under  this 
configuration, the safe RAM handles all update requests, but it 
cannot  be  used  to satisfy read requests. This’ configuration is 
similar to that implemented by  the IBM 3990  disk controller and  
the model  studied in [3]. The  Sprite study also considered a  uni- 
fied configuration similar to the one  used in this study. Under  the 
unified model, read requests can be  satisfied from either the safe 
buffer or the volatile buffer. In the Sprite study, the unified par- 
tially safe buffer was managed  using a  policy similar2 to the L.RU 
GlobuUWrite Purge policy descr ibed here. Other policies were 
not considered. The  Sprite study concluded that the unified con- 
figuration provided better overall performance. 

Both of these studies showed that small amounts  of safe 
RAM can provide significant reduct ions in write traffic. This 
general  result corroborates one  of our  own. Neither of these 
studies considered the effects of asynchronous staging from 
the safe buffer, presumably because their principle perform- 
ance  metric was the reduction in write traffic due  to the safe 
buffer. (Staging is a  technique for improving response times at 
the expense of increased traffic behind the cache.) Neither 
study evaluated policies for managing both read and  write re- 
quests under  the unified partially safe cache configuration. 
This is the primary focus of our  study. 

Several techniques have  been  suggested for improving the 
disk performance, assuming that updates are temporari ly buff- 
ered. Safe RAM is ideal for use  in combinat ion with these 
techniques, since buffered updates will not be  lost in the event  
of a  failure. Ng [ 111  suggests that safe RAM can be  used to 
eliminate the write penalty associated with duplexed disks. 
Buffered writes can also be  “piggy-backed” onto read opera-  
tions [ 161,  allowing the disk to be  updated with very little cost. 
Either of these techniques can be  combined easily with the 
buffer management  techniques descr ibed in this paper.  How- 
ever, we do  not consider such extensions here. 

Finally, several p roposed memory-resident transaction 
processing system designs [4], [6], [lo] rely on  safe memory to 
commit transaction updates quickly. Small safe memories have  
also been  used to provide fast recovery in the Sprite file sys- 
tem [2]. In those systems, safe memory management  is tied 
closely to the transaction manager  or the file system. In con- 
trast, the techniques descr ibed in this paper  are not tied to the 
semantics of any  particular data manager.  

2 The policy in [l] copies data from the safe cache to the volatile cache in 
some situations. The policies described here do not. 
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In the next two sections we present several buffer manage- 
ment techniques for partially safe buffers, our simulation 
model, and the traces that drive it. A comparison of the buffer 
management techniques based on the simulation model is pre- 
sented in Section IV. Section V describes how asynchronous 
staging can be used to further improve the performance of the 
partially safe buffer. Finally, in Section VI, we compare par- 
tially safe buffers with volatile, copy-back buffers. 

II. MANAGING PARTIALLY SAFE BUFFERS 

We have used a simple model to study partially safe buffers. 
The storage system is assumed to manage a collection of fixed-size 
objects, each with a unique identifier. (Objects may correspond to 
pages or file blocks in a real system.) Three types of storage are 
available to hold them. Slow, safe storage (e.g., disks) maintains a 
copy of every object. A faster buffer also exists, and is divided into 
safe and volatile parts. Copies of some of the objects reside in the 
buffer. The model is illustrated in Fig. 1. 

The system’s load consists of read and write requests. The 
buffer manager must satisfy these requests by observing the 
following rules: 

l Read Rule: When an object is read, a copy of the object 
should be buffered (either safe or volatile). 

l Update Rule: When an object is updated, an updated 
copy should reside in safe memory (either fast or slow). 
Later we will consider volatile copy-back buffers, which 
do not observe this rule. 

We have considered two binary dimensions along which to 
classify buffer management techniques, giving rise to four 
classes of buffer managers. The first dimension defines the 
buffer manager’s behavior in the event of a read miss. The 
second defines its behavior in the event that an updated object 
is already in the volatile buffer. 

A. Read Miss Policy 

According to the read rule, read requests are satisfied im- 
mediately if the requested object is in (either part of) the 
buffer. A read miss occurs if the object is not in either buffer, 
in which case it must be read from the disk. We have consid- 
ered the following two policies for handling read misses. 

SAFE 
BUFFER 

BEFORE 

I Read Object G 

AFTER 
(LRU Volatile) 

AFTER 
(LRU Global) 

Fig. 2. Read miss policies compared. The figures illustrate the effect of a read 
miss under the two read miss polices. It is assumed that both the safe and 
volatile buffers axe full, so that the read miss must cause a replacement. The 
chains of arrows indicate recency of use, with A + B indicating that A is 
more recently used than B. Under the LRU Volatile policy, object G  replaces 
object E, since E is the least recently used object in the volatile buffer. Under 
L.RU Global, object G  replaces object F in the safe buffer instead, since F is 
the least recently used overall. 

l LRU Volatile. This policy specifies that missed reads 
cause a replacement of the least recently used object in 
the volatile buffer. Of course, if free space is available in 
the volatile buffer, replacement is not necessary. 

l LRU Global. This policy specifies that missed reads 
cause a replacement of the least recently used object in 
the whole buffer. Under this policy, it is possible that 
read replacements will be performed in the safe buffer. 

