
394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

Management o f Partia lly Safe Buffers
Sedat Akyiirek and Kenneth Salem, Member, IEEE Computer Society

AbstPactAhfe RAM is RAM which has been made as reliable as
a disk. W e coI1sider the problem of buffer management in partially
safe buffers, i.e., butlers which contain both safe RAM and volatile
RAM. Buffer managemnt techniques for partially safe buffers
explicitly consider the safety of memory in deciding which data to
place in the buffer, where to place it, and when to copy updaks
back to the disk. W e present techniques for managhg such buffers
and study their per formauce using trace-driven simulations.

Index Terms-Buffer management , disks, operat ing systems,
performance, reliability, safe RAM.

I. INTRODUCTION

S Al% RAM is RAM which has been made as reliable as a disk.
Safe RAM can be implemented using batteries or uninter-

ruptible power supplies plus redundancy for error correction and
detection. Comput ing systems, such as transaction processing sys-
tems and operat ing systems, often guarantee the durability of
modif ied data by propagat ing it to disks. Because it can be updated
much more quickly than disks, safe RAM can greatly reduce re-
sponse times for data updates. Safe RAM can also improve per-
formance by reducing the total number of disk writes that must
eventually be performed. Updated objects can be buffered tempo-
rarily in safe RAM in case they are updated again. Should this
occur, two (or more) disk writes will have been combined into one
when the object is finally written to the disk.

The d isadvantage of safe RAM is its cost. A recent study [l]
found that non-volati le RAM was about five times as expen-
sive as volatile RAM, al though this cost differential is likely to
drop over time. Given that some cost differential exists, pur-
tidy safe buffers make sense. Partially safe buffers are im-
p lemented using a mix of safe RAM and volatile RAM. W e
note that when speed rather than volatility is considered, a
similar situation arises. Since faster memories are more ex-
pensive, system designers resort to a memory hierarchy, i.e., a
mix of fast, expensive memory and slower, cheaper memory.

A variety of existing systems already implement partially
safe buffers or assume their existence. These include both
main memory buffers, e.g., in the POSTGRES storage system
[17], and controller buffers such as the partially safe buffer
implemented in the IBM 3990 storage controller [81.

This paper addresses two issues. First, we consider the
management of partially safe buffers, with emphasis on re-
p lacement policies. Common (and effective) replacement

Manuscript received Dec. 19, 1991; revised Aug. 26, 1993. This work WBS
sumxxted bv NSF Grant No. CCR-8908898 and bv CESDIS. . .

S. Akyhk with the Department of Comp&r Science, University of
Maryland, College Park, Maryland 20742.

K. Salem is with the Computer Science Department, University of Water-
loo, Waterloo, Ont., N2L 3G1, Canada, e-mail kmsalem@uwaterloo.ca.

IEEECS Log Number C95002.

policies, e.g., least-recently used (LRU), are blind to the safety
or volatility of the buffer. For example, the LRU policy might
place an updated object in the volatile buffer if that is where
the least recently used object happens to reside. In a partially
safe buffer, replacement decisions should take the safety of the
buffer into account. An example of a policy which takes safety
into account is one which makes all read replacements in the
volatile buffer and all update replacements in the safe buffer.

W e present four candidate replacement policies and evalu-
ate their per formance using trace-driven simulations. Our
evaluation considers the following factors:

l Size of the Safe BufSer. Performance can be expected to
improve as the safe buffer size is increased. However, the
marginal benefits of additional buffer space will decrease
with the buffer size. Furthermore, the buffer size affects
different buffer management policies differently.

l Workloud Characteristics. Work load characteristics, such as
read/write ratios, “burst iness” of request arrivals, and request
locality, affect the performance of the buffer. Our study con-
siders a variety of workloads with differing characteristics.

l Update Staging. When a dirty object is replaced in a buffer
it must be written back to the disks, causing a delay. To re-
duce these delays, dirty objects residing in the safe buffer
can be written asynchronously to the disks. This is known
as staging. Staging can reduce response times if disk utili-
zation is not too high. Staging also affects the relative per-
formance of the replacement policies.

The second goal of this paper is to compare partially safe
buffers with volatile buffers. Write-through volatile buffers,
which must guarantee the safety of every update as it occurs by
forwarding it to a disk, will clearly be outperformed by a par-
tially safe buffer. Our study quantif ies this per formance gap. A
more interesting compar ison can be made between partially
safe buffers and volatile buffers in which unsafe updates can
be permitted, at least temporarily. W e will refer these buffers
as copy-buck buffers. Copy-back buffers are common in op-
erating systems and database management systems.

Copy-back buffers share many of the advantages of partially
safe buffers. Copy-back buffers remove disk I/O from the
critical path of update requests, resulting in much faster re-
sponse times. Furthermore, by buffering unsafe updates in the
buffer, it may be possible to combine several updates to the
same block or page into one, resulting in improved write
throughput. Copy-back buffers also have a disadvantage: Ap-
plications must be willing to tolerate some lost work in the
event of a failure. For example, updated data in a Unix file
system buffer is not f lushed to disk immediately. Instead, buff-
ered updates are synchronized (i.e., copied back to the disks)

0018-4347/95$04.00 Q 1995 IEEE

AKYijREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS

periodically. A failure may cause updates that occur after the
most recent synchronizat ion point to be lost.

In database management systems, buffer managers that permit
unsafe updates are said to use a TFORCE [7] policy. Such
buffer managers are often used in conjunction with a separate
mechanism, such as after-image (REDO) logging [7] and peri-
odic checkpoint ing, to guarantee the safety of all updates.’ The
combinat ion of logging, checkpoint ing, and a -FORCE volatile
buffer provides advantages similar to those of partially safe buff-
ers: Write response times are fast and the safety of updates is
guaranteed. However, a partially safe buffer can provide the
guarantee more simply, since no REDO logging or checkpoint-
ing is necessary. Furthermore, checkpoint ing mechanisms intro-
duce a tradeoff between failure recovery time and overhead
during normal operation. (More frequent checkpoints reduce
recovery time at the expense of additional overhead.) Partially
safe buffers require no such tradeoff.

Our per formance study compares partially safe buffers and
volatile copy-back buffers. Partially safe buffers are the superior
alternative if they can provide competit ive request response
times, since they do not lose updates to failures. In database
management systems, partially safe buffers can be v iewed as
simple alternatives to REDO logging and checkpoint ing.

A. Related Work

A number of existing or proposed systems already employ
safe RAM to improve performance. As we have already noted,
the IBM 3990 disk controller [8] is capable of buffering up
dates in its non-volati le memory. Both volatile and non-
volatile buffers are maintained, and updates appear in both.
Dirty data in the safe buffer is s taged to disk asynchronously
when possible. XPRS [18], a POSTGRES-based transaction
processing system, buffers frequently updated data blocks in
safe RAM to provide fast recovery. The techniques used to
manage the safe buffer are not descr ibed there. The Phoenix
file system [SJ maintains an entire file system in safe RAM.

In [3], the use of partially safe buffers in transaction proc-
essing systems is discussed. An analytic queueing model is
used to estimate the size of the safe buffer required to avoid
synchronous disk writes, when asynchronous staging is used.
(Synchronous writing is required when the safe buffer becomes
filled with dirty data.) However, that work does not consider
buffer management , which is the focus of the model in this
paper. Our model incorporates the impact of the safe buffer
and the buffer management policies on read response times as
well as write response times, and is based on trace-driven
simulations rather than an analytic model.

Stochastic simulations descr ibed in [12] compare several
alternative safe RAM configurations in database systems. Safe
extended main memory, solid state disk, and safe disk
(controller) buffers are considered. That work uses a different
safe RAM model than ours. In [121, read-referenced data that
is located in the safe extended main memory must be trans-
ferred to volatile main memory to be read. Furthermore, direct
transfer of data between the safe RAM and the disks is not

’ Actually, only the safety of cornmined updates is guaranteed.

395

possible. The focus of that work is on compar ing the altema-
tive safe RAM configurations, and not on buffer management .

Two recent studies have used trace-driven simulations to
evaluate safe buffers in operat ing systems. One study [l] was
based on traces from the Sprite file system, while the second
used traces from Unix file systems [131. The traces used in
[131 are block level traces similar to our own, while the Sprite
traces are captured at a higher level. In particular, the Sprite
traces do not include requests for file system meta-data, such
as i -nodes [9]. Such references account for a substantial frac-
tion of the requests (particularly write requests) in our traces
andinthoseof[13].

Both of these studies used a safe RAM configuration called
write-aside, which we did not consider in our study. Under this
configuration, the safe RAM handles all update requests, but it
cannot be used to satisfy read requests. This’ configuration is
similar to that implemented by the IBM 3990 disk controller and
the model studied in [3]. The Sprite study also considered a uni-
fied configuration similar to the one used in this study. Under the
unified model, read requests can be satisfied from either the safe
buffer or the volatile buffer. In the Sprite study, the unified par-
tially safe buffer was managed using a policy similar2 to the L.RU
GlobuUWrite Purge policy descr ibed here. Other policies were
not considered. The Sprite study concluded that the unified con-
figuration provided better overall performance.

Both of these studies showed that small amounts of safe
RAM can provide significant reduct ions in write traffic. This
general result corroborates one of our own. Neither of these
studies considered the effects of asynchronous staging from
the safe buffer, presumably because their principle perform-
ance metric was the reduction in write traffic due to the safe
buffer. (Staging is a technique for improving response times at
the expense of increased traffic behind the cache.) Neither
study evaluated policies for managing both read and write re-
quests under the unified partially safe cache configuration.
This is the primary focus of our study.

Several techniques have been suggested for improving the
disk performance, assuming that updates are temporari ly buff-
ered. Safe RAM is ideal for use in combinat ion with these
techniques, since buffered updates will not be lost in the event
of a failure. Ng [111 suggests that safe RAM can be used to
eliminate the write penalty associated with duplexed disks.
Buffered writes can also be “piggy-backed” onto read opera-
tions [161, allowing the disk to be updated with very little cost.
Either of these techniques can be combined easily with the
buffer management techniques descr ibed in this paper. How-
ever, we do not consider such extensions here.

Finally, several p roposed memory-resident transaction
processing system designs [4], [6], [lo] rely on safe memory to
commit transaction updates quickly. Small safe memories have
also been used to provide fast recovery in the Sprite file sys-
tem [2]. In those systems, safe memory management is tied
closely to the transaction manager or the file system. In con-
trast, the techniques descr ibed in this paper are not tied to the
semantics of any particular data manager.

2 The policy in [l] copies data from the safe cache to the volatile cache in
some situations. The policies described here do not.

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

REQUESTS

/ j MEMORY
I

1 ~

PARTIALLY-SAFE

BUFFER

Fig. 1. Storage model.

SLOW

SAFE

MEMORY

In the next two sections we present several buffer manage-
ment techniques for partially safe buffers, our simulation
model, and the traces that drive it. A comparison of the buffer
management techniques based on the simulation model is pre-
sented in Section IV. Section V describes how asynchronous
staging can be used to further improve the performance of the
partially safe buffer. Finally, in Section VI, we compare par-
tially safe buffers with volatile, copy-back buffers.

II. MANAGING PARTIALLY SAFE BUFFERS

We have used a simple model to study partially safe buffers.
The storage system is assumed to manage a collection of fixed-size
objects, each with a unique identifier. (Objects may correspond to
pages or file blocks in a real system.) Three types of storage are
available to hold them. Slow, safe storage (e.g., disks) maintains a
copy of every object. A faster buffer also exists, and is divided into
safe and volatile parts. Copies of some of the objects reside in the
buffer. The model is illustrated in Fig. 1.

The system’s load consists of read and write requests. The
buffer manager must satisfy these requests by observing the
following rules:

l Read Rule: When an object is read, a copy of the object
should be buffered (either safe or volatile).

l Update Rule: When an object is updated, an updated
copy should reside in safe memory (either fast or slow).
Later we will consider volatile copy-back buffers, which
do not observe this rule.

We have considered two binary dimensions along which to
classify buffer management techniques, giving rise to four
classes of buffer managers. The first dimension defines the
buffer manager’s behavior in the event of a read miss. The
second defines its behavior in the event that an updated object
is already in the volatile buffer.

A. Read Miss Policy

According to the read rule, read requests are satisfied im-
mediately if the requested object is in (either part of) the
buffer. A read miss occurs if the object is not in either buffer,
in which case it must be read from the disk. We have consid-
ered the following two policies for handling read misses.

SAFE
BUFFER

BEFORE

I Read Object G

AFTER
(LRU Volatile)

AFTER
(LRU Global)

Fig. 2. Read miss policies compared. The figures illustrate the effect of a read
miss under the two read miss polices. It is assumed that both the safe and
volatile buffers axe full, so that the read miss must cause a replacement. The
chains of arrows indicate recency of use, with A + B indicating that A is
more recently used than B. Under the LRU Volatile policy, object G replaces
object E, since E is the least recently used object in the volatile buffer. Under
L.RU Global, object G replaces object F in the safe buffer instead, since F is
the least recently used overall.

l LRU Volatile. This policy specifies that missed reads
cause a replacement of the least recently used object in
the volatile buffer. Of course, if free space is available in
the volatile buffer, replacement is not necessary.

l LRU Global. This policy specifies that missed reads
cause a replacement of the least recently used object in
the whole buffer. Under this policy, it is possible that
read replacements will be performed in the safe buffer.