Fig. 2 illustrates the behavior of two read miss policies. The 
LRU Global policy is particularly appealing when the volatile 
portion of the buffer is relatively small, because all read re- 
quests need not be channeled through the volatile buffer. 

B. Write Allocation Policy 

So that the write rule can be satisfied without “writing 
through” to the disk, updated blocks are always placed in the 
safe buffer. If necessary, the least recently used object in the 
safe buffer is replaced to make room. The write allocation 
policy specifies the behavior of the volatile buffer in the event 
of an update. This policy is necessary in case an object is in 
the volatile buffer when it is updated. We have considered two 
write allocation policies. 
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Fig. 3. Write allocation policies compamd. The figures illustrate the effect of 
an update under the two write allocation polices. The chains of armws indi- 
cate recency of use, as in Fig. 2. Under the W & e  Purge policy, the update to 
D causes it to be removed from the volatile buffer. Object D is placed in the 
safe buffer, replacing F, the oldest safe object. (We have assumed here that 
the safe buffer is full.) Under Wrife Update, object D is updated in the vola- 
tile buffer and remains there after the update. Note that a subsequent read 
miss will cause object E to be replaced in the volatile buffer in this case. 
Under the Write Purge policy, E would not have to be replaced, since a free 
slot is available in the volatile buffer. 

l Write Purge. This policy specifies that objects are deleted 
from the volatile buffer when  they are updated.  The  space 
occupied by  the deleted object is marked free, and  is avail- 
able to hold a  new objectswhen the next read miss occurs. 

l Write Update. This policy specifies bat objects in the vola- 
tile buffer remain there if they are updated.  The  object is up  
dated in the volatile buffer to reflect its new value. Since up  
dated objects are always placed in the safe buffer as  well, this 
policy may result in two copies of an  object being buffered 
simultaneously, one  safe and  the other volatile. An object 
updated in the volatile buffer is not considered to have  been  
‘!used” by the update.  Thus, if the least recently used  object 
in the volatile buffer is updated,  it will still be  replaced when  
the next read miss occurs (assuming that the Z&U Volatile 
read miss policy is being used).  

Fig. 3  illustrates the two write allocation polices. In [15], a  
third policy, called Write Allocate, is discussed. Under  this 
policy, updated objects would be  installed in the volatile buffer 
if they were not already there. (The object would be  updated in 
place, as  under  the Write Update policy, if it was already in the 
volatile buffer.) This policy does  not seem appropriate for the 
volatile buffer, since updated objects are automatically in- 

buffer hit (no disk I/O) 

Fig. 4. The simulation model. 

TABLE I 
BUPFERSIZESARE SPECI~IEDWA~TOTHEREFERENCESETSIZE,WHICH 

I~TRACE-DEPENDENT.THEREFERENCESETSIZESFOREACHTRA~ARE 
GIVENINTABLBII.  

1 Parameter 1  Default Value 1 

stalled in the safe buffer anyway.  W e  do  not consider the Write 
Allocate policy further in this pap&. 

I ILTHESIMULATION MODEL 

W e  have  developed the simulation model  illustrated in Fig.4 
to study the buffer management  techniquks descr ibed in the 
previous section. The  simulator is driven by  traces of read and  
write requests. Each trace request (descr ibed in more detail 
below) includes a  block number,  a  read/write flag, and  an  arri- 
val t imestamp. 

The  arrival process for the buffer is determined by  the trace 
request t imestamps. At each  request’s arrival time, the simulator 
determines which blocks must be  moved between the buffer and  
the disks, according to the read and  update rules, the buffer man-  
agement  policy being implemented, and  the buffer size. A single 
request results in as  few as zero and  as  many  as  two disk opera-  
tions. One  disk operat ion may be  required to bring the requested 
block into the buffer. A second operat ion may be  required to 
write a  replaced, dirty block back to the disk. If two disk opera-  
tions result from a  single request they are initiated sequentially, 
as  illustrated by  the loop in Fig. 4. The  response time of a  re- 
quest  is the sum of the response times of the disk operat ions that 
it generates.  Requests that generate no  disk operat ions are de-  
f ined to have  a  response time of zero. 