Fig. 2 illustrates the behavior of two read miss policies. The
LRU Global policy is particularly appealing when the volatile
portion of the buffer is relatively small, because all read re-
quests need not be channeled through the volatile buffer.

B. Write Allocation Policy

So that the write rule can be satisfied without “writing
through” to the disk, updated blocks are always placed in the
safe buffer. If necessary, the least recently used object in the
safe buffer is replaced to make room. The write allocation
policy specifies the behavior of the volatile buffer in the event
of an update. This policy is necessary in case an object is in
the volatile buffer when it is updated. We have considered two
write allocation policies.

391

SAFE
BUFFER

VOLATILE
BUFFER

AFTER
(Write Purge)

I Update Object D

SAFE
BUFFER

VOUTILB
BUFFER

AFTER
(Write Update)

Fig. 3. Write allocation policies compamd. The figures illustrate the effect of
an update under the two write allocation polices. The chains of armws indi-
cate recency of use, as in Fig. 2. Under the W & e Purge policy, the update to
D causes it to be removed from the volatile buffer. Object D is placed in the
safe buffer, replacing F, the oldest safe object. (We have assumed here that
the safe buffer is full.) Under Wrife Update, object D is updated in the vola-
tile buffer and remains there after the update. Note that a subsequent read
miss will cause object E to be replaced in the volatile buffer in this case.
Under the Write Purge policy, E would not have to be replaced, since a free
slot is available in the volatile buffer.

l Write Purge. This policy specifies that objects are deleted
from the volatile buffer when they are updated. The space
occupied by the deleted object is marked free, and is avail-
able to hold a new objectswhen the next read miss occurs.

l Write Update. This policy specifies bat objects in the vola-
tile buffer remain there if they are updated. The object is up
dated in the volatile buffer to reflect its new value. Since up
dated objects are always placed in the safe buffer as well, this
policy may result in two copies of an object being buffered
simultaneously, one safe and the other volatile. An object
updated in the volatile buffer is not considered to have been
‘!used” by the update. Thus, if the least recently used object
in the volatile buffer is updated, it will still be replaced when
the next read miss occurs (assuming that the Z&U Volatile
read miss policy is being used).

Fig. 3 illustrates the two write allocation polices. In [15], a
third policy, called Write Allocate, is discussed. Under this
policy, updated objects would be installed in the volatile buffer
if they were not already there. (The object would be updated in
place, as under the Write Update policy, if it was already in the
volatile buffer.) This policy does not seem appropriate for the
volatile buffer, since updated objects are automatically in-

buffer hit (no disk I/O)

Fig. 4. The simulation model.

TABLE I
BUPFERSIZESARE SPECI~IEDWA~TOTHEREFERENCESETSIZE,WHICH

I~TRACE-DEPENDENT.THEREFERENCESETSIZESFOREACHTRA~ARE
GIVENINTABLBII.

1 Parameter 1 Default Value 1

stalled in the safe buffer anyway. W e do not consider the Write
Allocate policy further in this pap&.

I ILTHESIMULATION MODEL

W e have developed the simulation model illustrated in Fig.4
to study the buffer management techniquks descr ibed in the
previous section. The simulator is driven by traces of read and
write requests. Each trace request (descr ibed in more detail
below) includes a block number, a read/write flag, and an arri-
val t imestamp.

The arrival process for the buffer is determined by the trace
request t imestamps. At each request’s arrival time, the simulator
determines which blocks must be moved between the buffer and
the disks, according to the read and update rules, the buffer man-
agement policy being implemented, and the buffer size. A single
request results in as few as zero and as many as two disk opera-
tions. One disk operat ion may be required to bring the requested
block into the buffer. A second operat ion may be required to
write a replaced, dirty block back to the disk. If two disk opera-
tions result from a single request they are initiated sequentially,
as illustrated by the loop in Fig. 4. The response time of a re-
quest is the sum of the response times of the disk operat ions that
it generates. Requests that generate no disk operat ions are de-
f ined to have a response time of zero.

Disk service times are assumed to be exponential ly distrib-
uted, and requests are served in FIFO order. W e considered a
more elaborate disk model in which seek times were calculated
using the block numbers of successive requests and additional
assumptions about the disk’s geometry. While such a model
would probably result in more accurate absolute service times,
we felt that it was unlikely to have a strong impact on the relu-
tive per formance of the various buffer managers. For the sake
of simplicity, we elected to use the simpler exponential model.

The simulation parameters and their default values are
summarized in Table I. The simulator reports a variety of sta-
tistics for each run, including counts of I/O operations, mean

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

TABLE II
REFERENCE TRACE SUMMARY.

Trace Trace Number of Number Numbers Reference Set Num. Records/
Name “be Records of Reads of Writes Size (RSS) RSS

serverA post-bufier 180000 125984 (70%) 54016 (30%) 7139 25.2

client A post- buffer 8000 3311 (41%) 4889 (59%) 1058 7.6

serverB pre-buffer 370000 308790 (83%) 61210 (17%) 5319 69.6

clientB pre-buffer 22000 18122 (82%) 3878 (18%) 1050 21.0

response times for read and write requests, and utilization, measure using these traces represent times that an application
service time, and waiting time at the disk server. It is imple- program observes as it makes requests to a file system with a
mented using the CSIM simulation library [141. partially safe buffer.

A. The Truces

The traces were gathered from workstations running a cus-
tomized version of the SunOS 3.2 operat ing system kernel. The
kernel was modif ied to produce a trace record for each block I/O
request (read or write) to file systems residing on the worksta-
tion’s disk(s). Trace records are deposi ted in a kernel buffer,
from which they can be read by a user-level process using a
special “pseudo-device” driver. Requests dest ined for particular
file systems can later be filtered from the traces if desired.

A post-buffer trace includes only those I/O read requests that
missed the buffer cache on the traced machine, plus all write
requests. These traces are representat ive of the request streams
that might be seen by a storage controller with a partially safe
buffer (such as the IBM 3990), since they include only those
requests that “fell through” the buffer on the traced machine.5
The request response times we measure using these traces repre-
sent times that the file system observes as it makes requests to an
underlying storage device equipped with a partially safe buffer.

Each trace record includes a unique identifier3 for the re-
quested data, the size of the request, a read or write tag, and
some additional pieces of information. Each record also indi-
cates whether or not the request “hit” the I/O buffer cache on
the traced machine.

Because of the way the tracing facility is implemented, each
write request in our traces represents a request to flush a block
from from the file system buffer to disk, rather than the actual
modification of the block in the buffer. In Unix, these block
flush requests are often generated by a special synchronizat ion
process which periodically“ f lushes dirty data from the buffer.
Thus, the block flush request may appear in the trace some time
after the block was actually updated in the buffer. Because the
synchronizat ion process is periodic, it also means that many of
the block f lushes occur in periodic bursts in the reference stream.
Rather than attempting to guess the actual block update times,
we used the traces as is, with the bursty write request pattern, to
drive our simulations. Fortunately, the (simulated) safe buffer
tends to smooth out the effects of these bursts anyways. The
primary effect of this decision is that the write response times
(under all of the buffer management policies) are higher than
they would otherwise be when the safe buffer is very small.
Where this effect is apparent in our simulation results in the next
section, we have been careful to point it out.

Requests in the traces vary in size from 1K bytes to 8K
bytes, with the vast majority of the requests being for 8K
bytes. For the purposes of these simulations, all requests were
treated as 8K requests, i.e., when a small block is requested,
the large block that it is a part of is requested instead. Thus,
the 8K byte blocks, each of which has a unique identifier, are
the database “objects” of our model.

Each trace covers a period of about 12 hours, starting in
mid-morning, on a weekday. Traces were taken from two
workstations. One of these serves as a network file server. The
other is a client workstation with its own private disk. Each of
the four traces was recorded on a different day. The traces
from the server record references to a single large file system
housing primarily shared data and executable files. The client
traces trace references to the local fi lesystem on the client
workstation. This file system holds primarily user files. W e
exper imented with a pre-buffer and a post-bu#er trace from
each of the workstations.

Two types of traces were used in our experiments. A pre-
buffer trace includes all I/O requests, including those that hit
the traced system’s buffer cache. Such a trace is representat ive
of the request streams seen by a main memory buffer, such as a
file system’s block buffer. The request response times we

Some of the trace characteristics are are summarized in Table
II. The reference set size refers to the total number of objects
referenced at least once in the trace. This number is much
smaller than the total number of objects stored on the disk, since
many objects are not referenced at all. The last column of the
table gives a crude indication of the locality present in the re-
quest stream. Cumulative read request inter-arrival time distri-
but ions for each of the traces are shown in Fig. 5. Inter-arrival
t imes were measured with 20 mill isecond resolution, as this was
the resolution of the system clocks on the traced machines.

In general, the post-b&r traces on both the client and the
server have a higher percentage of updates. The client traces
exhibit less reference locality than those of the server. Finally,

3 An identifier consists of major and minor device numbers and a block
number.

4 Every 30 seconds.
5 The client and server workstations from which the traces were recorded

each have buffer sixes of approximately 2 megabytes.

AKYiiREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS

90%

70%

50%

30%

I

10% c

i

I / 1 I I
0 200 400 Km 800 100

Read Request Inter-Arrival Time (milliseconds)

Fig. 5. Cumulative trace request inter-arrival t ime distributions.

read requests in the client traces have burstier inter-arrival
t imes than those in the server traces. This can can be seen from
the flatness of the client trace distributions (especially clientB)
in Fig. 5. These curves indicate that almost all inter-arrival
t imes are either very short (less than 100 mill iseconds) or very
long (greater than one second). The probability of inter-arrival
t imes greater than one second is at least twice as great in the
clientB as in either server trace.

IV. PERFORMANCE OF THE BUFFER MANAGEMENT POLICIES

W e performed several experiments to determine the perform-
ance of the buffer manager under various combinat ions of the
read miss and write allocation policies. Of primary interest in
our first experiment is the effect of the safe buffer size on per-
formance. In this experiment, the sizes of the safe and volatile

399

buffers were varied, while keeping the total buffer size (safe plus
volatile) fixed at 10% of the reference set size for each trace.
This allows us to distinguish the effects of changes in safe buffer
size from the effects of changes in the total buffer size. Refer-
ence set sizes for each trace are given in Table II.

Figs. 6 and 7 show the mean write and read response times
for each of the four buffer management policies. Fig. 6 shows
that a relatively small safe buffer, 3% or 4% of the reference
set size, is sufficient to reduce the mean write response time to
just a few mill iseconds for the server traces. (The high write
response times for very small safe buffer sizes is primarily an
artifact of the write bursts in our traces.) The reduction was not
as significant for the client traces for reasons which we will
discuss shortly.

For comparison, Table III gives the mean read and write re-
sponse times achieved by an all-volatile buffer of the same
total size. Write response times for the all-volatile buffer are
high because all updates are written through the buffer to the
disk to ensure their safety, and because of the write bursts.
Read response times are higher for the client traces because
read requests are burstier in those traces.

The buffer management policies do not have a very strong ef-
fect on write response times. The LRCJ Global policy does result
in somewhat lower write response times than LRU Volatile for
the client traces when the safe buffer is large. This is because of
c lean data placed in the safe buffer by the LRU Global policy.
(We discuss this further in Section 1V.C.) However, both buffer
management and buffer sizes do have an impact on read re-
sponse times, as Fig. 7 illustrates. Furthermore, the behavior we
observe is trace dependent . In the following sections, we discuss
the impact of the buffer ‘management polices on read response
times and the reasons for the trace dependencies.

A. ESfect of the Read Miss Policy

The read miss policy’s effect is best illustrated by the steep
rise in read response time under the LRU Volatile policy in
Figs. 7(a) and 7(c). As the safe buffer grows and the volatile
buffer shrinks, the LRU Volatile policy is unable to take advan-
tage of the larger safe buffer. The LRU Global policy, on the
other hand, simply performs more read replacements in the
safe buffer as it grows.

TABLE III
RESPONSE TIMESCOMPARISON OF VOLATILEANDPARTIALLY SAFE BUFFERS.PARTIALLYSABUFFERS ARE MANAGED~SINGTHE LRUVOUTILUWR~

UPDATE POLICY.TIMESARERE~RTEDMMILLI~ECONDS.

0% Safe Buffer Size 3% Safe Buffer Size 5% Safe Buffer Size

10% Vol. Buffer Size 7% Vol. Buffe I Size 5% Vol. Buffer Size

Read Write Read Write Read Write

Response Response Response Response Response Response
Trace Time Time Time Time Time Time

serverA 10.71 288.89 8.91 2.23 10.14 1.39

clientA 14.20 77.89 14.69 16.08 14.07 15.96

serverB 5.11 415.23 4.03 1.52 4.26 0.20

clientB 32.03 66.43 38.70 8.82 39.51 8.87

400

Write Response Tim
(ms.)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 199.5

Write Response Time
(ms.)

1% 7% Safe Buffer Sire
9% 22 3% Volatile Buffer Size

Write Response Time
(ms.)