Disk service times are assumed to be  exponential ly distrib- 
uted, and  requests are served in FIFO order. W e  considered a  
more elaborate disk model  in which seek times were calculated 
using the block numbers  of successive requests and  additional 
assumptions about  the disk’s geometry.  While such a  model  
would probably result in more accurate absolute service times, 
we felt that it was unlikely to have  a  strong impact on  the relu- 
tive per formance of the various buffer managers.  For the sake 
of simplicity, we elected to use  the simpler exponential  model. 

The  simulation parameters and  their default values are 
summarized in Table I. The  simulator reports a  variety of sta- 
tistics for each  run, including counts of I/O operations, mean  
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TABLE II 
REFERENCE TRACE SUMMARY.  

Trace Trace Number of Number Numbers Reference Set Num. Records/ 
Name “be Records of Reads of Writes Size (RSS) RSS 

serverA post-bufier 180000 125984 (70%) 54016 (30%) 7139 25.2 

client A post- buffer 8000 3311 (41%) 4889 (59%) 1058 7.6 

serverB pre-buffer 370000 308790 (83%) 61210 (17%) 5319 69.6 

clientB pre-buffer 22000 18122 (82%) 3878 (18%) 1050 21.0 

response times for read and  write requests, and  utilization, measure using these traces represent times that an  application 
service time, and  waiting time at the disk server. It is imple- program observes as  it makes requests to a  file system with a  
mented using the CSIM simulation library [ 141.  partially safe buffer. 

A. The  Truces 

The  traces were gathered from workstations running a  cus- 
tomized version of the SunOS 3.2 operat ing system kernel. The  
kernel was modif ied to produce a  trace record for each  block I/O 
request ( read or write) to file systems residing on  the worksta- 
tion’s disk(s). Trace records are deposi ted in a  kernel buffer, 
from which they can be  read by  a  user-level process using a  
special “pseudo-device” driver. Requests dest ined for particular 
file systems can later be  filtered from the traces if desired. 

A post-buffer trace includes only those I/O read requests that 
missed the buffer cache on  the traced machine, plus all write 
requests. These traces are representat ive of the request streams 
that might be  seen by  a  storage controller with a  partially safe 
buffer (such as  the IBM 3990),  since they include only those 
requests that “fell through” the buffer on  the traced machine.5 
The  request response times we measure using these traces repre- 
sent times that the file system observes as  it makes requests to an  
underlying storage device equipped with a  partially safe buffer. 

Each trace record includes a  unique identifier3 for the re- 
quested data, the size of the request, a  read or write tag, and  
some additional pieces of information. Each record also indi- 
cates whether or not the request “hit” the I/O buffer cache on  
the traced machine. 

Because of the way the tracing facility is implemented, each  
write request in our  traces represents a  request to flush a  block 
from from the file system buffer to disk, rather than the actual 
modification of the block in the buffer. In Unix, these block 
flush requests are often generated by  a  special synchronizat ion 
process which periodically“ f lushes dirty data from the buffer. 
Thus, the block flush request may appear  in the trace some time 
after the block was actually updated in the buffer. Because the 
synchronizat ion process is periodic, it also means  that many  of 
the block f lushes occur in periodic bursts in the reference stream. 
Rather than attempting to guess  the actual block update times, 
we used the traces as  is, with the bursty write request pattern, to 
drive our  simulations. Fortunately, the (simulated) safe buffer 
tends to smooth out the effects of these bursts anyways.  The  
primary effect of this decision is that the write response times 
(under all of the buffer management  policies) are higher than 
they would otherwise be  when  the safe buffer is very small. 
Where  this effect is apparent  in our  simulation results in the next 
section, we have  been  careful to point it out. 

Requests in the traces vary in size from 1K bytes to 8K 
bytes, with the vast majority of the requests being for 8K 
bytes. For the purposes of these simulations, all requests were 
treated as  8K requests, i.e., when  a  small block is requested, 
the large block that it is a  part of is requested instead. Thus, 
the 8K byte blocks, each  of which has  a  unique identifier, are 
the database “objects” of our  model. 

Each trace covers a  period of about  12  hours, starting in 
mid-morning, on  a  weekday.  Traces were taken from two 
workstations. One  of these serves as  a  network file server. The  
other is a  client workstation with its own private disk. Each of 
the four traces was recorded on  a  different day. The  traces 
from the server record references to a  single large file system 
housing primarily shared data and  executable files. The  client 
traces trace references to the local fi lesystem on  the client 
workstation. This file system holds primarily user files. W e  
exper imented with a  pre-buffer and  a  post-bu#er trace from 
each  of the workstations. 

Two types of traces were used  in our  experiments. A pre- 
buffer trace includes all I/O requests, including those that hit 
the traced system’s buffer cache.  Such a  trace is representat ive 
of the request streams seen by  a  main memory buffer, such as  a  
file system’s block buffer. The  request response times we 

Some of the trace characteristics are are summarized in Table 
II. The  reference set size refers to the total number  of objects 
referenced at least once  in the trace. This number  is much 
smaller than the total number  of objects stored on  the disk, since 
many  objects are not referenced at all. The  last column of the 
table gives a  crude indication of the locality present in the re- 
quest  stream. Cumulative read request inter-arrival time distri- 
but ions for each  of the traces are shown in Fig. 5. Inter-arrival 
t imes were measured with 20  mill isecond resolution, as  this was 
the resolution of the system clocks on  the traced machines. 

In general,  the post-b&r traces on  both the client and  the 
server have  a  higher percentage of updates.  The  client traces 
exhibit less reference locality than those of the server. Finally, 

3 An identifier consists of major and minor device numbers and a block 
number. 

4 Every 30 seconds. 
5 The client and server workstations from which the traces were recorded 

each have buffer sixes of approximately 2 megabytes. 
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Fig. 5. Cumulative trace request inter-arrival t ime distributions. 

read requests in the client traces have  burstier inter-arrival 
t imes than those in the server traces. This can can be  seen from 
the flatness of the client trace distributions (especially clientB) 
in Fig. 5. These curves indicate that almost all inter-arrival 
t imes are either very short (less than 100  mill iseconds) or very 
long (greater than one  second).  The  probability of inter-arrival 
t imes greater than one  second is at least twice as  great in the 
clientB as in either server trace. 

IV. PERFORMANCE OF THE BUFFER MANAGEMENT POLICIES 

W e  performed several experiments to determine the perform- 
ance  of the buffer manager  under  various combinat ions of the 
read miss and  write allocation policies. Of primary interest in 
our  first experiment is the effect of the safe buffer size on  per- 
formance. In this experiment, the sizes of the safe and  volatile 
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buffers were varied, while keeping the total buffer size (safe plus 
volatile) fixed at 10% of the reference set size for each  trace. 
This allows us to distinguish the effects of changes  in safe buffer 
size from the effects of changes  in the total buffer size. Refer- 
ence  set sizes for each  trace are given in Table II. 

Figs. 6  and  7  show the mean  write and  read response times 
for each  of the four buffer management  policies. Fig. 6  shows 
that a  relatively small safe buffer, 3%  or 4% of the reference 
set size, is sufficient to reduce the mean  write response time to 
just a  few mill iseconds for the server traces. (The high write 
response times for very small safe buffer sizes is primarily an  
artifact of the write bursts in our  traces.) The  reduction was not 
as  significant for the client traces for reasons which we will 
discuss shortly. 

For comparison, Table III gives the mean  read and  write re- 
sponse times achieved by  an  all-volatile buffer of the same 
total size. Write response times for the all-volatile buffer are 
high because all updates are written through the buffer to the 
disk to ensure their safety, and  because of the write bursts. 
Read  response times are higher for the client traces because 
read requests are burstier in those traces. 

The  buffer management  policies do  not have  a  very strong ef- 
fect on  write response times. The  LRCJ Global policy does  result 
in somewhat  lower write response times than LRU Volatile for 
the client traces when  the safe buffer is large. This is because of 
c lean data placed in the safe buffer by  the LRU Global policy. 
(We discuss this further in Section 1V.C.) However,  both buffer 
management  and  buffer sizes do  have  an  impact on  read re- 
sponse times, as  Fig. 7  illustrates. Furthermore, the behavior we 
observe is trace dependent .  In the following sections, we discuss 
the impact of the buffer ‘management  polices on  read response 
times and  the reasons for the trace dependencies.  

A. ESfect of the Read  Miss Policy 

The  read miss policy’s effect is best illustrated by  the steep 
rise in read response time under  the LRU Volatile policy in 
Figs. 7(a) and  7(c). As the safe buffer grows and  the volatile 
buffer shrinks, the LRU Volatile policy is unable to take advan-  
tage of the larger safe buffer. The  LRU Global policy, on  the 
other hand,  simply performs more read replacements in the 
safe buffer as  it grows. 

TABLE III 
RESPONSE TIMESCOMPARISON OF VOLATILEANDPARTIALLY SAFE BUFFERS.PARTIALLYSABUFFERS ARE MANAGED~SINGTHE LRUVOUTILUWR~ 

UPDATE POLICY.TIMESARERE~RTEDMMILLI~ECONDS. 