TRACE: serverB

20.00 1

15.00 i -4

10.00 L : 1

5.00 ir
I /

0.00 t A
I i I I / I i-J

;zI
3%
1% 22

7% Safe Buffer Size
3% Volatile Buffer Size

Fig. 6. Mean write response times.

Because of the inflexibility of the LRU Volatile policy, a
safe buffer that is too large is wasted. This suggests that, in
practice, proper selection of the safe buffer size will be more
critical under the LRU Volatile policy than under LRU Global.
Too little safe buffer space will result in poor write response
times, but excess space will be wasted. In contrast, the LAU
Global policy can take advantage of additional safe buffer
space to reduce read response times. This i+-+-s illustrated
more clearly in Fig. 8, which shows read response time as the
safe buffer size is increased (for trace “ServerA”). The volatile
buffer size is fixed at 5% of the reference set size.

I , I I / I , I 1

15.00 i
r

5.00 i
I

1 j I I 4
1% 3% 5% 7% Safe Buffer Size
9% 7% 5% 3% Volatile Buffer Size

Wnte Response Tim
(mr.)

TRACE: died !
/

I
4

16.00,

-. -.

6.00 ‘.

-.._ LRU Global/ ’
-=--_.__ WritePurge

LRUGlobaV ------_

1.

I

4.00

Writ.dlpdMC

. -I.. .----
1 ----.-; ii

1%
9% iit

5% 7% Safe Buffer Size
5% 3% Volatile Buffer Size

B. Effect of the Write Allocation Policy

When the safe buffer is relatively small, the Write Purge pol-
icy results in a higher read miss ratio than the Write Update pol-
icy, leading to higher read response times. The effect can be seen
most clearly in Figs. 7(b) and 7(c), in which the performance of
the two Write Purge policies degrades sharply when the safe
buffer size falls below 2% of the reference set size.

The Write Purge policy performs poorly when the safe buffer
is small because of a phenomenon we call update theft. When an
object residing in the volatile buffer is updated, the Write Purge
policy causes it to be deleted from the volatile buffer and placed

AKYiiREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS 401

Read Response Time
Cm\.)

TRACE: serverA i
15.00;

I4.xj

13.
w/

I2.OLu

II&

~

1 10.00 ~

9.0&+

i
A

/ :

I I I I I I I

3,”
7% Safe Buffer Size
3% Volatile Buffer Size

Read Response Time
(ms.)

;
I I I

6.20

6.00 L

I TRACE: serverB 1

5.80 k

5.60 1

5.40 1 /

5.20 r

5.00 L

4.80

4.60 1

4.40

t
4.20

b

4.00 c

3.80 k

LRU Global/

1% 7% Safe Buffer Sizt
9% 2 R 3% Volatile Buffer Size

Fig. 7. Mean read response times.

Read Response Time
(ms.)

I ’ I I I I I i

I ’

t
LRUGlobaU / ..

_-
_.I’

24.00 writeupdate ,; __a-
_,-+

/’ __*-
__--

__-- . -LRU Global/
I

,, __.I- WIit&UIg~
i

I

I

TRACE: clientA
i

16.00 I

14.00~ ...

I 1 I I / / I I I
3% 7% Safe Buffer Size
7% 2 3% Volatile Buffer Size

Read Response Time
em.)

I / I I I I I / 60.00 c ,_-- ,_-- ,
,’ LRU Global/

,’ , writeupdate i
LRU Global/ ,’

55.00 WritePurge ,’
,,’ 1

,’
,,’ /’ I

45.00

40.00 1

35.00

1

instead in the safe buffer. If the safe buffer is small, this recently
read object may be completely eliminated from the buffer much
more quickly than it would have been had it remained in the
volatile buffer. This problem can be eliminated by making the
safe buffer larger. Another possibility is to move data to the
volatile buffer when it is replaced in the safe buffer. This latter
technique is used in the Sprite studies descr ibed in [11.

C. Trace Dependenc ies

One of the most striking features of Fig. 7 is the difference
between the client and server traces. For the traces from the

TRACE: clientB

i

I I I I I I I i
3% 7% Safe Buffer Sk
7% :,” 3% Volatile Buffer Size

server, the L.RU Global policy is sometimes superior to LRU
Volatile. However, LRU Global performs poorly on the client
traces regardless of the safe buffer size. For both the client and
the server, there was little difference in per formance between
post-buffer and pre-buffer traces.

Further examinat ion of our results indicates that the buffer
management policies do exhibit general patterns of behavior
that are independent of the traces. However, certain trace char-
acteristics bring out, or magnify, different aspects of the be-
haviors. To illustrate, consider Fig. 9, which is identical to Fig.
7, except that synchronous read transfer ratios are shown in-

402

Read Response Tim
(ms.)

5.00 c *..~ J
!

5% 10% 15% 20% Safe Buffer Size
5% 5% 5% 5% VoLBuffer Size

Fig. 8. Read response times vs. safe
fixed at 5% of the reference set size.

size. The volatile buffer size is

stead of the read response times. The synchronous read trans-
fer ratio descr ibes the average number of disk operat ions per-
formed per read request. This includes disk reads to bring re-
quested objects into the buffers, as well as the writes needed to
copy replaced dirty objects back to the disk.

The effects of the LRU Volatile and Write Purge polices,
which we have already discussed, are clearly evident in both
the client and server traces. The LRU Volatile policy consis-
tently drives up the transfer ratio as the volatile buffer shrinks.
Furthermore, the Write Purge policy drives the ratio up when
the safe buffer is small. However, this behavior does not
translate to consistent response time behavior, as compar ison
of Figs. 7 and 9 shows.

The reason for the poor read response times of the LRU
Global policies on the post-buffer client trace can be seen from
Fig. 9(b). The read transfer ratios for the LRU Global polices
are elevated because of the very large percentage of write re-
quests in the trace (see Table II). When updates are frequent,
read misses become more expensive because replaced objects
are more likely to be dirty. (Since updates are channeled
through the safe buffer, it is likely that objects replaced from
there will be dirty.) In effect, the LRU Global policy transfers
some of the effort of copying dirty objects back to the disks
from write requests to read requests. When write requests are
frequent, the impact on read response times is severe. As we
will show in the next section, this problem can be reduced
significantly by using asynchronous staging.

The LRU Global policies have poor read response times on
the pre-bu@r client trace for a different reason. Fig. 10 shows
the mean response time (for disk operat ions) as a function of
buffer size for two of the traces. Response times for the pre-
buffer client trace are several t imes higher than those of other
traces (represented in Fig. 10(a) by the post-bu$er server trace).
Furthermore, use of the LRU Global policies increases the al-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

ready-high response time still further. The high response times
are caused by bursts of read requests in the pre-buffer client
trace, which result in long queues at the disk. This problem is
exacerbated by the LRU Global policy, since it must sometimes
write dirty objects back to the disk to make room for newly read
objects. Because of the long queues, these writes have a signifi-
cant impact on disk response time. (The problem is magnif ied
somewhat because writes, like reads, often arrive in bursts in our
traces.) The result is higher response times for read requests, as
Fig. 7(b) shows. The long service times also account for the
relatively high write response times that we observed for this
trace (Fig. 6 and Table III).