0% Safe Buffer Size 3% Safe Buffer Size 5% Safe Buffer Size 

10% Vol. Buffer Size 7% Vol. Buffe I Size 5% Vol. Buffer Size 

Read Write Read Write Read Write 

Response Response Response Response Response Response 
Trace Time Time Time Time Time Time 

serverA 10.71 288.89 8.91 2.23 10.14 1.39 

clientA 14.20 77.89 14.69 16.08 14.07 15.96 

serverB 5.11 415.23 4.03 1.52 4.26 0.20 

clientB 32.03 66.43 38.70 8.82 39.51 8.87 
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Because of the inflexibility of the LRU Volatile policy, a  
safe buffer that is too large is wasted. This suggests that, in 
practice, proper selection of the safe buffer size will be  more 
critical under  the LRU Volatile policy than under  LRU Global. 
Too  little safe buffer space will result in poor  write response 
times, but excess space will be  wasted. In contrast, the LAU 
Global policy can take advantage of additional safe buffer 
space to reduce read response times. This i+-+-s illustrated 
more clearly in Fig. 8, which shows read response time as the 
safe buffer size is increased (for trace “ServerA”). The  volatile 
buffer size is fixed at 5% of the reference set size. 
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B. Effect of the Write Allocation Policy 

When  the safe buffer is relatively small, the Write Purge pol- 
icy results in a  higher read miss ratio than the Write Update pol- 
icy, leading to higher read response times. The  effect can  be  seen 
most clearly in Figs. 7(b) and  7(c), in which the performance of 
the two Write Purge policies degrades sharply when  the safe 
buffer size falls below 2% of the reference set size. 

The  Write Purge policy performs poorly when  the safe buffer 
is small because of a  phenomenon  we call update theft. When  an  
object residing in the volatile buffer is updated,  the Write Purge 
policy causes it to be  deleted from the volatile buffer and  placed 
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instead in the safe buffer. If the safe buffer is small, this recently 
read object may be  completely eliminated from the buffer much 
more quickly than it would have  been  had  it remained in the 
volatile buffer. This problem can be  eliminated by  making the 
safe buffer larger. Another possibility is to move data to the 
volatile buffer when  it is replaced in the safe buffer. This latter 
technique is used  in the Sprite studies descr ibed in [ 11. 

C. Trace Dependenc ies 

One  of the most striking features of Fig. 7  is the difference 
between the client and  server traces. For the traces from the 

TRACE: clientB 

i 

I I I I I I I i 
3% 7% Safe Buffer Sk 
7% :,” 3% Volatile Buffer Size 

server, the L.RU Global policy is sometimes superior to LRU 
Volatile. However,  LRU Global performs poorly on  the client 
traces regardless of the safe buffer size. For both the client and  
the server, there was little difference in per formance between 
post-buffer and  pre-buffer traces. 

Further examinat ion of our  results indicates that the buffer 
management  policies do  exhibit general  patterns of behavior 
that are independent  of the traces. However,  certain trace char- 
acteristics bring out, or magnify, different aspects of the be-  
haviors. To  illustrate, consider Fig. 9, which is identical to Fig. 
7, except  that synchronous read transfer ratios are shown in- 
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fixed at 5% of the reference set size. 

size. The  volatile buffer size is 

stead of the read response times. The  synchronous read trans- 
fer ratio descr ibes the average number  of disk operat ions per- 
formed per read request. This includes disk reads to bring re- 
quested objects into the buffers, as  well as  the writes needed  to 
copy replaced dirty objects back to the disk. 

The  effects of the LRU Volatile and  Write Purge polices, 
which we have  already discussed, are clearly evident in both 
the client and  server traces. The  LRU Volatile policy consis- 
tently drives up  the transfer ratio as  the volatile buffer shrinks. 
Furthermore, the Write Purge policy drives the ratio up  when  
the safe buffer is small. However,  this behavior does  not 
translate to consistent response time behavior,  as  compar ison 
of Figs. 7  and  9  shows. 

The  reason for the poor  read response times of the LRU 
Global policies on  the post-buffer client trace can be  seen from 
Fig. 9(b). The  read transfer ratios for the LRU Global polices 
are elevated because of the very large percentage of write re- 
quests in the trace (see Table II). When  updates are frequent, 
read misses become more expensive because replaced objects 
are more likely to be  dirty. (Since updates are channeled 
through the safe buffer, it is likely that objects replaced from 
there will be  dirty.) In effect, the LRU Global policy transfers 
some of the effort of copying dirty objects back to the disks 
from write requests to read requests. When  write requests are 
frequent, the impact on  read response times is severe. As we 
will show in the next section, this problem can be  reduced 
significantly by  using asynchronous staging. 

The  LRU Global policies have  poor  read response times on  
the pre-bu@r client trace for a  different reason. Fig. 10  shows 
the mean  response time (for disk operat ions) as  a  function of 
buffer size for two of the traces. Response times for the pre- 
buffer client trace are several t imes higher than those of other 
traces (represented in Fig. 10(a) by  the post-bu$er server trace). 
Furthermore, use  of the LRU Global policies increases the al- 
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ready-high response time still further. The  high response times 
are caused by bursts of read requests in the pre-buffer client 
trace, which result in long queues  at the disk. This problem is 
exacerbated by  the LRU Global policy, since it must sometimes 
write dirty objects back to the disk to make room for newly read 
objects. Because of the long queues,  these writes have  a  signifi- 
cant impact on  disk response time. (The problem is magnif ied 
somewhat  because writes, like reads, often arrive in bursts in our  
traces.) The  result is higher response times for read requests, as  
Fig. 7(b) shows. The  long service times also account  for the 
relatively high write response times that we observed for this 
trace (Fig. 6  and  Table III). 

In summary,  two trace characteristics have  been  found to 
have  an  impact on  the relative performance of the buffer man-  
agement  policies. Very bursty read request arrivals tend to 
drive up  response times, regardless of the buffer management  
policy. However,  the problem is exacerbated by  the LRU 
Global policy. Since buffers tend to smooth out arrival bursts, 
this is more likely to be  a  factor in a  main-memory buffer (pre- 
buffer traces) than in a  controller buffer @ost-bufSer traces). In 
addition, a  very high percentage of writes in the request stream 
(such as  might be  observed at a  controller buffer) may be  det- 
rimental to read response times when  the LRU Global read 
miss policy is used.  However,  this problem can be  alleviated 
by  update staging, as  we will show in the next section. 

V. ASYNCHRONOUS STAGING 

Read and  write response times can be  reduced by asynchro-  
nously staging (copying) dirty pages  from the safe buffer to the 
disk. When  a  dirty page  is staged, it is not removed from the 
buffer. Its buffer state is simply synchronized with its state on  
disk. Staging operat ions are initiated by  the buffer manager,  al- 
lowing many  I/O operat ions to be  removed from the critical 
paths of write (and possibly read) requests. Asynchronous stag- 
ing from the safe buffer has  been  suggested in [3] and  has  been  
implemented in some systems, including the IBM 3990  storage 
manager.  In the following experiments, we consider the impact 
of asynchronous staging on  response times and  show how it af- 
fects the performance of the buffer management  policies. 

Staging can be  implemented in a  variety of ways. In our  
simulator, the safe buffer is checked periodically to determine 
whether it contains any  dirty objects. If so, a  request to flush 
the oldest dirty object in the safe buffer is generated.  After 
checking for (and possibly staging) a  dirty object, the buffer 
manager  waits C seconds before checking again. (The simula- 
tion parameter C is called the minimum staging interval.) 
When  C is set to zero, the buffer manager  issues requests to 
copy objects back to the disk as  soon as  they are updated.  
Larger values of C reduce the disk’s utilization by  reducing the 
number  of write operat ions that are performed. However,  if C 
is too large, staging may become ineffective. 

Staging reduces write response times significantly. Table IV 
shows how the mean  write response time is affected when  
staging is used.  The  results show that by  staging no  faster than 
one  block per  second,  a  safe buffer of size 1% performs at 
least as  well as  a  safe buffer three times as  large that is not 
staged. When  updated pages  are s taged immediately to the 
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Fig. 9. Synchronous read transfer ratios. The total buffer size is fixed at 10% of the reference set size. 

disk (C = 0), update time is reduced to near  zero for all but the 
update-intensive trace “clientA”. Even for that trace, a  3%-&e 
buffer coupled with immediate staging reduces the write re- 
sponse time to zero. In qualitative terms, the data in Table IV 
confirm the predictions of analytic model  of [3]: Small, s taged 
safe buffers can reduce write response times to near  zero. 

It might be  expected that asynchronous staging would 
increase read response times because of content ion for the 
disk. Fig. 11  shows mean  read response times for each  of 
the four buffer management  algorithms using staging with 
C = 0. This figure should be  compared with Fig. 7, which 
shows read response times without update staging. In abso-  

lute terms, the staging did not have  a  strong impact on  read 
response times. The  disk’s utilization was low in all of our  
experiments, and  the simulated disk had  little difficulty han-  
dling the additional traffic caused by  staging operations, even  
when  C = 0. In the next section we will consider staging to a  
more heavily utilized disk. 

Fig. 11  also shows that staging improves the performance of 
the LRU GZobul  policy relative to the others on  the client 
workstation traces. These were the traces on  which the LRU 
Global policy performed poorly without staging (see Fig. 7). 
Staging is particularly beneficial under  the LRU Global policy 
because it c leans dirty objects in the safe buffer. When  the 
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L&U Global policy elects to replace an object in the safe 
buffer, the object is less likely to be dirty. 

VI. UNSAFE UPDATES 

For some applications, it is not necessary that all updates be 
placed into safe memory immediately. Such applications either 
tolerate some lost updates in the event of a failure, or preserve 
the durability of their updates using some other mechanism, 
such as logging. 