In summary, two trace characteristics have been found to
have an impact on the relative performance of the buffer man-
agement policies. Very bursty read request arrivals tend to
drive up response times, regardless of the buffer management
policy. However, the problem is exacerbated by the LRU
Global policy. Since buffers tend to smooth out arrival bursts,
this is more likely to be a factor in a main-memory buffer (pre-
buffer traces) than in a controller buffer @ost-bufSer traces). In
addition, a very high percentage of writes in the request stream
(such as might be observed at a controller buffer) may be det-
rimental to read response times when the LRU Global read
miss policy is used. However, this problem can be alleviated
by update staging, as we will show in the next section.

V. ASYNCHRONOUS STAGING

Read and write response times can be reduced by asynchro-
nously staging (copying) dirty pages from the safe buffer to the
disk. When a dirty page is staged, it is not removed from the
buffer. Its buffer state is simply synchronized with its state on
disk. Staging operat ions are initiated by the buffer manager, al-
lowing many I/O operat ions to be removed from the critical
paths of write (and possibly read) requests. Asynchronous stag-
ing from the safe buffer has been suggested in [3] and has been
implemented in some systems, including the IBM 3990 storage
manager. In the following experiments, we consider the impact
of asynchronous staging on response times and show how it af-
fects the performance of the buffer management policies.

Staging can be implemented in a variety of ways. In our
simulator, the safe buffer is checked periodically to determine
whether it contains any dirty objects. If so, a request to flush
the oldest dirty object in the safe buffer is generated. After
checking for (and possibly staging) a dirty object, the buffer
manager waits C seconds before checking again. (The simula-
tion parameter C is called the minimum staging interval.)
When C is set to zero, the buffer manager issues requests to
copy objects back to the disk as soon as they are updated.
Larger values of C reduce the disk’s utilization by reducing the
number of write operat ions that are performed. However, if C
is too large, staging may become ineffective.

Staging reduces write response times significantly. Table IV
shows how the mean write response time is affected when
staging is used. The results show that by staging no faster than
one block per second, a safe buffer of size 1% performs at
least as well as a safe buffer three times as large that is not
staged. When updated pages are s taged immediately to the

AKYiiREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS 403

Syncbmnous Read Transfer Ratio

0.30 c

I

L

!
0.40

1

TRACE: serverA

Syncbmous Read Transfer Ratio

I I
0.18 r

TRACE: serverB

L I I I I

1

2%
2 :2

8% Safe Buffer Size
8% 2% Volatile Buffer Sk

Synchronous Read Transfer Ratio

0.42

0.36

0.30

2
4% 6% 8% Safe Buffer Size
6% 4% 2% Volatile Buffer Size

I
TRACE: diemE

I
0.18 i

0.15

I

t

0.12 i
I I I I

Fig. 9. Synchronous read transfer ratios. The total buffer size is fixed at 10% of the reference set size.

disk (C = 0), update time is reduced to near zero for all but the
update-intensive trace “clientA”. Even for that trace, a 3%-&e
buffer coupled with immediate staging reduces the write re-
sponse time to zero. In qualitative terms, the data in Table IV
confirm the predictions of analytic model of [3]: Small, s taged
safe buffers can reduce write response times to near zero.

It might be expected that asynchronous staging would
increase read response times because of content ion for the
disk. Fig. 11 shows mean read response times for each of
the four buffer management algorithms using staging with
C = 0. This figure should be compared with Fig. 7, which
shows read response times without update staging. In abso-

lute terms, the staging did not have a strong impact on read
response times. The disk’s utilization was low in all of our
experiments, and the simulated disk had little difficulty han-
dling the additional traffic caused by staging operations, even
when C = 0. In the next section we will consider staging to a
more heavily utilized disk.

Fig. 11 also shows that staging improves the performance of
the LRU GZobul policy relative to the others on the client
workstation traces. These were the traces on which the LRU
Global policy performed poorly without staging (see Fig. 7).
Staging is particularly beneficial under the LRU Global policy
because it c leans dirty objects in the safe buffer. When the

404

Disk Rcspnse Time
mw

,’
,’ . .

!’ ,,’ LXU Global/

,’ writeupdate

,’

,’
*’ /

,’
,’

TRACE: clientB

,’

i
I

i

i i 1
i ,’ / ,‘,,’ ,’ i

I,-iz-:~]

‘80 /
I I I I -1

4% 8% Safe Buffer Sire
6% 2; 2% Volatile Buffer Size

Fig. 10. Average disk response times. The total buffer size is fixed at 10% of
the refexnce set size.

L&U Global policy elects to replace an object in the safe
buffer, the object is less likely to be dirty.

VI. UNSAFE UPDATES

For some applications, it is not necessary that all updates be
placed into safe memory immediately. Such applications either
tolerate some lost updates in the event of a failure, or preserve
the durability of their updates using some other mechanism,
such as logging.

We have performed experiments to compare a partially safe
buffer (with does not lose updates) to a volatile, copy-back

IEEETRANSACTIONSONCOMPUTERS, VOL. 44, NO. 3, MARCH1995

TABLBlV
MEANWRITERESPONSETIMESUSINGA~YNCHRONOUSSTAGING.RESPONSE

TIMES FOR THE PARTIALLY SAFE BUFFERS WERE DETERMINED USING THE
LRU GWBAUWRRE UPDATE BUFFER MANAGEMEW POLICY. HOWEVER,
ALL OF THE POLICIES PRODUCED SIMILAR WRITE RL?SPoNSE TlhiES. AIL

TlMEs ARE REPORTED IN M~SECONDS.

r Trace

serverA

client A

serverB

clientB

3%-safe

‘I%-volatile
no staging

1.79

16.40

1.51

8.27

3%-safe 7 ‘I%-volatile
c=o

0.00
0.00

1

0.00
0.00

TABLE V
UNSAFEUPDATECOMPARISON-READRES~ONSETIMES.THEVOLKIZE

BIJFI%RWASMANAGEDUS~GLRUREPLACEMENTANDASYNCHRO-
NIZATION~NTER~ALOF~~SECONDS.THEDATAFORTHEPARTL~LLYSA~E

Bm WERE OBTAINEI)USING THELNJVOL~TILEWR~EUPDAIPDA~~ POLICY,
W~~HANDW~~HO~TA~YNCHRONOUSSTAGING.ALLRME~AREINMIL-

LIsmNDs.

buffer, which may. We assume that the copy-back buffer per-
forms periodic synchronization operations to limit the amount
of data that might be lost because of a failure. The synchroni-
zation operations are initiated at fixed intervals called syn-
chronization intervals. Each synchronization operation initi-
ates a batch of disk write operations to copy all dirty objects
in volatile memory to the disks.