We have performed experiments to compare a partially safe 
buffer (with does not lose updates) to a volatile, copy-back 
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TABLBlV 
MEANWRITERESPONSETIMESUSINGA~YNCHRONOUSSTAGING.RESPONSE 

TIMES FOR THE PARTIALLY SAFE BUFFERS WERE DETERMINED USING THE 
LRU GWBAUWRRE UPDATE BUFFER MANAGEMEW POLICY. HOWEVER, 
ALL OF THE POLICIES PRODUCED SIMILAR WRITE RL?SPoNSE TlhiES. AIL 

TlMEs ARE REPORTED IN M~SECONDS. 

r Trace 

serverA 

client A 

serverB 

clientB 

3%-safe 

‘I%-volatile 
no staging 

1.79 

16.40 

1.51 

8.27 

3%-safe 7 ‘I%-volatile 
c=o 

0.00 
0.00 

1 

0.00 
0.00 

TABLE V 
UNSAFEUPDATECOMPARISON-READRES~ONSETIMES.THEVOLKIZE 

BIJFI%RWASMANAGEDUS~GLRUREPLACEMENTANDASYNCHRO- 
NIZATION~NTER~ALOF~~SECONDS.THEDATAFORTHEPARTL~LLYSA~E 

Bm WERE OBTAINEI)USING THELNJVOL~TILEWR~EUPDAIPDA~~ POLICY, 
W~~HANDW~~HO~TA~YNCHRONOUSSTAGING.ALLRME~AREINMIL-  

LIsmNDs. 

buffer, which may. We assume that the copy-back buffer per- 
forms periodic synchronization operations to limit the amount 
of data that might be lost because of a failure. The synchroni- 
zation operations are initiated at fixed intervals called syn- 
chronization intervals. Each synchronization operation initi- 
ates a batch of disk write operations to copy all dirty objects 
in volatile memory to the disks. 

Tables V and VI compare read and write response times 
from a volatile copy-back buffer with those of a partially safe 
buffer. Both buffers provide comparable read response times 
and very low write response times. Write response times for 
the volatile buffer are somewhat better than those of the par- 
tially safe buffer without staging. When blocks are staged from 
the safe buffer, write response times are comparable. 

The data in Tables V and VI show that volatile copy- 
back buffers and partially safe buffers can provide compa- 
rable buffer performance, i.e., they can be viewed as alter- 
natives. However, partially safe buffers have several ad- 
vantages. No updates are lost from a partially safe buffer in 
the event of a failure. This property also eliminates the 
need to implement periodic synchronization. In transaction 
processing systems, which use an additional mechanism 
(such as REDO logging and checkpointing) to guarantee 
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the update safety, the need  for the additional mechanism is 
eliminated.6 

W e  exper imented with other synchronizat ion intervals and  
found that the copy-back buffer performed best with shorter 
intervals. (Ten seconds was the shortest interval we tried.) 
Similarly, the partially safe buffer performed best ‘with short 
staging intervals. Since the utilization of the disks is low for all 

6  A log may be  used for other purposes as well, such as to record the 
commit decisions for each  transaction. However, such a log can be  much 
more compact than a REDO log [ 181. 
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of the traces, the extra disk operat ions generated at the syn- 
chronization points do  not contribute to significant increases in 
response times for concurrent read or write operations. 

For both the partially safe buffer and  the volatile buffer, 
write response times are near  zero. This indicates that syn- 
chronous I/O is rarely required to satisfy write requests, i.e., 
that the blocks replaced by  newly written blocks tend to be  
clean. In a  more heavily loaded system, this may not be  true. 

To  test this hypothesis, we increased the request load of- 
fered to the simulated system by multiplying the request inter- 
arrival t imes (determined from the traces) by  a  scaling factor. 
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TABLE VI 
UNSAFE UPDATE COMPARISON - WFUIE RESPONSE TIMES THE VOLATILE 

BUFFER WAS MANAGED USING LRU REPLACEMENT AND A SYNCHRONI- 
ZATION INTERVAL OF 10 SECONDS. THE DATA FOR THE PARTLQLY SAFE 

BUFFER WERE OBTAINED USING THE LRU VOLATILE/WRITE UPDATE POLICY, 
WITH AND WITHOUT ASYNCHRONOUS STAGING. NOTE THAT THE HIGH WRITE 
RESPONSE TIMES FOR THE WRITE-THROUGH AU-VOLATILE BUFFER ARE AN 
ARTIFACT OF THE BURSTS OF WRITE REQUESTS IN THE REFERENCE TRACES. 

ALL TIMES ARE IN MILLISECONDS. 

3%-&e 3%-&e 

7%-vol. 7%-vol. 
staging staging 

(C = 1) ( (C = 0) ] 

0.68 0.00 
6.58 0.00 

-l--l 

0.00 0.00 
4.93 0.00 

For example, by choosing a scaling factor of 0.5, we divide the 
actual traced interarrival times in half before supplying them to 
the simulator. Disk utilization increases from about 8%’ (for 
trace “ServerA”) without scaling to over 60% with a scaling 
factor of 0.05.8 The scaled traces provide a somewhat more 
artificial workload than the unscaled ones. However, scaling is 
a simple way to get a rough idea of performance under higher 
utilizations in the absence actual traces of heavier workloads. 

Fig. 12 shows the mean write response time as a function of 
the scaling factor (the offered load) for the two server traces. 
(Similar behavior was observed for the client traces.) To pro- 
duce these traces, the synchronization interval was fixed at 10 
seconds for the volatile buffer, and the staging interval set to C 
= 0 (immediate staging) in the partially safe buffer. In practice, 
the selection of an optimal staging or synchronization interval 
becomes a complex problem at higher loads. (For low loads, 
short intervals are almost always best.) 

The figures show that as the offered load increases, the vola- 
tile, copy-back buffer can maintain low write response times at 
higher loads than the partially safe buffer. The reason for this is 
that the partially safe buffer channels all update requests through 
its safe buffer (3% of the reference set size), whereas updates 
can be buffered anywhere in the volatile buffer (10% of the ref- 
erence set size). At high loads, the smaller safe buffer tends to 
fill up with unstaged updates. When this occurs, update requests 
are likely to encounter a delay while a replacement is performed 
in the safe buffer. Of course, the improved performance of the 
volatile buffer at high loads comes at the expense of additional 
data loss in the event of a failure, since many unsafe updates 
reside in the volatile buffer. 

VII. DISCUSSION AND CONCLUSION 

We have considered the problem of managing partially safe 

’ Even at low utilizations, requests experience significant average waiting 
t$es at the disk server because of the bursty arrival rate. 

Utilization does increase at the same rate as the scaling factor because 
many requests have interarrival times of zero. 
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Fig. 12. Mean write response times vs. inter-arrival time scaling factor. 

buffers. Our  experiments support a number of conclusions 
about their use: 

l Only a small safe buffer is necessary. For our traces, a 
few megabytes was always sufficient without staging. If 
staging is used, even smaller safe buffers will still pro- 
vide good performance. 
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l If the LRU Volatile technique is used, excess space in the 
safe buffer will be wasted. The LRU Global policy is 
more flexible and can take advantage of the additional 
safe buffer space to reduce read response times. 

l When the read reference pattern is very bursty, the LRU 
Global policy may result in poor read response times. 
The same is true for very update-intensive workloads. 
The LRU Global policy exacerbates the problem of read 
request bursts when it elects to replace dirty objects in 
the safe buffer, creating additional work for the disks at 
the wrong time. These effects can be reduced by asyn- 
chronously staging dirty objects to the disks. 

l The Write Update policy is preferred to the Write Purge 
policy because of the poor performance of Write Purge 
when the safe buffer is very small. The small buffer case 
is important because small buffers are usually sufficient 
to eliminate most or all of the write response time. For 
larger safe buffers, the distinction is not significant. 

l Asynchronous staging of dirty objects from the safe 
buffer reduces already-low write response times even 
further. Staging also improves read-response times when 
the LRU Global policy is used. For workloads such as 
ours, it is best to perform staging operations without de- 
lay. If the disks are more heavily utilized, it may be ap- 
propriate to use less bandwidth for staging. Alternatively, 
staging operations could be performed at lower priority 
than synchronous (request-initiated) disk operations. 

l For lightly loaded disks, the performance of a partially 
safe buffer is comparable to that of an all-volatile copy- 
back buffer. By using the partially safe buffer, the need 
for periodic synchronization of the buffer is eliminated, 
and no updates will be lost in the event of a failure. 

One extension of this work is its application to transaction 
processing systems, or other systems that use logging to guar- 
antee the durability of updates. If write response times can be 
made sufficiently small by introducing safe buffers, then one 
of the principal motivations for logging will have been re- 
moved. (One version of this idea is currently being used in the 
POSTGRES storage system [ 171.) Aside from the elimination 
of the complexities of logging, an advantage of the safe-buffer 
approach is that failure recovery is very fast, since there is no 
need to reconstruct the state of the database from the log. 

It may be possible to further enhance the performance of 
partially safe buffers by taking advantage of buffered updates to 
reduce the cost of disk update operations. Piggy-backed up- 
dates, as suggested in [ 181, can be used, or the buffer manager 
can attempt to delay updates until the disk is idle. We expect 
that such enhancements would be most beneficial when the disk 
is heavily loaded, which was not the case in our study. 
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