Tables V and VI compare read and write response times
from a volatile copy-back buffer with those of a partially safe
buffer. Both buffers provide comparable read response times
and very low write response times. Write response times for
the volatile buffer are somewhat better than those of the par-
tially safe buffer without staging. When blocks are staged from
the safe buffer, write response times are comparable.

The data in Tables V and VI show that volatile copy-
back buffers and partially safe buffers can provide compa-
rable buffer performance, i.e., they can be viewed as alter-
natives. However, partially safe buffers have several ad-
vantages. No updates are lost from a partially safe buffer in
the event of a failure. This property also eliminates the
need to implement periodic synchronization. In transaction
processing systems, which use an additional mechanism
(such as REDO logging and checkpointing) to guarantee

AKYijREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS 405

Read Respanse Time
m.)

14.00
t TRACE saverA

13.00 c

9.00 c

E :Ti E
1% Safe Buffer Size
3% Volatile Buffer Size

Read Response Time
Cm.)

TRACE: serverB

4.20

, , /
I / I

Fig. 11. Mean read response times using asynchronous staging.

the update safety, the need for the additional mechanism is
eliminated.6

W e exper imented with other synchronizat ion intervals and
found that the copy-back buffer performed best with shorter
intervals. (Ten seconds was the shortest interval we tried.)
Similarly, the partially safe buffer performed best ‘with short
staging intervals. Since the utilization of the disks is low for all

6 A log may be used for other purposes as well, such as to record the
commit decisions for each transaction. However, such a log can be much
more compact than a REDO log [181.

16.00 c

14.00 c

12.00

1

IO.00

1
I

8.00 1 lRACE: clientA

I

6.00 c

! , I I I I I I I

Read Response Time
(ms.)

33.00 7 : I

31.00~
I

29.00

28.00

:

27.00 c

I
25.00 1

I

Lm I I I I I I I I

2
3% 7% Safe Buffer Size
7% :z 3% Volatile Buffer Sk

of the traces, the extra disk operat ions generated at the syn-
chronization points do not contribute to significant increases in
response times for concurrent read or write operations.

For both the partially safe buffer and the volatile buffer,
write response times are near zero. This indicates that syn-
chronous I/O is rarely required to satisfy write requests, i.e.,
that the blocks replaced by newly written blocks tend to be
clean. In a more heavily loaded system, this may not be true.

To test this hypothesis, we increased the request load of-
fered to the simulated system by multiplying the request inter-
arrival t imes (determined from the traces) by a scaling factor.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

TABLE VI
UNSAFE UPDATE COMPARISON - WFUIE RESPONSE TIMES THE VOLATILE

BUFFER WAS MANAGED USING LRU REPLACEMENT AND A SYNCHRONI-
ZATION INTERVAL OF 10 SECONDS. THE DATA FOR THE PARTLQLY SAFE

BUFFER WERE OBTAINED USING THE LRU VOLATILE/WRITE UPDATE POLICY,
WITH AND WITHOUT ASYNCHRONOUS STAGING. NOTE THAT THE HIGH WRITE
RESPONSE TIMES FOR THE WRITE-THROUGH AU-VOLATILE BUFFER ARE AN
ARTIFACT OF THE BURSTS OF WRITE REQUESTS IN THE REFERENCE TRACES.

ALL TIMES ARE IN MILLISECONDS.

3%-&e 3%-&e

7%-vol. 7%-vol.
staging staging

(C = 1) ((C = 0)]

0.68 0.00
6.58 0.00

-l--l

0.00 0.00
4.93 0.00

For example, by choosing a scaling factor of 0.5, we divide the
actual traced interarrival times in half before supplying them to
the simulator. Disk utilization increases from about 8%’ (for
trace “ServerA”) without scaling to over 60% with a scaling
factor of 0.05.8 The scaled traces provide a somewhat more
artificial workload than the unscaled ones. However, scaling is
a simple way to get a rough idea of performance under higher
utilizations in the absence actual traces of heavier workloads.

Fig. 12 shows the mean write response time as a function of
the scaling factor (the offered load) for the two server traces.
(Similar behavior was observed for the client traces.) To pro-
duce these traces, the synchronization interval was fixed at 10
seconds for the volatile buffer, and the staging interval set to C
= 0 (immediate staging) in the partially safe buffer. In practice,
the selection of an optimal staging or synchronization interval
becomes a complex problem at higher loads. (For low loads,
short intervals are almost always best.)

The figures show that as the offered load increases, the vola-
tile, copy-back buffer can maintain low write response times at
higher loads than the partially safe buffer. The reason for this is
that the partially safe buffer channels all update requests through
its safe buffer (3% of the reference set size), whereas updates
can be buffered anywhere in the volatile buffer (10% of the ref-
erence set size). At high loads, the smaller safe buffer tends to
fill up with unstaged updates. When this occurs, update requests
are likely to encounter a delay while a replacement is performed
in the safe buffer. Of course, the improved performance of the
volatile buffer at high loads comes at the expense of additional
data loss in the event of a failure, since many unsafe updates
reside in the volatile buffer.

VII. DISCUSSION AND CONCLUSION

We have considered the problem of managing partially safe

’ Even at low utilizations, requests experience significant average waiting
t$es at the disk server because of the bursty arrival rate.

Utilization does increase at the same rate as the scaling factor because
many requests have interarrival times of zero.

Mean Write Response Time (ms.)

50

40

30

20

10

0

:I

LRU Volatile/Write Update, C = 0 ;/’
I -

!’ f
If

,;’ - :I .‘I

-
,(/’

TRACE: serverA ,.,‘,
.,‘/’

- ,*; ’
,‘1

,‘f .‘X ,‘/ ,”
I@ Volatile, Copy-Back Buffe

/- I

0.5 0.4 0.3 0.2 0.1

(lower load) (higher load)

Inter-arrival Time Scaling Factor

Mean Write Response Time (ms.)
30

25

20

15

10

5

0

-

- LRU Global/Write Update, C = 0 i

-
LRU Volatile/Write Update, C = 0 I

TRACE: serverB
: (: ,

- : ,’
,I’ !

Volatile, Copy-Back Buffer 1,11” / ,,,’ I’ -
,,,’ I’

I I I

0.3 0.2 0.1

(lower load) (higher load)

Inter-arrival Time Scaling Factor

Fig. 12. Mean write response times vs. inter-arrival time scaling factor.

buffers. Our experiments support a number of conclusions
about their use:

l Only a small safe buffer is necessary. For our traces, a
few megabytes was always sufficient without staging. If
staging is used, even smaller safe buffers will still pro-
vide good performance.

AKYijREK AND SALEM: MANAGEMENT OF PARTIALLY SAFE BUFFERS

l If the LRU Volatile technique is used, excess space in the
safe buffer will be wasted. The LRU Global policy is
more flexible and can take advantage of the additional
safe buffer space to reduce read response times.

l When the read reference pattern is very bursty, the LRU
Global policy may result in poor read response times.
The same is true for very update-intensive workloads.
The LRU Global policy exacerbates the problem of read
request bursts when it elects to replace dirty objects in
the safe buffer, creating additional work for the disks at
the wrong time. These effects can be reduced by asyn-
chronously staging dirty objects to the disks.

l The Write Update policy is preferred to the Write Purge
policy because of the poor performance of Write Purge
when the safe buffer is very small. The small buffer case
is important because small buffers are usually sufficient
to eliminate most or all of the write response time. For
larger safe buffers, the distinction is not significant.

l Asynchronous staging of dirty objects from the safe
buffer reduces already-low write response times even
further. Staging also improves read-response times when
the LRU Global policy is used. For workloads such as
ours, it is best to perform staging operations without de-
lay. If the disks are more heavily utilized, it may be ap-
propriate to use less bandwidth for staging. Alternatively,
staging operations could be performed at lower priority
than synchronous (request-initiated) disk operations.

l For lightly loaded disks, the performance of a partially
safe buffer is comparable to that of an all-volatile copy-
back buffer. By using the partially safe buffer, the need
for periodic synchronization of the buffer is eliminated,
and no updates will be lost in the event of a failure.

One extension of this work is its application to transaction
processing systems, or other systems that use logging to guar-
antee the durability of updates. If write response times can be
made sufficiently small by introducing safe buffers, then one
of the principal motivations for logging will have been re-
moved. (One version of this idea is currently being used in the
POSTGRES storage system [171.) Aside from the elimination
of the complexities of logging, an advantage of the safe-buffer
approach is that failure recovery is very fast, since there is no
need to reconstruct the state of the database from the log.

It may be possible to further enhance the performance of
partially safe buffers by taking advantage of buffered updates to
reduce the cost of disk update operations. Piggy-backed up-
dates, as suggested in [181, can be used, or the buffer manager
can attempt to delay updates until the disk is idle. We expect
that such enhancements would be most beneficial when the disk
is heavily loaded, which was not the case in our study.

407

REFERENCES

[I] M. Baker, S. Asami, E. Dcprit, and J. Ousterhout, “Non-volatile Memory
for fast reliable file systems,” Proc. Int’l Co@ Architectural Support
Programming Lunguuges and Operating Systems, pp. 10-22, Oct. 1992.

[2] M. Baker and M. Sullivan, “The recovery box: Using fast recovery to
provide high availability in the Unix environment,” Proc. Usenix
Technical Conf., pp. 31-44, June 1992.

[3] Cl. Copeland, R. Krishnamurty, and M. Smith, “The case for safe
RAM,” Proc. 15th VLDB Co&, pp. 327-336, Amsterdam, 1989.

[4] M.H. Eich, “A classification and comparison of main memory database
recovery techniques,” Proc. Int’l Conf: Data Eng., IEEE, pp. 332-339,
Feb. 1987.

[.5] J. Gait, “Phoenix: A safe in-memory file system,” Comm. ACM, vol.
33, no. 1, pp. 81-86, Jan. 1990.

[6] H. Garcia-Molina and K. Salem, “High performance transaction process-
ing with memory-resident data,” Proc. Int’l Symp. High Performance
Computer Systems, Paris, Dec. 1987, North-Holland, 1988.

[7] T. Haenler and A. Ret&, ‘Principles of transaction-oriented database re-
coveq,“ACM Computing Surveys, vol. 15, no. 4, pp. 287-317, Dec. 1983.

[8] IBM 3990 Storage Control Introduction, IBM, manual no. GA37-
0098-0, 1987.

[9] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman, Design
and Implementation of the 4.3BSD Unix Operating System, Addison-
Wesley, 1989.

[lo] T.J. Lehman and M.J. Carey, “A recovery algorithm for a high-
performance memory-resident database system,” Proc. ACM SIGMOD
Int’l Conf: Management ofData, pp. 104-l 17, San Francisco, 1987.

[ll] S.W. Ng, “Improving disk performance via latency reduction,” IEEE
Trans. Computers, vol. 40, no. 1, pp. 22-30, Jan. 1991.

[12] E. Rahm, “Performance evaluation of extended storage architectures
for transaction processing,” Proc. ACM SIGMOD Int’l Con$ Mun-
agement of Data, pp. 308-317, 1992.

[13] C. Ruemmler and J. Wilkes, “Unix disk access patterns,” Usenix Conf:
Proc., pp. 405420, Jan. 1993.

[14] H. Schwetman, “CSIM Reference Manual (Rev. 14);’ MCC Technical
Report No. ACT-ST-252-87, MCC, Austin, Texas, Mar. 1990.

[15] A.J. Smith, ‘Disk cache - Miss ratio analysis and design considerations,”
ACM Tran Computer Systems, vol. 3, no. 3, pp. 161-203, Aug. 1985.

[16] J.A. Solwoxth ,and C.U. Orji, “Write-only disk caches,” Proc. ACM
SIGMOD Int’l ConjI Management of Data, pp. 123-132, May 1990.

[17] M. Stonebraker, “Design of the POSTGRES storage sysytem,” Proc.
13th VLDB Conf., pp. 289-300, Brighton, UK, 1987.

[18] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, “Design of
XPRS,” Proc. 14th VLDB Conf., pp. 318-330, Los Angeles, 1988.

Sedat Akyiirek received the BS degree in computer
engineering from the Middle East Technical Univer-
sity, Ankara, Turkey, in 1988 and the MS degree in
computer science from the University of Maryland,
College Park, in 1991, and is currently a PhD candi-
date in the Department of Computer Science at the
University of Maryland, College Park.

Akytlrck’s research interests include disk and I/O
systems, operating systems, databases, and distributed
systems. He is currently working on adaptive data
storage techniques for disk systems.

Kenneth Salem received the BS degree in electrical
engineering and applied mathematics from Carnegie
Mellon University in 1983 and the PhD degree in
computer science from Princeton University in 1989.

Dr. Salem is an assistant professor in the De-
partment of Computer Science at the University of
Maryland, College Park. His research interests
include database and operating systems, and trans-
action processing. He is a member of the ACM and
the IEEE Computer Society.

